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1 Performance-Analyse eines C++-
Programms

1.1 Einleitung

In den vergangenen Jahren hat sich die Softwareentwicklung grundlegend gewandelt. 
Objektorientierte Techniken und Werkzeuge verließen die Labors, in denen sie jahrelang 
gereift waren. Die neue Programmiersprache C++ entstand. Sie erweiterte die anerkannte 
Sprache C um objektorientierte Konzepte, entwickelte sich bald zu einem De-Facto-
Industriestandard und trug wesentlich zur heutigen Verbreitung der Objektorientierung bei.

Während des Übergangs von der strukturierten zur objektorientierten Programmierung wurde 
nicht einfach die Programmiersprache C durch C++ ersetzt. Es fand ein grundlegender 
Wandel in allen Phasen der Programmentwicklung statt. Neben der Implementierung wurden 
auch Analyse und Design neu gestaltet. Die objektorientierte Vorgehensweise erhöht 
wesentlich die Übersichtlichkeit. Damit verringert sich die Häufigkeit von Fehlern, und der 
Aufwand für Entwicklung und Wartung eines Programms sinkt enorm.

Ein objektorientiertes Programm erhält schon in der Entstehungsphase ein anderes Gesicht. 
Neue Konzepte wie Datenkapselung und Polymorphie finden Einzug in Analyse und Design. 
Bei der Implementierung werden mehr und kleinere Objekte eingesetzt. Statt globaler 
Funktionen werden Methoden der Objekte aufgerufen. Für das Erzeugen und Löschen der 
Objekte werden Konstruktoren und Destruktoren verwendet. Sie sorgen für die Konsistenz 
der verwalteten Daten. Mit virtuellen Methoden wird es möglich, Objekte zu verwenden, 
deren genauer Typ nicht bekannt ist. 

Die heutigen objektorientierten Programmiersprachen besitzen aber noch Mängel in bezug 
auf die Laufzeiteffizienz. Die Umstellung eines Projekts auf objektorientierte Techniken ist 
oft mit einem erhöhten Bedarf an Ressourcen verbunden. Dieser Performanceverlust ist 
jedoch keine unheilbare Krankheit. Im vorliegenden Buch werden die Schwachstellen eines 
C++-Programms aufgedeckt und behandelt. Dabei zeigt sich, daß Objektorientierung und 
High Performance keine Gegensätze sind. Alle vorgeschlagenen Konzepte passen sich 
harmonisch in die objektorientierte Sprache C++ ein.

Einige Leser werden sich fragen, ob sich der Aufwand für das Performance-Tuning wirklich 
lohnt. Schließlich gelangt mit rasantem Tempo neue, leistungsfähigere Hardware auf den 
Markt. Auch die Programmierwerkzeuge werden ständig verbessert. Dabei wird aber 
übersehen, daß unsere Ansprüche schneller wachsen als die Hardware. Noch vor wenigen 
Jahren benötigten wir für das Verarbeiten großer Datenmengen einen "großen" Computer. 
Heute werden statt Mainframes zunehmend Rechnernetze eingesetzt. Damit steigen die 
Ansprüche an die Rechenleistung unseres persönlichen Arbeitsplatzcomputers. Bei der 
Auswahl geeigneter Software spielt die Performance eine wichtige Rolle. Beschäftigt sich 
ein Programm vorwiegend mit sich selbst, statt unsere Aufgaben zu lösen, sehen wir uns 
nach einem anderen um.

C++ verfügt über bessere Optimierungsmöglichkeiten als andere objektorientierte 
Sprachen. Diese Möglichkeiten sind aber nicht offensichtlich, und sie werden vom Compiler 
nicht automatisch eingesetzt. Kennen wir sie nicht, ist die Performance unseres Programms 
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nur durchschnittlich. Für eine bessere Performance müssen wir die sprachnahen Werkzeuge 
genauer untersuchen. Dazu zählen:

• Die Definition der Programmiersprache C++.
• Der C/C++-Compiler.
• Die C-Standardbibliothek mit den Modulen string, stdlib usw.

Wir betrachten diese Werkzeuge aus dem Blickwinkel der Performance. Das Buch liefert 
deshalb keinen vollständigen Überblick der Sprache C++. Stattdessen untersuchen wir 
diejenigen Teile, die den Ressourcenverbrauch unseres Programms beeinflussen (siehe 
Abbildung 1-1). Im Laufe der Untersuchungen werden wir mehrmals das Seziermesser an 
Compiler und Standardbibliothek anlegen. Die Ergebnisse sind nicht immer appetitlich. Wir 
erlangen aber die Fähigkeit, unser Programm von ungesundem Ballast zu befreien.

 
Sprache C++ 

C/C++-Compiler C-Standardbibliothek 

Performance 

Abb. 1-1:    Grau: Der Gegenstand des Buchs

Es existieren viele Wege, ein Programm zu optimieren. Auf die noch nicht bewiesene These, 
daß jedes Programm um mindestens ein Byte verkürzt werden kann, ohne an Funktionalität 
einzubüßen, gehen wir hier nicht ein. Stattdessen werden wir uns handfesten Tatsachen 
widmen. Das algorithmische Tuning ist seit vielen Jahren erforscht und in zahlreichen 
Büchern publiziert. Dazu zählen angepaßte Sortierverfahren, die Zugriffsbeschleunigung mit 
Hashtabellen usw. Je stärker wir ein Programm algorithmisch optimieren, desto höher 
werden unsere Ansprüche an die Sprachwerkzeuge (siehe Abbildung 1-2). Im Laufe des 
Buchs lernen wir zahlreiche Möglichkeiten kennen, auch sie optimal an unsere Bedürfnisse 
anzupassen.

Optimiertes Programm OHNE

Normales ProgrammProgramm

Programm

Sprachwerkzeuge

Ressourcen

Sprachwerkzeuge
optimierte Sprachwerkzeuge

Optimiertes Programm MIT
Programm Sprachw.

optimierten Sprachwerkzeugen

 

Abb. 1-2:    Anteile des Ressourcenverbrauchs

Beim Optimieren eines Programms dürfen wir die Qualität nicht außer acht lassen. Wir 
werden beim Performance-Tuning weder unübersichtlichen Spaghetticode noch 
Assemblerroutinen einsetzen. Nach einem gründlichen Design finden wir auch für schwierige 
Probleme eine objektorientierte Lösung in C++. Das nachträgliche Ändern getesteter 
Programmteile ist stets mit Risiken verbunden. Deshalb sollten wir performancekritische 
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Stellen frühzeitig erkennen und einkapseln. Nützliches Zusatzwissen über die 
Spachwerkzeuge hilft uns dabei.

Optimierungskonzepte sind kein Gegensatz zu bestehenden, sondern eine sinnvolle 
Ergänzung. Wir können sie auch an nicht performancekritischen Stellen einsetzen. Manchmal 
stehen sie jedoch im Widerspruch zu anderen Design- und Programmierregeln. In diesen 
Fällen müssen wir sorgfältig abwägen, was die höhere Priorität besitzt. Moderne Programme 
mit graphischer Benutzeroberfläche bestehen aus zahlreichen Komponenten. Normalerweise 
sind davon nur zehn bis zwanzig Prozent performancekritisch. Diese beanspruchen siebzig 
bis achzig Prozent der Ressourcen. Da die performancekritischen Komponenten nur einen 
geringen Anteil am Gesamtprogramm besitzen, können wir dort auch abweichende Regeln 
einsetzen.

Das Performance-Tuning ist oftmals wie Goldsuche. Es existieren hunderte oder tausende 
Faktoren, die sich auf den Ressourcenverbrauch auswirken. Viele verstecken sich hinter 
Compilerschaltern und Standardfunktionen. Sind wir mit der Performance unseres 
Programms nicht zufrieden, greifen wir auf der Suche nach dem Flaschenhals oft ins Leere. 
Statt eines großen Klumpen Goldes finden wir meist nur einen kleinen Ressourcenkrümel. 
Deshalb Goldsucher und solche, die es werden wollen, aufgepaßt! Im vorliegenden Buch 
werden einige Gebiete gezeigt, in denen mit Sicherheit etwas zu finden ist.

Das Buch ist aus der Praxis entstanden und für Praktiker geschrieben. Es ist kein Lehrbuch 
und enthält keine Definitionen. Grundkenntnisse in der Programmiersprache C++ werden 
vorausgesetzt. Für Leser, die mit der objektorientierten Begriffswelt und C++ noch nicht 
vertraut sind, werden wichtige Begriffe in groben Zügen erläutert. Neue Begriffe werden 
nicht in einer Definition sondern im jeweiligen Kontext beschrieben.

Das Buch gliedert sich in drei große Kapitel. Diese Unterteilung entspricht den drei Phasen 
der Programmentwicklung: Analyse, Design und Implementierung. Im ersten Teil analysieren 
wir ein kleines C++-Programm und stellen fest, daß wir bei seiner Entwicklung in mehrere 
Performancefallen getappt sind. Der zweite Teil enthält Konzepte, mit denen wir die 
Performance verbessern können. Im dritten Teil werden sie in C++ umgesetzt.

1.2 Einige Grundlagen

1.2.1 Zur Notation im Buch

Im Verlauf des Buches werden wir uns zahlreiche Designdiagramme und 
Programmfragmente ansehen. Um deren Verständlichkeit zu erhöhen, sind sie alle nach 
einheitlichen Prinzipien erstellt. Für die objektorientierten Designdiagramme wird die 
Methode von Peter Coad verwendet. Abbildung 1-3 zeigt die wichtigsten graphischen 
Elemete dieser Designmethode.
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AbstractClass
Attribute1

Method1

Part AssociatedClass

ReceiverConcreteClass

Attribute2

Method2

Abb. 1-3:    Graphische Elemente in Designdiagrammen

Die Klasse AbstractClass ist eine abstrakte Basisklasse. Sie enthält rein virtuelle Methoden, 
und von ihr können keine Instanzen (Objekte) gebildet werden. Abstrakte Klassen sind 
einfach umrandet. Konkrete Klassen, zum Beispiel ConcreteClass, sind doppelt umrandet. Das 
umrandete Viereck einer Klasse besteht aus drei Teilen: Klassenname, Liste der Attribute 
und Liste der Methoden. Zwischen Klassen gibt es vier Arten von Verbindungen:

• Vererbung (Inheritance, Generalization and Specialization),
• Teil-Ganzes-Beziehung (Whole Part Relation),
• Objekt-Verbindung (Object Connection) und
• Nachrichten-Verbindung (Message Connection).

In Abbildung 1-3 erbt die Klasse ConcreteClass von AbstractClass. Die Klasse Part ist als Teil 
in der Klasse ConcreteClass enthalten. In einer Teil-Ganzes-Beziehung können Kardinalitäten 
angegeben werden. In unserem Beispiel bedeuten sie: Ein Objekt der Klasse ConcreteClass 
enthält null bis n Objekte der Klasse Part, und ein Objekt der Klasse Part gehört zu genau 
einem Objekt der Klasse ConcreteClass. Zwischen ConcreteClass und AssociatedClass besteht 
eine Objekt-Verbindung. Auch diese kann mit Kardinalitäten näher beschrieben werden. Die 
Bedeutung im Beispiel ist: Zu einem Objekt der Klasse ConcreteClass gibt es genau ein Objekt 
der Klasse AssociatedClass, und zu einem Objekt der Klasse AssociatedClass gibt es ein bis 
fünf Objekte der Klasse ConcreteClass.

Für Elemente der Programmiersprache C++ gelten die folgenden Namenskonventionen: Alle 
Namen sind aus englischen Wörtern oder deren Abkürzungen zusammengesetzt. Um ein 
Kauderwelsch im Programm zu vermeiden, werden keine deutschen Bezeichnungen 
verwendet. In C++ sind alle Schlüsselwörter englisch, zum Beispiel class, public oder 
unsigned. Außerdem unterstützt die Programmiersprache nicht die deutschen Umlaute. Sehen 
wir uns dazu ein Beispiel an.

Wenn (KannÖffnen (Datei)) .... // lesbar, aber kein C++
if (KannOeffnen (Datei)) ....  // C++, aber Kauderwelsch
if (CanOpen (File)) ....       // lesbar und C++

Bei zusammengesetzten Namen beginnt jedes Teilwort mit einem Großbuchstaben. Die 
Schreibung des ersten Buchstabens eines Namens ist von seinem Gültigkeitsbereich (Scope) 
abhängig. Namen, die global oder in einer Klasse gültig sind, beginnen mit einem 
Großbuchstaben. Lokale Namen, das heißt Parameter und lokale Variable einer Methode, 
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haben einen Kleinbuchstaben am Anfang. Alle Namen von Typen, Variablen und Attributen 
besitzen einen Präfix. Darin ist eine Kurzinformation über den Typ oder die Kategorie des 
Namens enthalten. Dadurch müssen wir nicht jedesmal nach der Definition des Namens 
suchen, wenn wir wissen möchten, wie er einzuordnen ist. Methodennamen wird kein Präfix 
vorangestellt. Dadurch würde sich die Lesbarkeit des Programmtextes erheblich 
verschlechtern. In Anlehnung an eine verbreitete C-Konvention schreiben wir Makros 
durchgängig mit Großbuchstaben. Einzelne Teilwörter werden durch einen Unterstrich 
voneinander getrennt. Der Präprozessor ist kein Bestandteil der Programmiersprache im 
engeren Sinn. Er analysiert den Text in einem separaten Paß vor dem eigentlichen C++-
Compiler. Präprozessormakros sollten sich deutlich vom übrigen Programmtext abheben. Das 
folgende Programmfragment verdeutlicht mit einigen Beispielen die Bildung von Präfixen.

int           i_Number;               // Int
int *         pi_AddrOfNumber;        // Pointer to Int
char          c_Input;                // Character
char *        pc_AddrOfInput;         // Pointer to Character
char * *      ppc_AddrOfPtr;          // Pointer to pointer to Character
enum          et_Color {              // Enumeration Type
              ec_Blue }               // Enumeration Constant
              eo_BackgroundColor;     // Enumeration Object
typedef int   t_Counter;              // Type
t_Counter     o_Counter;              // Object
t_Counter *   po_AddrOfCounter;       // Pointer to Object
class         ct_TextPos;             // Class Type
ct_TextPos    co_TextPos;             // Class Object
ct_TextPos *  pco_AddrOfTextPos;      // Pointer to Class Object
template <class t> gct_ClassTemplate; // Generic Class Type
#define ASSERT(X) if (!(X)) Error (); // Preprocessor Macro

1.2.2 Überblick ist Alles

In der Designphase eines Programms entstehen wichtige Grundlagen. Klassen werden 
erzeugt und mit einem Interface versehen. Zwischen den Klassen werden Beziehungen 
hergestellt. Die Klassen mit ihren Vererbungsbeziehungen bilden einen Klassenbaum. Mit 
objektorientierten Werkzeugen ist es für den Designer einfach, einen Baum um weitere 
Klassen und Beziehungen zu erweitern. Wie gut verstehen aber spätere Anwender einen 
breit gefächerten Klassenbaum? Der Umgang mit einem Klassenbaum ist mit der 
Handhabung von standardisierten Kleingeräten, zum Beispiel Taschenrechnern, vergleichbar. 
Ähnlich der Methoden-Schnittstellen von Klassen gibt es bei Taschenrechnern verschiedene 
Bedienungs-Schnittstellen. Am gebräuchlichsten sind die algebraische Eingabelogik, die 
umgekehrte polnische Notation und die Eingabe mit BASIC-Befehlen. Abbildung 1-4 zeigt die 
Vererbungshierarchie dieser Schnittstellen.

HandheldCalculator

AlgebraicCalculator ReversePolishCalculator BasicCalculator

Abb. 1-4:    Taschenrechnergruppen nach Eingabelogik
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Löst man mit solchen Taschenrechnern viele Aufgaben und wechselt dabei oft die 
Eingabelogik, kommt es zu häufigen Bedienungsfehlern. Weniger kritisch ist hingegen die 
Verwendung mehrerer Taschenrechner, die mit derselben Eingabelogik arbeiten und sich nur 
im Funktionsumfang unterscheiden (siehe Abbildung 1-5).

HandheldCalculator

SimpleCalculator

ScientificCalculator

ScientificCalculatorWithGraphicalDisplay

Abb. 1-5:    Taschenrechner mit wachsendem Funktionsumfang

Wechselt man häufig zwischen Taschenrechnern dieser Gruppen, wird man kaum 
Bedienungsfehler verursachen. Es kann lediglich dazu kommen, daß man auf einem Rechner 
eine Funktion vermißt, die nur auf einem anderen Gerät verfügbar ist. Ein Bedienungsfehler 
bei einem Taschenrechner ist meist offensichtlich und wird schnell bemerkt. Weniger 
angenehm ist ein Fehler beim Gebrauch einer Klasse. Dies ist ein Programmierfehler, der zum 
fehlerhaften Verhalten oder zum Abbruch des Anwendungsprogramms führen kann. Die 
Folge ist eine lange Fehlersuche. Damit uns solche Fehler nicht unterlaufen, richten wir uns 
im weiteren nach folgender Regel.

Ein übersichtliches Design eines Klassenbaums erhalten wir, indem wir die Anzahl der 
Interfaces aller Klassen minimieren, nicht die Anzahl der Klassen.

Diese Regel besagt, daß die Komplexität eines Klassenbaumes nicht so sehr von der Anzahl 
der Klassen abhängt, sondern von der Anzahl verschiedener Interfaces, die diese Klassen 
besitzen. Die beiden Vererbungsbäume für Taschenrechner enthalten jeweils vier Typen. 
Dennoch ist der zweite Vererbungsbaum in der Handhabung einfacher, weil die Interfaces 
nicht grundverschieden sind, sondern aufeinander aufbauen. Ein Klassenbaum mit 50 
Klassen kann in der Handhabung einfacher als ein Baum mit 20 Klassen sein, wenn in 
ersterem nur insgesamt fünf verschiedene Interfaces vorkommen, in letzterem aber jede 
Klasse ein anderes Interface besitzt. Beim Hinzufügen neuer Klassen zu einem bestehenden 
Baum sollten möglichst vorhandene Interfaces genutzt werden, zum Beispiel durch 
Vererbung. Dann erhöhen die neuen Klassen die Funktionalität des Klassenbaumes, also 
seine Brauchbarkeit. Die Komplexität erhöht sich hingegen nur unwesentlich, da keine neuen 
Interfaces hinzukommen. Damit bleibt der Klassenbaum in der Handhabung einfach.
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1.2.3 Brandschutz statt Feuerwehr

Ein Bauarbeiter erzählt: Auf dieser Baustelle hat es schon fünfmal gebrannt, aber ich arbeite 
gern hier. Das Fundament und der Rohbau waren schnell fertig. Es ist ja nicht das erste 
Haus, das wir bauen. Am Anfang gefiel mir die Arbeit nicht so gut. Es war alles noch so 
sauber, als sollte es ein Krankenhaus werden. Das änderte sich aber schnell, nachdem es 
draußen kalt wurde. Die Heizungsmonteure hatten das oberste Stockwerk übersehen. 
Wegen der Kälte nutzte ein Maler zum Trocknen der Farbe einen Fön und ging in die 
Baracke. Eine halbe Stunde später mußten wir zum ersten Mal die Feuerwehr rufen. Es war 
aber nicht so schlimm, wie es auf den ersten Blick aussah. Der zweite Brand brach einige 
Tage später im Erdgeschoß aus und war etwas schwieriger. Das Mauerwerk wurde in einem 
Zimmer stark beschädigt. Unser Chef, der als Student ein guter Baustatiker war, änderte 
daraufhin die Baupläne und ließ eine zusätzliche Wand einziehen...

Wir wünschen unserem Freund, daß er nicht eines Tages eine Verletzung erleidet. Seinem 
Chef wünschen wir, daß er für den fertigen Bau einen Hausherrn findet und nicht selbst 
darin wohnen muß. Beim Programmieren möchten wir jedoch ohne Feuerlöscher 
auskommen. Die Anwender sollen sich in unserem Software-Gebäude wohl fühlen. Deshalb 
betreiben wir auf unserer digitalen Baustelle rechtzeitig Brandschutz.

Informationsverarbeitende Prozesse im Menschen und Computer unterscheiden sich unter 
anderem dadurch, daß sie beim Menschen auch unter extremen Bedingungen selten außer 
Kontrolle geraten. Geben wir zum Beispiel dem Schaffner in der Eisenbahn aus lauter 
Verwirrung statt der Fahrkarte eine Diskette, wirft es diesen nicht gleich aus den Schuhen. 
Er prüft das ihm übergebene Objekt, stellt fest, daß es sich um einen verkehrten Objekttyp 
handelt, und gibt es mit einer Fehlermeldung an uns zurück. Anders ist das Übergeben eines 
falschen Objekts an eine Methode. Selten werden die Parameter geprüft. Dementsprechend 
häufig ist das unkontrollierte Verhalten eines Programms bei einem fehlerhaften 
Methodenaufruf. Solche Fehler kann man nach dem Feuerwehr-Prinzip beseitigen. Man 
startet einen Debugger und tastet sich schrittweise durch das Programm. Hat man die 
fehlerhafte Stelle entdeckt, berichtigt man das Programm. Kann man aber nach dieser 
Korrektur mit ruhigem Gewissen weiterarbeiten? Kann es nicht sein, daß eine Woche später 
dieselbe Methode wieder mit verkehrten Parametern aufgerufen wird? Wäre es nicht besser, 
man würde in die Methode zusätzliche Prüfungen einbauen?

Innerhalb eines Programms gibt es zahlreiche Stellen, an denen der weitere Verlauf von der 
Korrektheit bisheriger Ergebnisse abhängt. Manchmal ist die Richtigkeit der 
Zwischenergebnisse durch den Kontrollfluß gewährleistet. In solchen Fällen benötigen wir 
keine zusätzlichen Prüfungen. Oft liegt jedoch ein Fehlverhalten im Bereich des Möglichen 
oder Wahrscheinlichen. Dann sollten wir die Korrektheit der Daten sicherstellen, bevor wir 
mit ihnen weiterarbeiten. Diese Tests erfolgen meist mit dem Makro ASSERT. Es erhält als 
Parameter die zu prüfende Bedingung. Ist die Bedingung nicht erfüllt, wird eine detaillierte 
Fehlermeldung ausgegeben. Typische Stellen für das Prüfen zusätzlicher Bedingungen sind 
die Ein- und Austrittspunkte von Methoden. Am Anfang werden die übergebenen Parameter 
getestet. Am Ende muß sichergestellt werden, daß die Resultate die gewünschten 
Eigenschaften besitzen. Neben diesen Vor- und Nachbedingungen müssen auch 
Zwischenergebnisse geprüft werden. Sehen wir uns als Beispiel eine Methode an, die in 
einer Zeichenkette ein bestimmtes Zeichen durch ein anderes ersetzen soll.

void Replace (char * pc_string, char c_old, char c_new)
  {
  ASSERT (pc_string != 0); // Vorbedingungen
  ASSERT (c_old != '\0');
  ASSERT (c_new != '\0');
  char * pc_found = strchr (pc_string, c_old);
  while (pc_found != 0)
    {
    ASSERT (pc_found >= pc_string); // Zwischenbedingungen
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    ASSERT (pc_found < pc_string + strlen (pc_string));
    * pc_found = c_new;
    pc_found = strchr (pc_string, c_old);
    }
  ASSERT (strchr (pc_string, c_old) == 0); // Nachbedingung
  }

In dieser kleinen Methode wurde das ASSERT-Makro etwas übertrieben eingesetzt. 
Normalerweise sind Zusatzbedingungen nur nötig, wenn ein begründeter Verdacht auf ein 
Fehlverhalten vorliegt. ASSERT-Makros können auch bei mäßiger Verwendung einen 
Geschwindigkeitsverlust verursachen. Deshalb sollten sie nur in der Testphase des 
Programms wirksam sein. Bevor wir das getestete Programm dem Anwender übergeben, 
definieren wir beim Übersetzen das Makro NDEBUG. Dann expandieren alle ASSERT-Makros zu 
einer leeren Zeichenkette und belasten nicht mehr die Rechenzeit. Die Definition des ASSERT-
Makros kann zum Beispiel so aussehen:

#ifdef NDEBUG
  #define ASSERT(condition)
#else
  #define ASSERT(condition) \
    if (! (condition)) InternalError (#condition, __FILE__, __LINE__)
#endif

Das ASSERT-Makro führt nicht nur zu einem robusteren Programm, es hat auch weitere 
Vorteile. Formulieren wir zusätzliche Bedingungen, durchdenken wir den Kontext besser, auf 
den sie sich beziehen. Bei Vor- und Nachbedingungen ist es der Kontext, in dem die 
Methode verwendet werden kann. Bei Zwischenbedingungen ist es der Kontext, in dem 
andere Methoden aufgerufen werden. Dieses tiefere Durchdenken macht uns auf 
Fehlersituationen aufmerksam, noch bevor das Programm zum ersten Mal gestartet wurde. 
Für den Anwender der Methode sind besonders die Vorbedingungen wichtig. Sie zeigen ihm 
knapp und korrekt, wie die Methode aufzurufen ist. Zusatzbedingungen im Quelltext sind 
eine Art Dokumentation und erleichtern auch die Pflege des Programms. Die folgende Regel 
faßt diese Erkenntnisse zusammen.

Durch Zusatzbedingungen erhalten wir ein robusteres und besser durchdachtes Programm. 
Gleichzeitig wird der Programmtext dokumentiert.

1.2.4 Vorsicht, Falle im Unsichtbaren

Die Programmiersprache C++ weist gegenüber C zahlreiche Erweiterungen auf. Die 
wichtigsten Neuerungen unterstützen objektorientierte Konzepte. Dazu zählen Vererbung, 
virtuelle Methoden und die Vergabe von Zugriffsrechten für die Elemente einer Klasse. 
Andere Erweiterungen sind programmtechnischer Natur, zum Beispiel Inline-Methoden, das 
Überladen von Methoden und das Definieren eigener Operatoren. Die neue Funktionalität 
erhöht in vielen Fällen den Programmierkomfort. Einige Eigenschaften der Sprache C++ 
müssen wir jedoch beim Programmieren besonders beachten.

Ein C-Programm kann fast linear in die Maschinensprache des Computers übersetzt werden. 
Der Compiler fügt beim Übersetzen nur wenige Anweisungen hinzu. Wir sehen nahezu alles, 
was zur Laufzeit im Computer abläuft, auch in unserem Programmtext. Diese Transparenz 
ist besonders wichtig, wenn im Programm ein Fehler gesucht werden muß, und erleichtert 
das Optimieren. In einem C++-Programm laufen hingegen viele Prozesse im Unsichtbaren 
ab. Der Compiler liest zwischen den Programmzeilen Dinge heraus, die ihm der 
Sprachstandard vorschreibt. Ein Programmierer, der mit der Sprache C++ noch wenig 
vertraut ist, kann dabei Wichtiges übersehen. Die unsichtbaren Anweisungen, die der 
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Compiler hinzufügt, beeinflussen manchmal die Performance. Damit werden wir uns später 
ausführlich beschäftigen. Manchmal ändern diese Zusätze das Verhalten des Programms. 
Diese Fälle müssen wir jetzt schon behandeln, um das nachfolgende Beispielprogramm 
fehlerfrei zu implementieren.

Jede C++-Klasse enthält mindestens einen Konstruktor, mindestens einen Gleich-Operator 
und genau einen Destruktor. Definieren wir diese Methoden nicht selbst, werden sie vom 
Compiler erzeugt. Die Regeln, nach denen sie automatisch generiert werden, sind nicht 
gerade einfach und veranlassen auch den Profi, immer wieder in der Sprachdefinition 
nachzuschauen. Ein Standard-Konstruktor ist ein Konstruktor, der keine Parameter oder nur 
Parameter mit Vorgabewerten besitzt. Ein Kopier-Konstruktor ist ein Konstruktor, der mit 
einem einzelnen Objekt derselben Klasse aufgerufen werden kann. Ist überhaupt kein 
Konstruktor definiert, generiert der Compiler einen Standard-Konstruktor ohne Parameter. 
Der Kopier-Konstruktor wird automatisch erzeugt, wenn kein anderer Kopier-Konstruktor 
definiert ist. Analog verhält sich der Gleich-Operator. Einen Destruktor gibt es nur einmal. 
Definieren wir ihn nicht selbst, wird er generiert.

Der Compiler erzeugt nicht nur Methoden-Definitionen sondern auch implizite Methoden-
Aufrufe. Zum Beispiel werden in einem Konstruktor die Konstruktoren der Basisklassen und 
der Attribute automatisch aufgerufen. Jedes temporäre Objekt wird implizit mit einem 
Konstruktor erzeugt und mit dem Destruktor zerstört. Sehen wir uns ein Beispiel an, aus 
dem der Compiler wesentlich mehr macht, als auf dem Papier steht. Es ist ein 
Prinzipbeispiel, nicht eine besonders elegante Berechnung der Fakultät.

class ct_Number
  {
  long       l_Value;
public:
  ct_Number  Factorial ();
  ....
  };

ct_Number ct_Number:: Factorial ()
  {
  ct_Number co_result = * this;
  if (l_Value > 1)
    {
    co_result. l_Value --;
    co_result = co_result. Factorial ();
    co_result. l_Value *= l_Value;
    }
  return co_result;
  }

In der Klasse ct_Number erzeugt der Compiler automatisch den Standard-Konstruktor ct_Number 
(), den Kopier-Konstruktor ct_Number (const ct_Number &), den Destruktor ~ct_Number () und den 
Gleich-Operator ct_Number & operator = (const ct_Number &). Daß wir diese Methoden nicht 
selbst definiert haben, ist bei einer so einfachen Klasse nicht relevant. Interessant ist jedoch, 
daß der Compiler die generierten Methoden auch implizit aufruft. Die Methode Factorial 
liefert ein Objekt der Klasse ct_Number. Da keine Adresse (Zeiger oder Referenz) 
zurückgegeben wird, erzeugt der Compiler in der return-Anweisung durch den Kopier-
Konstruktor ein temporäres Objekt. In der Definition der lokalen Variablen ct_Number co_result 
= * this wird ebenfalls der Kopier-Konstruktor aufgerufen. Die Schreibweise mit 
Gleichheitszeichen ist irreführend und identisch mit ct_Number co_result (* this). In der 
Anweisung co_result = co_result. Factorial () wird das temporäre Objekt, das ein anderer 
Aufruf der Methode Factorial liefert, mit dem Gleich-Operator der lokalen Variablen 
zugewiesen und anschließend mit dem Destruktor zerstört.

An diesem Beispiel sehen wir, daß die genannten Methoden in einem Programm häufig 
verwendet werden können, auch wenn sie an keiner Stelle explizit aufgerufen werden. 
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Haben wir vergessen, diese Methoden für eine Klasse zu definieren, kann es bei der 
Anwendung dieser Klasse zu Fehlern kommen. Deshalb müssen wir jede Klasse daraufhin 
prüfen, ob die generierten Methoden den gewünschten Effekt haben. Zum Beispiel ruft der 
generierte Kopier-Konstruktor die Kopier-Konstruktoren der Basisklassen und der Attribute 
auf. Primitive Datentypen (int, char usw., auch Zeiger) werden binär kopiert. Entspricht 
dieses Verhalten nicht unseren Erwartungen, müssen wir den Kopier-Konstruktor selbst 
definieren. Die folgende Regel verdeutlicht noch einmal das so eben Behandelte.

Wir prüfen bei der Implementierung jeder Klasse, ob die automatisch generierten Methoden 
Standard-Konstruktor, Kopier-Konstruktor, Destruktor und Gleich-Operator den gewünschten 
Effekt haben. Ist das nicht der Fall, müssen wir diese Methoden selbst definieren.

1.3 Ein Beispielprogramm

1.3.1 Beschränkung auf das Wesentliche

Moderne, interaktive Programme bestehen aus zahlreichen Komponenten. Mit der 
Benutzeroberfläche können wir Informationen ansehen und Aktionen auslösen. Sie greift 
dabei auf interne Daten zu. Die prinzipielle Architektur interaktiver Programme wird am 
besten durch das Model-View-Controller-Konzept beschrieben (siehe Abbildung 1-6).

Informationsmodell

Ansicht

Steuerung

Model

View

Controller

Ansicht

Abb. 1-6:    MVC-Architektur eines interaktiven Programms

Das MVC-Konzept entstand in der Smalltalk-Gemeinschaft. Es ist heute allgemein anerkannt 
und wird von vielen objektorientierten Software-Entwicklern eingesetzt. Die Grundidee 
besteht in der Trennung des Informationsmodells von Sichten darauf und von der 
Benutzerschnittstelle. Das Informationsmodell (Model) enthält das fachliche Wissen und die 
eigentlichen Daten des Programms. Ist es unabhängig von seinen Darstellungen, kann es in 
beliebige Softwareumgebungen integriert werden. Zum Beispiel ist es dann möglich, 
dieselben Daten interaktiv oder in einem Batchlauf zu bearbeiten. Auf die internen Daten 
können verschiedene Ansichten (Views) gebildet werden. Diese sollten möglichst 
unabhängig voneinander sein, damit die Änderung oder Hinzunahme einer Sicht die anderen 
nicht beeinflußt. Der interaktive Teil eines Programms wird in der Benutzerschnittstelle 
(Controller) zusammengefaßt. Ist er unabhängig von den anderen Teilen, kann er leicht an 
neue Erfordernisse oder ein anderes Betriebssystem angepaßt werden.

Die Performance datenintensiver Programme wird im wesentlichen durch das 
zugrundeliegende Informationsmodell bestimmt. Dort werden die meisten Ressourcen 
verbraucht (Speicherplatz und Rechenzeit). Deshalb werden wir uns im folgenden auf die 
internen Daten konzentrieren. Die Betrachtung des Informationsmodells ist allgemeingültig 
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und auf alle C++-Programme anwendbar. Wir benötigen dazu lediglich Kenntnisse der 
Programmiersprache und ein wenig Wissen über den Compiler. Die Anbindungen an 
Datenbanken, Betriebssystem und Benutzeroberfläche bleiben außer Betracht. Diese 
Komponenten sind aus dem Blickwinkel des reinen C++-Programms externe Schnittstellen. 
Ihre Performance können wir durch intensives Studium der zugehörigen Handbücher 
beeinflussen, aber kaum durch die Programmiersprache.

1.3.2 Aufgabenstellung des Programms

Programmtechnische Konzepte, wie man sie zum Beispiel für die Erhöhung der Performance 
einsetzt, sind meist sehr abstrakt. Um diese Abstraktionen besser verstehen zu können, 
sehen wir sie uns anhand eines praktischen Beispiels an. Bei der Auswahl eines geeigneten 
Programmbeispiels stehen wir vor einem schwierigen Problem. Die Verbesserung der 
Performance ist oft nur bei großen Programmen mit komplex strukturierten Daten sinnvoll. 
Solche Dinosaurier-Programme sind ein willkommenes Fressen für einen Programm-
Optimierer. Sie können aber im Rahmen eines Buches nicht ausführlich behandelt werden, 
denn die meisten Leser haben keinen Appetit auf Dinosaurier. Wir sehen uns also nach 
einem kleineren Beispiel um. Dabei reicht uns ein Prinzip-Beispiel, denn die Prinzipien zur 
Optimierung eines C++-Programms sind der eigentliche Gegenstand dieses Buches.

Fast jeder kennt die Hilfesysteme moderner Programme und Betriebssysteme mit graphischer 
Benutzeroberfläche. In einem solchen Hilfesystem ist eine Reihe von Themen untergebracht. 
Zu jedem Thema gibt es einen Text. Dieser ist kein normaler, fließender Text, wie wir ihn 
von gedruckten Medien kennen, sondern ein Hypertext, ein Text mit Hyperlinks. Diese 
Hyperlinks erleichtern uns wesentlich den Umgang mit dem Hilfesystem. Durch sie gelangen 
wir mit wenigen Tasten zu verwandten Themen, die das ursprüngliche Thema weiter 
vertiefen. Außerdem sind einige Stellen im Text hervorgehoben, zum Beispiel durch 
Fettschrift, Kursivschrift oder Unterstreichung. In Abbildung 1-7 sehen wir ein Beispiel mit 
drei Themen, wobei das eine Thema Verweise auf die anderen Themen enthält. Die 
umrandeten Worte stellen Hyperlinks dar.

Titel: Menüs

 kann man eine von mehreren

 auswählen. Die Auswahl erfolgt

und <ENTER> oder

durch einen hervorgehobenen Buchstaben.

Titel: Pfeiltasten

Die Pfeiltasten befinden sich rechts auf der

Tastatur und dienen der Navigation innerhalb

eines Textes, eines Dialoges oder eines Menüs.

In einem Menü

Aktivitäten

mit Hilfe der Pfeiltasten

Titel: Dialoge

. . .

Siehe auch: Dialoge
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Abb. 1-7:    Beispiel für einen Hypertext

Moderne Hilfesysteme verfügen über vielfältige Möglichkeiten zur Darstellung von 
Informationen und zum Navigieren. Dementsprechend komplex sind die darunter liegenden 
Datenstrukturen. In unserem Beispiel beschränken wir uns auf das Wesentliche. Unser 
Hilfesystem soll nur einfachste Funktionen beherrschen, und wir betrachten nur sein 
Informationsmodell. Das Programmbeispiel, das wir im folgenden behandeln werden, ist also 
der objektorientierte Kern eines einfachen Hilfesystems, deshalb nennen wir es OHelp. Die 
wichtigste Aufgabe eines Programmkerns ist die Verwaltung des Informationsmodells. OHelp 
soll einen Hypertext verwalten. Daran stellen wir die folgenden Anforderungen:

• Ein Hypertext hat einen Namen, besteht aus mehreren Themen und hat einen Verweis 
auf ein Wurzelthema, das den Einstieg in das Hilfesystem ermöglicht.

• Zu einem Thema gehören ein Name und ein Text.
• Beliebige Textstellen können mit einer Formatierung versehen werden (siehe "Menü" und 

"Aktivitäten" im Beispiel).
• Ein Thema kann Verweise auf andere Themen haben (Hyperlinks). Ein Hyperlink hat 

optional eine Textposition.
• Ein Hyperlink mit Textposition dient der Anzeige im fließenden Text (siehe "Pfeiltasten" 

im Beispiel).
• Hyperlinks ohne Textposition können am Ende des Textes aufgelistet werden (siehe 

"Dialoge" im Beispiel).

1.4 Fundamentale Klassen von OHelp

Ein Programm besteht aus mehreren Schichten, die aufeinander aufbauen. Die unterste 
Schicht jedes C++-Programms ist die Programmiersprache. Diese ist vorgegeben und kann 
von uns nicht beeinflußt werden. Die nächste Schicht ist die C-Standardbibliothek, die mit 
geringen Änderungen von den C++-Compilern übernommen wurde. Auch diese ist als 
langjähriger Standard vorgegeben. Es lohnt sich nicht, in dieser Programmierebene 
Änderungen vorzunehmen, denn die C-Standardbibliothek ist auf vielen Plattformen 
verfügbar und macht das Programm weitestgehend portabel. Allerdings sind die Module 
dieser Bibliothek in C geschrieben und keine befriedigende Grundlage für die Erstellung 
objektorientierter Programme. Es fehlen einige grundlegende Module, die wir für die 
Entwicklung jedes Programms benötigen, zum Beispiel die Mengen (Collections). Es ist also 
sinnvoll, auf das C-Laufzeitsystem eine eigene Schicht zu bauen. In dieser Schicht sind 
allgemeingültige fundamentale Klassen enthalten, die von mehreren Programmen genutzt 
werden können.

Wie bei der Auswahl eines geeigneten Beispielprogramms beschränken wir uns auch beim 
Entwurf der fundamentalen Klassen auf das Wesentliche. Moderne, objektorientierte 
Klassenbibliotheken enthalten meist 50, 100 oder noch mehr Klassen und neigen zur 
Unübersichtlichkeit. Im Rahmen dieses Buches soll keine vollständige Klassenbibliothek 
behandelt werden. Wir begnügen uns mit den fundamentalen Klassen, die in unserem 
Beispielprogramm benötigt werden. Beim Durchsehen der oben aufgelisteten Anforderungen 
an OHelp stellen wir fest, daß an einigen Stellen Mengen und Zeichenketten (Strings) 
benötigt werden. So enthält ein Hypertext eine Menge Themen, ein Thema enthält eine 
Menge Formatierungen und Hyperlinks. Hypertext und Thema haben einen Namen, und das 
Thema enthält den Text.
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1.4.1 Design der fundamentalen Klassen

In einem Anwendungsprogramm gibt es viele verschiedene Anforderungen an Collections. 
Diese Anforderungen lassen sich grob in zwei Bereiche gliedern, die Schnittstelle (Interface) 
und die Implementierung. In diesem Abschnitt wollen wir uns mit dem Interface der 
fundamentalen Klassen, also auch der Collections, beschäftigen. Dieses Interface stellt eine 
bestimmte Funktionalität zur Verfügung.

In bezug auf die Reihenfolge unterscheiden wir geordnete und ungeordnete Collections. In 
einer geordneten Collection haben die Elemente eine bestimmte Reihenfolge, während in 
einer ungeordneten Collection die Reihenfolge der Elemente zufällig sein kann. Innerhalb der 
Gruppe der ungeordneten Collections gibt es Sets und Bags. In einem Set kann ein Element 
nur einmal vorkommen, in einem Bag kann hingegen dasselbe Element mehrmals enthalten 
sein. Diese Collections entsprechen dem Klassenbaum in Abbildung 1-8.

ct_Collection

Add

ct_UnorderedCollection

Add

ct_OrderedCollection

Add
AddAfter

ct_Set

Add

ct_Bag

Add

Abb. 1-8:    Verbreitete Collections-Hierarchie

Im Abschnitt 1.2.2 "Überblick ist Alles" haben wir uns überlegt, wie wir die 
Übersichtlichkeit eines Klassenbaums erhöhen. Sehen wir uns unter diesem Blickwinkel die 
obige Collections-Hierarchie einmal näher an. Die Klassen ct_Set und ct_Bag unterscheiden 
sich nur durch die Methode für das Einfügen eines neuen Elements. Bei der Klasse ct_Set 
wird das Element nur hinzugefügt, wenn es noch nicht in der Collection enthalten ist. Bei 
der Klasse ct_Bag unterbleibt diese Prüfung. Lohnt es sich, wegen dieses geringen 
Unterschieds zwei verschiedene Klassen mit einem semantisch verschiedenen Interface zu 
deklarieren? Oder ist es nicht einfacher, dafür zwei Methoden in dieselbe Klasse 
aufzunehmen, zum Beispiel Add (Hinzufügen) und AddCond (Bedingtes Hinzufügen)? Im 
letzteren Fall haben wir gleich zwei Interfaces eingespart.

Betrachten wir nun die geordneten und die ungeordneten Collections. Der Unterschied 
besteht im Grunde nur darin, daß eine geordnete Collection etwas mehr Funktionalität 
aufweist. In einer ungeordneten Collection gibt es zum Einfügen eines neuen Elements nur 
die Methode Add ohne Positionsangabe. Bei einer geordneten Collection können wir die Stelle 
genau angeben, an der das neue Element hinzugefügt werden soll. Weiter können wir 
voraussetzen, daß bei jedem Durchlaufen der geordneten Collection die Reihenfolge der 
Elemente dieselbe ist. Auch in diesem Falle lohnt es sich nicht, zwei verschiedene Interfaces 
zu deklarieren. Einfacher ist es, nur eine Klasse zu verwenden, und in diese Klasse die 
Methoden Add und AddAfter aufzunehmen. Die abstrakte Basisklasse für die Collections in 
unserer kleinen Bibliothek hat also das Interface einer geordneten Collection mit 
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Erweiterungen. Alle konkreten Implementierungen von Collections werden dasselbe Interface 
haben.

ct_Collection

Add
AddCond
AddAfter

Abb. 1-9:    Abstrakte Basisklasse für Collections

Die Klasse in Abbildung 1-9 enthält die gesamte Funktionalität der weiter oben dargestellten 
Vererbungshierarchie für Collections. Sie umfaßt sowohl das Interface einer ungeordneten 
als auch das einer geordneten Collection (Add und AddAfter). Sie kann neue Elemente wie eine 
Bagcollection (Add) oder eine Setcollection (AddCond) aufnehmen. Wir haben im Klassenbaum 
fünf Interfaces auf eines reduziert und damit dessen Handhabung vereinfacht.

Eine polymorphe Collection enthält normalerweise Zeiger (Pointer) auf ihre Elemente. In der 
strukturierten Programmierung war es üblich, dafür untypisierte Zeiger zu verwenden. Es lag 
in der Verantwortung des Programmierers, diese richtig einzusetzen. In C++ gebraucht man 
dazu meist eine abstrakte Basisklasse, nennen wir sie ct_Object. Die Collection speichert 
Zeiger auf diese Basisklasse. Alle Klassen, deren Objekte in eine Collection gelangen sollen, 
müssen von der abstrakten Basisklasse erben. Jedesmal, wenn auf ein Element einer 
Collection zugegriffen werden soll, muß ein Zeiger auf die Basisklasse ct_Object in einen 
Zeiger auf die abgeleitete Klasse umgewandelt werden. Deshalb muß die Basisklasse einen 
geeigneten Downcast-Mechanismus bereitstellen (Cast = Typumwandlung, Downcast = 
Cast zu einer abgeleiteten Klasse). Im neuesten C++-Standard sind dafür die Laufzeit-
Typinformationen vorgesehen (Runtime Type Informations, kurz RTTI). Da die RTTI aber 
noch nicht von jedem Compiler unterstützt werden, benutzen wir einen eigenen 
Mechanismus.

Wir definieren in der Klasse ct_Object eine virtuelle Methode GetTypeName. Diese Methode muß 
in jeder abgeleiteten Klasse redefiniert werden und liefert einen Zeiger auf eine Zeichenkette, 
die den Namen dieser Klasse enthält. Weiterhin ist in der Klasse ct_Object eine nicht-virtuelle 
Methode IsOfType enthalten. Diese Methode erwartet als Parameter einen Zeiger auf einen 
Klassennamen und vergleicht diesen mit dem Resultat von GetTypeName. Sind beide 
Zeichenketten gleich, so ist das Objekt vom angegebenen Typ, und IsOfType liefert den 
Wahrheitswert true. Danach kann ohne Bedenken der Downcast vorgenommen werden.

Im neuesten C++-Standard existieren für Wahrheitswerte der Datentyp bool und die 
Konstanten false und true. Auch diese Erweiterungen werden noch nicht von jedem 
Compiler unterstützt. Wir nehmen sie explizit in unser Programm auf. Betrachten wir nun die 
Deklaration und eine Anwendung der Klasse ct_Object.

typedef int bool;
const bool false = 0;
const bool true  = 1;

class ct_Object
  {
public:
  virtual              ~ct_Object () { }
  virtual const char * GetTypeName () const = 0;
  bool                 IsOfType (const char * pc_typeName) const;
  };
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bool ct_Object:: IsOfType (const char * pc_typeName) const
  {
  return strcmp (pc_typeName, GetTypeName ()) == 0;
  }

const char * ObjectToString (ct_Object * pco_obj)
  {
  ASSERT (pco_obj-> IsOfType ("ct_String"));
  ct_String * pco_string = (ct_String *) pco_obj;
  return pco_string-> GetStr ();
  }

Es gibt sicher noch leistungsfähigere Downcast-Mechanismen; für unser Beispielprogramm 
OHelp ist der geschilderte aber ausreichend. Wir müssen nur darauf achten, daß die 
Methode IsOfType einen Zeichenketten-Vergleich enthält und somit den Downcast 
verlangsamt. Sie ist eine Brandschutzmaßnahme und sollte nur innerhalb von ASSERT-Makros 
aufgerufen werden.

Für Einfügen, Löschen und Iterieren der Elemente einer Collection existieren verschiedene 
Techniken, die zum Teil erhebliche Laufzeitunterschiede aufweisen. Nutzen wir zum Beispiel 
zum Entfernen eines Objekts aus einer Collection einen Zeiger auf dieses Objekt, muß der 
Zeiger erst in der Collection gesucht werden. Beim einmaligen Entfernen mag dies unkritisch 
sein. Wird mit der Collection aber häufig gearbeitet, kann dadurch eine merkliche 
Verlangsamung eintreten. Die Collections, die wir gerade entwerfen, werden später einem 
kritischen Performancetest unterworfen. Es ist leicht, Mängel in solchen Klassen zu finden, 
die schon im Design unzureichend sind. Deshalb achten wir von vornherein auf eine gute 
Performance und statten unsere Collections mit einer effizienten Technik aus.

Zum Beschleunigen des Zugriffs auf die Objekte erhält jeder neue Eintrag eine eindeutige 
Identität, eine EntryId. Diese ist mit dem Index in einem Array vergleichbar. Den zugehörigen 
Datentyp nennen wir t_EntryId. An ihn stellen wir nur die eine Forderung, daß ein Element 
vom Typ t_EntryId mit dem numerischen Wert Null verglichen werden kann. Jede 
Implementierung einer Collection muß sicherstellen, daß der Wert Null nicht als eine gültige 
EntryId verwendet wird. Die Methode zum Einfügen eines Objekts liefert als Resultat einen 
neuen Wert vom Typ t_EntryId. Diese EntryId können wir zum schnelleren Zugriff auf das 
Objekt speichern. Einen Zeiger auf das eigentliche Objekt erhalten wir mit der Methode 
GetObj, die als Parameter eine EntryId erwartet. Zum Iterieren der Collection verwenden wir 
die Methoden First und Next. Auch diese Methoden liefern einen Wert des Typs t_EntryId. 
Am Ende der Collection erhalten wir den Wert Null. Mit der Methode Delete können wir einen 
Eintrag aus der Collection entfernen. Diese Methode erhält als Parameter eine EntryId, so 
daß das zu löschende Objekt nicht erst gesucht werden muß.

Ein häufiges Problem bei der Arbeit mit Collections ist das Ändern der Collection, während 
sie durchlaufen wird. In einigen Klassenbibliotheken wird dieses Problem ignoriert. In 
anderen gibt es aufwendige Iterator-Objekte, die zwar das gewünschte Verhalten zeigen, 
aber nur mit einem unangemessen hohen Aufwand, der sich in der Performance 
niederschlägt. Durch eine kleine Änderung in dem oben beschriebenen Konzept lösen wir 
dieses Problem auf sehr einfache Weise. Wir fordern nur, daß die Methode Delete eine 
EntryId zurückgibt, und zwar die EntryId des nächsten Objekts. Nun können wir eine 
Collection iterieren und dabei beliebige Änderungen vornehmen. Das folgende 
Programmfragment verdeutlicht diese Vorgehensweise.

ct_Collection * pco_coll = ....;
// Abfrage der EntryId vom ersten Element:
t_EntryId o_currId = pco_coll-> First ();
// Der Wert Null bedeutet das Ende der Collection:
while (o_currId != 0)
  {
  if (pco_coll-> GetObj (o_currId)-> ....)
    // Übergang zum nächsten Element:
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    o_currId = pco_coll-> Next (o_currId);
  else
    // Entfernen des aktuellen und Übergang zum nächsten Element:
    o_currId = pco_coll-> Delete (o_currId);
  }

Auf der Wunschliste für eine leistungsfähige Collection stehen natürlich noch weitere 
Methoden. Zum Beispiel könnten wir mit Last und Prev die Collection rückwärts durchlaufen. 
Wir wollen aber in die fundamentalen Klassen nur die Funktionalität aufnehmen, die wir im 
Beispielprogramm OHelp benötigen. Deshalb statten wir auch unsere Stringklasse nur mit 
den wichtigsten Methoden aus. Dazu zählen die Abfrage der Zeichenkette und ihrer Länge 
(GetStr und GetLen), jeweils eine Methode zum Einfügen und Löschen (Insert und Delete) und 
eine Methode, mit der wir auf ein einzelnes Zeichen zugreifen können (operator []). 
Abbildung 1-10 zeigt die wesentlichen Resultate unseres Designs.

ct_Object

~ct_Object
GetTypeName
IsOfType

ct_Collection

GetLen
First
Next
GetObj
Add
AddCond
AddAfter
Delete

ct_String

GetTypeName
GetLen
GetStr
Insert
Delete
operator []

Abb. 1-10:    Design der fundamentalen Klassen

1.4.2 Implementierung der Collections

Bei der Implementierung der fundamentalen Klassen beginnen wir wieder mit den 
Collections, denn diese beanspruchen wesentlich mehr Aufmerksamkeit als die Stringklasse. 
Im Design haben wir eine abstrakte Basisklasse für Collections entworfen. Nun müssen wir 
deren Methodennamen um Rückgabewert und Parameterliste ergänzen und sie in C++ 
aufschreiben. Zu dem schon bekannten Typ t_EntryId kommt ein weiterer hinzu, t_Length. 
Den Längentyp benötigen wir für die Anzahl der Elemente in einer Collection. Die beiden 
Typen t_EntryId und t_Length definieren wir erst, wenn die konkreten Collections 
implementiert sind, denn diese Typen müssen auf alle Collections passen.

class ct_Collection: public ct_Object
  {
public:
  virtual t_Length     GetLen () const = 0;
  virtual t_EntryId    First () const = 0;
  virtual t_EntryId    Next (t_EntryId o_id) const = 0;
  virtual ct_Object *  GetObj (t_EntryId o_id) const = 0;
  t_EntryId            Add (ct_Object * pco_obj);
  t_EntryId            AddCond (ct_Object * pco_obj);
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  virtual t_EntryId    AddAfter (t_EntryId o_id, ct_Object * pco_obj) = 0;
  virtual t_EntryId    Delete (t_EntryId o_id) = 0;
  };

Die beiden Methoden Add und AddCond sind nicht virtuell. Wir können sie bereits in der 
Basisklasse ct_Collection definieren, denn sie sind von einer konkreten Implementierung 
unabhängig. Alle anderen Methoden sind rein virtuell und müssen in den abgeleiteten 
Klassen definiert werden. Für die Definition der Methode Add fordern wir, daß die Methode 
AddAfter die Position 0 akzeptiert.

t_EntryId ct_Collection:: Add (ct_Object * pco_obj)
  {
  return AddAfter (0, pco_obj);
  }

t_EntryId ct_Collection:: AddCond (ct_Object * pco_obj)
  {
  for (t_EntryId o_id = First (); o_id != 0; o_id = Next (o_id))
    if (GetObj (o_id) == pco_obj)
      return o_id;
  return Add (pco_obj);
  }

Die abstrakte Basisklasse ct_Collection gibt das Interface, die Methodenschnittstelle, vor. 
Nun gilt es, konkrete Collections zu schaffen. Es gibt zahlreiche Konzepte für die 
Implementierung von Collections. Dazu zählen Feld (Array), einfach und doppelt verkettete 
Liste (Single, Double Linked List), binärer Baum (Binary Tree) und Hash-Tabelle (Hash Table). 
Im Rahmen unserer kleinen Bibliothek fundamentaler Klassen werden wir uns wieder auf das 
Wesentliche beschränken und wählen diejenigen Collections aus, die in der Praxis am 
häufigsten verwendet werden. Das sind Array und DList (Double Linked List). Das Array-
Konzept steht für optimale Speicherauslastung, das DList-Konzept für höheren 
Programmierkomfort.

Zunächst implementieren wir eine Arrayklasse mit dem Namen ct_Array. Statische Arrays 
sind bereits in der Programmiersprache C++ enthalten. Sie werden definiert, indem hinter 
dem Namen des Objekts die Größe angegeben wird, zum Beispiel ct_Object aco_Array [20]. 
Dieses Array besitzt eine feste Länge. Für die Konkretisierung unserer Collection-Basisklasse 
benötigen wird jedoch ein dynamisches Array, das heißt ein Array, dessen Länge variieren 
kann. Dafür definieren wir in der Klasse ct_Array einen Zeiger auf einen Speicherblock 
variabler Länge. In diesem Block werden Zeiger auf die Klasse ct_Object untergebracht. Das 
neue Attribut hat also die Definition ct_Object * * ppco_Array. Weiterhin benötigen wir ein 
Attribut o_Length, das die Anzahl der Einträge des Arrays enthält. Die Größe des 
dynamischen Speicherblocks erhalten wir durch o_Length * sizeof (ct_Object *). In diesem 
Speicherblock sind die Zeiger auf die Objekte kompakt untergebracht. Unsere 
Arraycollection ist also speicherplatzoptimal.

Für Einfügen und Entfernen der Elemente eines dynamischen Arrays gibt es mehrere 
Konzepte. Wird ein Element entfernt, so kann die Stelle mit einem Nullzeiger belegt werden. 
Beim Iterieren des Arrays werden solche Stellen übergangen. Sollen neue Elemente 
hinzugefügt werden, so werden zuerst die Nullzeiger ersetzt, dann wird angefügt. Diese 
Vorgehensweise hat zwei wesentliche Nachteile. Zum einen kann die Reihenfolge der 
Elemente nicht beeinflußt werden, das heißt, es ist eine ungeordnete Collection. Zum 
anderen können im dynamischen Speicherblock Lücken entstehen, und der Vorteil der 
Speicherplatzoptimierung geht verloren. Deshalb entscheiden wir uns für das folgende 
Konzept. Beim Einfügen oder Löschen von Elementen kann die Position angegeben werden, 
und alle dahinter stehenden Einträge werden im Speicher verschoben. Das 
Speicherverschieben kostet zwar Zeit, aber wir verfügen nun über eine geordnete Collection 
mit einer optimalen Speicherauslastung. Ein Geschwindigkeitsverlust macht sich erst bei 
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sehr großen Arrays bemerkbar, denn moderne Computer besitzen schnelle Prozessorbefehle 
zum Speicherverschieben.

Die Größe eines Arrays ist durch den dynamischen Speicherblock begrenzt. Arbeiten wir mit 
einem 16-Bit-Compiler, kann ein Block maximal 64 KB umfassen. Darin können wir 16384 
Zeiger unterbringen. Auch bei 32-Bit-Compilern existieren praktische Beschränkungen. Einige 
Betriebssysteme können nicht mehr als 1 MB zusammenhängenden Speicher bereitstellen. 
Die Klasse ct_Array ist eine konkrete Klasse. Wir vergessen also nicht, die folgenden 
wichtigen Methoden aufzunehmen: Konstruktor, Kopier-Konstruktor, Destruktor und Gleich-
Operator. Zur Veranschaulichung der Methodenimplementierung ist im Programmausschnitt 
die Definition von AddAfter enthalten.

class ct_Array: public ct_Collection
  {
  t_Length             o_Length;
  ct_Object * *        ppco_Array;
public:
                       ct_Array ();
                       ct_Array (const ct_Array & co_init);
  virtual              ~ct_Array ();
  ct_Array &           operator = (const ct_Array & co_asgn);
  virtual const char * GetTypeName () const;
  virtual t_Length     GetLen () const;
  virtual t_EntryId    First () const;
  virtual t_EntryId    Next (t_EntryId o_id) const;
  virtual ct_Object *  GetObj (t_EntryId o_id) const;
  virtual t_EntryId    AddAfter (t_EntryId o_id, ct_Object * pco_obj);
  virtual t_EntryId    Delete (t_EntryId o_id);
  };

t_EntryId ct_Array:: AddAfter (t_EntryId o_id, ct_Object * pco_obj)
  {
  ASSERT (o_id <= o_Length);
  o_Length ++;
  ppco_Array = (ct_Object * *)
    realloc (ppco_Array, (unsigned) o_Length * sizeof (ct_Object *));
  ASSERT (ppco_Array != 0);
  if (o_id < o_Length - 1)
    memmove (ppco_Array + (unsigned) o_id + 1,
      ppco_Array + (unsigned) o_id,
      ((unsigned) (o_Length - o_id) - 1) * sizeof (ct_Object *));
  ppco_Array [(unsigned) o_id] = pco_obj;
  return o_id + 1;
  }

Widmen wir uns nun der doppelt verketteten Liste. Wir nennen die Collectionklasse ct_DList. 
Die Einträge einer DList sind durch Vorwärts- und Rückwärtsverweise miteinander 
verbunden. Wir können in der Liste sehr schnell Elemente einfügen und löschen. Die Größe 
der Liste ist nur durch den verfügbaren Hauptspeicher begrenzt. Die Klasse ct_DListNode 
dient der Speicherung eines einzelnen Eintrags. In einem Knoten (Node) befinden sich je ein 
Zeiger auf das Vorgänger- und Nachfolger-Node und natürlich ein Zeiger auf das Objekt, das 
Element der Liste ist. Da die Klasse ct_DListNode nur für den internen Gebrauch bestimmt ist, 
erbt sie nicht von ct_Object, besitzt nur private Member und deklariert die Klasse ct_DList als 
friend.

In der Klasse ct_DList benötigen wir ein Attribut o_Length, das die Anzahl der Einträge 
enthält, und ein Attribut o_FirstNode mit dem Verweis auf das erste Node. Auch die Klasse 
ct_DList ist eine konkrete Klasse. Zu den virtuellen Methoden, die von der Basisklasse 
ct_Collection ererbt werden, fügen wir Konstruktor, Kopier-Konstruktor, Destruktor und 
Gleich-Operator hinzu. Aus der Reihe der Methodenimplementierungen sehen wir uns als 
Beispiel wieder die Definition der Methode AddAfter an. In unserer Listenimplementierung 
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bilden die Nodes einen Ring. Auch das erste und letzte Element sind miteinander verbunden. 
Dadurch entfällt die Sonderbehandlung des Listenanfangs und -endes in AddAfter und Delete.

class ct_DListNode
  {
  friend class ct_DList;

  t_EntryId            o_PrevNode;
  t_EntryId            o_NextNode;
  ct_Object *          pco_Object;

                       ct_DListNode (ct_Object * pco_obj);
  };

class ct_DList: public ct_Collection
  {
  t_Length             o_Length;
  t_EntryId            o_FirstNode;

  ct_DListNode *       GetNode (t_EntryId o_id) const;
public:
                       ct_DList ();
                       ct_DList (const ct_DList & co_init);
  virtual              ~ct_DList ();
  ct_DList &           operator = (const ct_DList & co_asgn);
  virtual const char * GetTypeName () const;
  virtual t_Length     GetLen () const;
  virtual t_EntryId    First () const;
  virtual t_EntryId    Next (t_EntryId o_id) const;
  virtual ct_Object *  GetObj (t_EntryId o_id) const;
  virtual t_EntryId    AddAfter (t_EntryId o_id, ct_Object * pco_obj);
  virtual t_EntryId    Delete (t_EntryId o_id);
  };

t_EntryId ct_DList:: AddAfter (t_EntryId o_id, ct_Object * pco_obj)
  {
  t_EntryId o_new = (t_EntryId) new ct_DListNode (pco_obj);
  if (o_id == 0)
    {
    if (o_Length != 0)
      o_id = GetNode (o_FirstNode)-> o_PrevNode;
    o_FirstNode = o_new;
    }
  if (o_Length != 0)
    {
    t_EntryId o_next = GetNode (o_id)-> o_NextNode;
    GetNode (o_new)->  o_PrevNode = o_id;
    GetNode (o_new)->  o_NextNode = o_next;
    GetNode (o_id)->   o_NextNode = o_new;
    GetNode (o_next)-> o_PrevNode = o_new;
    }
  o_Length ++;
  return o_new;
  }

1.4.3 EntryId und Längenangabe

Nachdem wir die Klassen ct_Array und ct_DList deklariert haben, müssen wir noch die 
passenden Datentypen für Längenangabe und EntryId finden. Die Länge eines statischen 
Arrays in C++ ist bei den meisten Compilern durch den Datentyp unsigned int begrenzt. 
Dieselbe Begrenzung gilt auch für dynamische Arrays, die mit einem Zeiger verwaltet 
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werden, denn in C++ werden Arrays und Zeiger sehr ähnlich behandelt. Unsere 
Implementierung der DList hat hingegen keine Einschränkungen bezüglich der Anzahl der 
enthaltenen Elemente. Der dazu geeignete ganzzahlige Typ ist unsigned long. Das ist der 
umfassendere Datentyp, und ihn können wir für die Definition des Längentyps in der 
Basisklasse ct_Collection verwenden. Die EntryId eines neuen Eintrags im Array ist wieder 
vom Typ unsigned int, denn die EntryId ist identisch mit dem Index im Array. Beim 
Hinzufügen eines neuen Elementes in einer DList wird ein neues Node erzeugt. Der Zeiger 
auf dieses Node (ct_DListNode *) dient als EntryId. Für die allgemeine EntryId benötigen wir 
also einen Datentyp, der sowohl unsigned int als auch einen Zeiger enthalten kann. Die 
Größe dieser Datentypen ist abhängig vom Speichermodell, mit dem wir unser Programm 
übersetzen. Im allgemeinen gilt, daß ein Objekt vom Typ unsigned long sowohl einen int-Wert 
als auch einen Zeiger-Wert enthalten kann.

Würden wir als Datentyp für die Länge unsigned int verwenden, wäre die DList einer 
unnötigen Beschränkung ausgesetzt. Eine Instanz der Klasse ct_DList könnte nur so viele 
Elemente aufnehmen, wie der Wertebereich von unsigned int zuläßt. Durch die Verwendung 
von unsigned long als Längentyp müssen wir aber in der Implementierung der Methoden der 
Klasse ct_Array häufig casten, zum Beispiel in der folgenden Programmzeile.

ppco_Array = (ct_Object * *)
  realloc (ppco_Array, (unsigned) o_Length * sizeof (ct_Object *));

Diese häufigen Typumwandlungen könnten wir vermeiden, wenn wir statt unsigned long 
einen Klassentyp verwenden. Die Programmiersprache C++ bietet zahlreiche 
Möglichkeiten, primitive Datentypen (int, char usw.) durch Klassen zu ersetzen. Das 
Wichtigste ist, daß wir für eine Klasse eigene Operatoren definieren können. Eine Klasse für 
einen Längentyp könnte zum Beispiel so aussehen.

class ct_Length
  {
  union
    {
    unsigned       u_Length;
    unsigned long  ul_Length;
    };
public:
  ct_Length &      operator = (unsigned u_length)
                     { u_Length = u_length; return * this; }
  ct_Length &      operator = (unsigned long ul_length)
                     { ul_Length = ul_length; return * this; }
  unsigned         operator * (unsigned u)
                     { return u_Length * u; }
  unsigned long    operator * (unsigned long ul)
                     { return ul_Length * ul; }
  ....
  };

Wir haben die Mittel der Sprache C++ elegant angewendet und eine Lösung gefunden, in 
der keine einzige Typumwandlung erforderlich ist. Im arithmetischen Ausdruck co_Length * 
sizeof (ct_Object *) findet der Compiler automatisch, daß er für die Multiplikation die 
Methode operator * (unsigned u) der Klasse ct_Length anwenden muß. Wo liegt nun das 
Problem bei dieser Vorgehensweise? Ein Problem aus programmtechnischer Sicht gibt es 
nicht, aber ein Performance-Problem. Jede Klasse in C++ hat mindesten einen Konstruktor, 
Kopier-Konstruktor, Destruktor und Gleich-Operator. Wird er nicht explizit definiert, wie in 
der Klasse ct_Length, so werden diese Methoden vom Compiler automatisch erzeugt. Auch 
wenn wir einen gut optimierenden Compiler einsetzen, ist die Verwendung primitiver 
Datentypen effizienter. Die Typen für Längenangabe und EntryId werden sehr häufig 
genutzt. Würden wir sie als Klassen deklarieren, würde sich die Geschwindigkeit unseres 
Programms spürbar verlangsamen. Sehen wir uns dazu wieder ein Beispiel an.
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ct_Length ct_Array:: GetLen () { return co_Length; }
....
ct_Array co_array;
ct_Length co_length3;
....
co_length3 = co_array. GetLen ();

In der letzten Programmzeile läuft nacheinander das Folgende ab: Aufruf der Methode 
ct_Array:: GetLen (), Erzeugen eines temporären ct_Length-Objekts als Rückgabewert, 
Zuweisung des temporären Objekts an co_length3 durch Aufruf der Methode ct_Length:: 
operator = (const ct_Length &) und Zerstören des temporären Objekts. Das Erzeugen des 
temporären Objekts besteht wiederum aus zwei Schritten: Speicher bereitstellen und Aufruf 
des Kopier-Konstruktors ct_Length:: ct_Length (const ct_Length &). Temporäre Objekte werden 
nicht nur bei Rückgabewerten erzeugt sondern auch bei Methoden-Parametern, zum Beispiel 
in der Methode ct_EntryId ct_Array:: Next (ct_EntryId co_id). Selbst wenn der Compiler gut 
optimiert, sind die eingebauten Mechanismen für Kopieren, Berechnen und Umwandeln 
einfacher Datentypen effizienter. Wir nehmen also einige manuelle Typumwandlungen in 
Kauf und bleiben bei den primitiven Datentypen für Längenangabe und EntryId. Zur 
Deklaration der Klasse ct_Collection fügen wir die beiden oben erörterten Typdefinitionen 
hinzu.

typedef unsigned long t_Length;
typedef unsigned long t_EntryId;

class ct_Collection: public ct_Object
  { ....

Die soeben gewonnenen Erkenntnisse werden wir im weiteren Verlauf des Buches 
wiederholt anwenden und fassen sie in einer Regel zusammen.

Bei Datentypen, die nur einen einzelnen Wert enthalten und sehr häufig verwendet werden, 
sind primitive Datentypen (int, char usw.) effizienter als Klassen.

Die EntryId, die eindeutige Identität jedes Eintrags in einer Collection, verwenden wir, um 
schneller auf die Elemente zugreifen zu können. Zwischen Array und DList gibt es aber einen 
wichtigen Unterschied bei der Verwendung von EntryIds. In einem Array ist die EntryId 
gleich dem Index im dynamischen Speicherblock. Wird im Array etwas hinzugefügt oder 
gelöscht, so verschieben sich alle dahinter stehenden Einträge, und es ändern sich die 
Indizes und EntryIds. Die EntryId eines einzelnen Elementes bleibt im allgemeinen nur 
solange gültig, wie im Array nichts geändert wurde. Abbildung 1-11 zeigt den Einfluß des 
Löschens auf die EntryIds in einem Array.

Zeiger 1 Zeiger 2 Zeiger 3 Zeiger 4

EntryId: 1 2 3 4

Löschen

Zeiger 1 Zeiger 3 Zeiger 4

EntryId: 1 2 3

Abb. 1-11:    EntryIds beim Löschen in einem Array

Spirick Tuning    Tutorial    Seite 25



Bei der DList ist die EntryId gleich der Speicheradresse des Nodes, das den Zeiger auf das 
Objekt enthält. Das Node behält seine Adresse, auch wenn in der Liste Veränderungen 
vorgenommen werden. Wir können also ohne Bedenken EntryIds einer DList aufbewahren 
und später auf die damit referenzierten Objekte zugreifen. Die EntryId verliert erst ihre 
Gültigkeit, wenn das Element selbst aus der Collection entfernt wird. Sehen wir uns dazu 
Abbildung 1-12 an. Tabelle 1-1 faßt anschließend die wichtigsten Eigenschaften der beiden 
Collectionklassen ct_Array und ct_DList zusammen.

Node 1 Node 2 Node 3 Node 4

EntryId: 0x8E004410 0x8E004420 0x8E004430 0x8E004440

Löschen

Node 1 Node 3 Node 4

EntryId: 0x8E004410 0x8E004430 0x8E004440

Abb. 1-12:    EntryIds beim Löschen in einerDList

Eigenschaft Array DList

Speicherbedarf wenig viel

Anzahl Elemente begrenzt unbegrenzt

Gültigkeit EntryId begrenzt unbegrenzt

Verändern kleine Coll. schnell schnell

Verändern große Coll. langsam schnell

Tab. 1-1:    Wesentliche Eigenschaften der Collections

1.4.4 Implementierung der Stringklasse

In der Standardbibliothek des C++-Compilers gibt es einen Modul für 
Zeichenkettenverarbeitung (string.h). Darin befinden sich Funktionen zum Kopieren, 
Anhängen und Bearbeiten. Es fehlen jedoch Funktionen zum Verwalten des Speichers der 
Zeichenkette und zum Einfügen und Löschen in einer Zeichenkette. Unsere eigene Klasse 
ct_String wird auf den Standardfunktionen aufbauen und die gewünschten Erweiterungen 
enthalten.

Die Länge der Zeichenkette soll dynamisch sein. Ähnlich wie beim Array benötigen wir einen 
Zeiger auf den dynamischen Speicherblock. Da sich in diesem Speicherblock eine 
Zeichenkette befindet, hat das Attribut die Definition char * pc_Block. In C und C++ sind 
Zeichenketten normalerweise nullterminiert. Unsere Stringklasse soll sich harmonisch in die 
vorhandene Umgebung standardisierter Bibliotheken einpassen. Wir übernehmen die 
Konvention und speichern deshalb am Ende des dynamischen Blocks ein Nullzeichen. Dabei 
ist zu beachten, daß das Nullzeichen bei der Berechnung der Länge der Zeichenkette nicht 
mitgezählt wird. Beim Anfordern von Speicher für den dynamischen Block muß es aber 
berücksichtigt werden. Die Standardfunktion strlen ermittelt die Länge einer nullterminierten 
Zeichenkette, indem sie den Speicher nach dem Nullzeichen durchsucht. Bei langen 
Zeichenketten kann das zu einem Rechenzeitproblem werden. Die Länge der Zeichenkette 
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wird häufig benötigt, zum Beispiel beim Einfügen oder Löschen von Teilzeichenketten (siehe 
Methode Insert). Deshalb nehmen wir in die Stringklasse ein zusätzliches Attribut u_Length 
auf, das zum schnelleren Zugriff die Länge enthält.

Auch die Klasse ct_String ist eine konkrete Klasse. Wir ergänzen die Methoden aus dem 
Design um Konstruktor, Kopier-Konstruktor, Destruktor und Gleich-Operator. Zur besseren 
Verarbeitung normaler Zeiger auf Zeichenketten (char*) nehmen wir einen weiteren 
Konstruktor und Gleich-Operator auf. Der folgende Programmausschnitt zeigt die 
vollständige Deklaration der Klasse ct_String und die Implementierung der Methode Insert.

class ct_String: public ct_Object
  {
  unsigned             u_Length;
  char *               pc_Block;
public:
                       ct_String ();
                       ct_String (const char * pc_init);
                       ct_String (const ct_String & co_init);
  virtual              ~ct_String ();
  ct_String &          operator = (const char * pc_asgn);
  ct_String &          operator = (const ct_String & co_asgn);
  virtual const char * GetTypeName () const;
  unsigned             GetLen () const;
  const char *         GetStr (unsigned u_pos = 0) const;
  void                 Insert (unsigned u_pos, const char * pc_ins);
  void                 Delete (unsigned u_pos, unsigned u_len);
  char &               operator [] (unsigned u_pos);
  };

void ct_String:: Insert (unsigned u_pos, const char * pc_ins)
  {
  ASSERT (u_pos <= u_Length);
  ASSERT (pc_ins != 0);
  unsigned u_inslen = strlen (pc_ins);
  if (u_inslen > 0)
    {
    u_Length += u_inslen;
    pc_Block = (char *) realloc (pc_Block, u_Length + 1);
    ASSERT (pc_Block != 0);
    memmove (pc_Block + u_pos + u_inslen, pc_Block + u_pos,
      u_Length - u_pos - u_inslen + 1);
    memcpy  (pc_Block + u_pos, pc_ins, u_inslen);
    }
  }

Mit der Klasse ct_String ist unsere Sammlung fundamentaler Klassen komplett. Wir haben 
uns bei der Implementierung redliche Mühe gegeben und sehen uns die kleine 
Klassenbibliothek noch einmal in Abbildung 1-13 an.
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Abb. 1-13:    Die fundamentalen Klassen von OHelp

1.5 Anwendungsklassen von OHelp

Unser Beispielprogramm OHelp ist das Informationsmodell (der Programmkern) eines 
interaktiven Hilfesystems. Die Anforderungen aus der Sicht des Anwenders des 
Hilfesystems wurden bereits aufgezählt und betreffen im wesentlichen die inhaltliche Seite 
des Informationsmodells.

Aus Sicht des Programmierers, der mit diesem Informationsmodell umgeht und eine 
Benutzeroberfläche entwirft, kommen eine Reihe konkreter Anforderungen hinzu. Diese 
Anforderungen betreffen vor allem die Programmierschnittstelle. Der Umgang mit dem 
Informationsmodell soll einfach sein. Änderungen interner Details sollen sich möglichst nicht 
auf die Schnittstelle auswirken. Im einzelnen bedeutet das:
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• Der Zugriff auf Attribute erfolgt nicht direkt, sondern über Get- und Set-Methoden.
• Zeichenketten werden über normale Zeiger (const char *) ausgetauscht, nicht über die 

interne Stringklasse.
• Die häufigsten Typumwandlungen (Casts) sind vorprogrammiert.
• Themen können innerhalb eines Hypertextes kopiert werden.
• Die Konsistenz der verwalteten Daten muß sichergestellt sein.

1.5.1 Design der Anwendungsklassen

Ein Thema unseres Hilfesystems enthält einen Text. Ihm können mehrere Formatangaben 
und Hyperlinks zugeordnet werden. Zur internen Darstellung eines Textes mit 
Zusatzinformationen gibt es mehrere Möglichkeiten. Häufig modelliert man einen 
zeilenorientierten Text als Collection von Zeilen. Diese Form ist besonders für das Editieren 
großer Texte geeignet, erschwert aber die Positionierung der Zusatzinformationen. Bei 
Veränderungen im Text treten komplizierte Fallunterscheidungen auf, um Zeile und Spalte 
der Zusatzinformationen neu zu berechnen. Einfacher ist es, den Text als eine 
zusammenhängende Zeichenkette zu behandeln. Eine Textposition besteht nur noch aus 
einer einzelnen Angabe, der Spalte, und läßt sich bei Veränderungen leicht aktualisieren. Bei 
langen Zeichenketten können Einfüge- und Löschoperationen zu einem Rechenzeitproblem 
werden. In unserem Beispiel wird ein einzelner Text aber nicht sehr groß, denn er enthält 
genau eine Seite aus dem Hilfesystem. Deshalb entscheiden wir uns für die zweite Variante.

Ein Hyperlink ist ein Verweis von einem Thema zu einem anderen. Das Zielthema kann auf 
zwei Arten gespeichert werden, als Zeiger auf das Thema oder als EntryId aus der Collection 
der Themen. Wir geben der EntryId den Vorzug, denn damit gelangen wir sowohl zum 
Collectioneintrag als auch zum Thema. In der Liste der Forderungen an OHelp steht, daß ein 
Hyperlink optional eine Textposition besitzt. Unsere Klasse ct_HyperLink erhält also zwei 
Konstruktoren, einen mit der EntryId des Zielthemas und einen mit Position und EntryId. Wir 
können ein Hyperlink fragen, ob es eine Textposition besitzt (IsInText). Danach können wir 
die Position abfragen (GetPos) und verschieben (MovePos). Mit der Methode GetTopicId erhalten 
wir die EntryId des Zielthemas dieses Hyperlinks.

Eine Formatangabe stellen wir mit der Klasse ct_Format dar. Position, Länge und Textformat 
werden mit dem Konstruktor initialisiert. Die Position ist die Spalte im Text, ab der das 
Textformat gilt. Sie kann mit der Methode GetPos abgefragt und mit MovePos verschoben 
werden. Die Länge beschreibt den Gültigkeitsbereich des Textformats ab der Startposition. 
Auch dafür haben wir Methoden zum Abfragen (GetLen) und Ändern (ChangeLen). Das 
Textformat an sich codieren wir in einer ganzen Zahl mit hinreichend vielen Bits. Jedes Bit 
steht für ein einzelnes Textformat, zum Beispiel fett, kursiv, unterstrichen und 
Schreibmaschinentext. Durch logische Oder-Verknüpfung dieser Bits kann die Klasse 
ct_Format mehrere Textformate enthalten, ist jedoch unabhängig von den konkreten 
Textformaten. Die Klasse stellt Methoden zur Abfrage der Textformate (GetFormat), zum 
Hinzufügen (AddFormat) und zum Löschen (DelFormat) eines einzelnen Textformats bereit.

Überall dort, wo in einer Klasse eine Menge gleichartiger Objekte enthalten ist, nehmen wir 
die folgenden Methoden auf:

• Eine Methode zur Abfrage der gesamten Collection (z.B. GetEntrys).
• Eine Methode zur Abfrage eines einzelnen Objekts mit Typumwandlung (z.B. GetEntry).
• Eine oder mehrere Methoden zum Hinzufügen von Objekten (z.B. AddEntry).
• Eine Methode zum Löschen eines Objekts (z.B. DelEntry).

Mit der Methode GetEntrys können wir die gesamte Collection abfragen und durchlaufen. Sie 
liefert einen Zeiger vom Typ const ct_Collection *. Es können nur die const-Methoden der 
Collection aufgerufen werden, nicht die Methoden zum Einfügen und Löschen von 
Elementen. Beim Zugriff auf die Einträge erhalten wir von der Collection einen Zeiger auf die 
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Basisklasse ct_Object. Um die häufige Typprüfung mit der Methode IsOfType und die 
anschließende Typumwandlung zu sparen, nutzen wir die Methode GetEntry. Sie ermittelt 
aus der Collection den Zeiger auf das Objekt, prüft dessen Typ und gibt den umgewandelten 
Zeiger zurück.

Das Einfügen eines neuen Objekts besteht aus zwei Schritten, dem Erzeugen des Objekts 
und dem Einfügen in die Collection. Beides wird von der Methode AddEntry ausgeführt. Sie 
erhält die Konstruktor-Parameter des Objekts, erzeugt damit ein neues Objekt, fügt es in die 
Collection ein und gibt die neue EntryId zurück. Hat das Objekt mehrere Konstruktoren, gibt 
es auch mehrere überladene AddEntry-Methoden. Die Methode DelEntry löscht das 
referenzierte Objekt und entfernt den Eintrag aus der Collection. In der Collection wird nie 
direkt geändert, sondern nur indirekt über die Methoden AddEntry und DelEntry. Dadurch 
enthält die Collection stets gültige Zeiger. Alle erzeugten Objekte werden beim Entfernen 
aus der Collection gelöscht, und die Konsistenz der Collection ist gewährleistet.

Die Klasse zur Verwaltung eines Themas (ct_Topic) ist die umfangreichste unseres 
Beispielprogramms. Sie besitzt die größte Funktionalität. Ein Thema enthält zwei Mengen 
gleichartiger Objekte, die Formate und die Hyperlinks. Wir fügen in die Klasse ct_Topic die 
oben genannten Verwaltungsmethoden ein. Das sind für Hyperlinks die Methoden 
GetHyperLinks, GetHyperLink, AddHyperLink und DelHyperLink. AddHyperLink ist als überladene 
Methode doppelt vorhanden, denn die Klasse ct_HyperLink hat zwei verschiedene 
Konstruktoren. Zur Verwaltung der Formate dienen die Methoden GetFormats, GetFormat, 
AddFormat und DelFormat. AddHyperLink und AddFormat erzeugen nicht nur ein neues Element in 
der jeweiligen Collection, sondern sortieren es an der richtigen Stelle ein. Die Sortierung der 
Hyperlinks und Formate in aufsteigender Reihenfolge bezüglich der Textposition ist wichtig 
für den Programmteil, der die interne Darstellung auf dem Bildschirm anzeigen soll.

Für den Titel des Themas benötigen wir die Zugriffsmethoden GetTitle und SetTitle. Der 
Text wird als eine zusammenhängende Zeichenkette behandelt. Einen Zeiger darauf (const 
char *) erhalten wir mit der Methode GetText. Änderungen im Text können wir mit InsertText 
und DeleteText vornehmen. Eine Änderung im Text betrifft nicht nur die Zeichenkette, 
sonden auch die dahinter positionierten Zusatzinformationen. Die Methoden InsertText und 
DeleteText müssen also den Text und die Collections für Hyperlinks und Formate 
aktualisieren.

Die Klasse zur Darstellung des gesamten Hypertextes nennen wir ct_HyperText. Sie enthält 
Zugriffsmethoden für den Namen und das Wurzelthema (Get/SetName und Get/SetRootTopicId). 
Ein Hypertext enthält eine Menge Themen. Wir nehmen die zugehörigen 
Verwaltungsmethoden in die Klasse ct_HyperText auf (GetTopics, GetTopic, AddTopic und 
DelTopic). Zusätzlich war gefordert, daß ein Thema innerhalb eines Hypertextes kopiert 
werden kann. Dabei unterscheiden wir das Kopieren zu einem neuen Thema (CopyTopic) und 
das Überschreiben eines vorhandenen Themas (ReplaceTopic).

Mit diesen Überlegungen haben wir eine gute Grundlage für die Implementierung der 
Anwendungsklassen geschaffen. Abbildung 1-14 zeigt die wesentlichen Resultate unseres 
Designs.
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Abb. 1-14:    Design der Anwendungsklassen von OHelp

1.5.2 Implementierung der Anwendungsklassen

Zur Implementierung der Klassen ct_HyperLink und ct_Format ist die wesentliche Arbeit bereits 
getan. Wir erweitern die Methodenschnittstelle aus dem Design um Parameter, 
Rückgabewerte und die Attribute. Beide Klassen enthalten ausschließlich primitive 
Datentypen und besitzen keine abhängigen Objekte. Deshalb funktionieren die vom Compiler 
automatisch generierten Methoden Kopier-Konstruktor, Destruktor und Gleich-Operator. Wir 
müssen sie nicht selbst definieren. Sehen wir uns nun die Deklaration beider Klassen und je 
eine Methodenimplementierung an.
 
class ct_HyperLink: public ct_Object
  {
  unsigned             u_Pos;
  bool                 b_InText;
  t_EntryId            o_TopicId;
public:
                       ct_HyperLink (t_EntryId o_id);
                       ct_HyperLink (unsigned u_pos, t_EntryId o_id);
  virtual const char * GetTypeName () const;
  unsigned             GetPos () const;
  void                 MovePos (int i_delta);
  bool                 IsInText () const;
  t_EntryId            GetTopicId () const;
  };

void ct_HyperLink:: MovePos (int i_delta)
  {
  ASSERT ((int) u_Pos + i_delta >= 0);
  u_Pos += i_delta;
  }
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const unsigned cu_Bold      = 0x01;
const unsigned cu_Italic    = 0x02;
const unsigned cu_Underline = 0x04;
const unsigned cu_Example   = 0x08;

class ct_Format: public ct_Object
  {
  unsigned             u_Pos;
  unsigned             u_Len;
  unsigned             u_Format;
public:
                       ct_Format (unsigned u_pos, unsigned u_len,
                         unsigned u_format);
  virtual const char * GetTypeName () const;
  unsigned             GetPos () const;
  void                 MovePos (int i_delta);
  unsigned             GetLen () const;
  void                 ChangeLen (int i_delta);
  unsigned             GetFormat () const;
  void                 AddFormat (unsigned u_format);
  void                 DelFormat (unsigned u_format);
  };

void ct_Format:: DelFormat (unsigned u_format)
  {
  u_Format &= ~ u_format;
  }

Die Klasse ct_Topic enthält je eine Collection für Hyperlinks und Formate. Beide werden nur 
innerhalb der Klasse genutzt. Es existieren keine Verweise von außerhalb auf Elemente der 
Collections. Deshalb können wir zu deren Implementierung die speicherplatzsparende 
Collection ct_Array verwenden. In einem Objekt der Klasse ct_HyperLink ist kein Zeiger auf 
das referenzierte Thema enthalten, sondern die EntryId aus der Liste aller Themen. Um auf 
das Objekt zugreifen zu können, benötigen wir in der Klasse ct_Topic einen Verweis auf den 
Hypertext, denn der Hypertext enthält diese Liste der Themen. Der Zeiger auf den 
zugehörigen Hypertext wird im Konstruktor initialisiert und kann später nicht mehr geändert 
werden.

Ein Objekt der Klasse ct_Topic kann erst gelöscht werden, wenn keine Hyperlinks mehr auf 
dieses Objekt verweisen. Um das zu prüfen, müßten wir die Hyperlinks aller Themen 
durchlaufen. In derartigen Fällen verwendet man oft einen Referenzzähler. Das ist eine 
nichtnegative Zahl. Kommt ein neuer Verweis auf das Objekt hinzu, wird er um eins erhöht. 
Verschwindet ein Verweis, erniedrigt er sich um eins. Ist der Referenzzähler gleich Null, 
existieren keine Verweise mehr auf das Objekt, und es kann gelöscht werden. Wir fügen zur 
Klasse ct_Topic das Attribut u_RefCount und die Zugriffsmethode GetRefCount hinzu. Die 
Methoden IncRefCount und DecRefCount erhöhen bzw. erniedrigen den Referenzzähler um eins. 
Beide Methoden sind privat, denn der Referenzzähler wird nur von eigenen Methoden der 
Klasse ct_Topic geändert. Mit dem Referenzzähler haben wir gleichzeitig einen Beitrag zur 
Sicherung der Konsistenz geleistet. Zum Beispiel ist im Destruktor ~ct_Topic die Anweisung 
ASSERT (u_RefCount == 0) enthalten.

In der Klasse ct_Topic haben der automatisch generierte Kopier-Konstruktor und Gleich-
Operator nicht das gewünschte Verhalten. Beim Kopieren einer Collection (zum Beispiel mit 
ct_Array:: operator =) werden nur die Zeiger kopiert, nicht die referenzierten Objekte. Der 
automatisch generierte ct_Topic:: operator = nutzt den Gleich-Operator der Collection und 
würde die Hyperlinks und Formate nicht kopieren. Für die Klasse ct_Topic müssen wir also 
die Methoden Kopier-Konstruktor, Destruktor und Gleich-Operator selbst definieren. Das 
Leeren der Collections wird an zwei Stellen benötigt, beim Destruktor und beim Gleich-
Operator. Wir nutzen dazu die private Methode ClearCollections. Ebenso gibt es eine private 
Methode zum Kopieren der Collections eines anderen Objekts der Klasse ct_Topic. Diese 
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Methode CopyCollections wird vom Kopier-Konstruktor und vom Gleich-Operator verwendet. 
Der folgende Programmausschnitt zeigt die vollständige Deklaration der Klasse ct_Topic und 
die Implementierung von InsertText. Zur Erinnerung sei noch einmal darauf hingewiesen, daß 
die Methode InsertText nicht nur den Text sondern auch die von der Änderung betroffenen 
Zusatzinformationen ändert.

class ct_Topic: public ct_Object
  {
  ct_HyperText *       pco_HyperText;
  unsigned             u_RefCount;
  ct_String            co_Title;
  ct_String            co_Text;
  ct_Array             co_HyperLinks;
  ct_Array             co_Formats;

  void                 IncRefCount ();
  void                 DecRefCount ();
  void                 ClearCollections ();
  void                 CopyCollections (const ct_Topic & co_copy);
public:
                       ct_Topic (ct_HyperText * pco_hyperText,
                         const char * pc_title);
                       ct_Topic (const ct_Topic & co_init);
  virtual              ~ct_Topic ();
  ct_Topic &           operator = (const ct_Topic & co_asgn);
  virtual const char * GetTypeName () const;
  ct_HyperText *       GetHyperText () const;
  unsigned             GetRefCount () const;
  const char *         GetTitle () const;
  void                 SetTitle (const char * pc_title);
  const char *         GetText () const;
  void                 InsertText (unsigned u_pos, const char * pc_ins);
  void                 DeleteText (unsigned u_pos, unsigned u_len);
  const ct_Collection * GetHyperLinks () const;
  ct_HyperLink *       GetHyperLink (t_EntryId o_hyperLinkId) const;
  t_EntryId            AddHyperLink (t_EntryId o_topicId);
  t_EntryId            AddHyperLink (unsigned u_pos, t_EntryId o_topicId);
  t_EntryId            DelHyperLink (t_EntryId o_hyperLinkId);
  const ct_Collection * GetFormats () const;
  ct_Format *          GetFormat (t_EntryId o_formatId) const;
  t_EntryId            AddFormat (unsigned u_pos, unsigned u_len,
                         unsigned u_format);
  t_EntryId            DelFormat (t_EntryId o_formatId);
  };

void ct_Topic:: InsertText (unsigned u_pos, const char * pc_ins)
  {
  t_EntryId o_id;
  unsigned u_insLen = strlen (pc_ins);
  co_Text. Insert (u_pos, pc_ins);
  for (o_id = co_HyperLinks. First ();
       o_id != 0;
       o_id = co_HyperLinks. Next (o_id))
    {
    ct_HyperLink * pco_hyli = GetHyperLink (o_id);
    if (pco_hyli-> GetPos () > u_pos)
      pco_hyli-> MovePos (u_insLen);
    }
  for (o_id = co_Formats. First ();
       o_id != 0;
       o_id = co_Formats. Next (o_id))
    {
    ct_Format * pco_format = GetFormat (o_id);
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    if (pco_format-> GetPos () > u_pos)
      pco_format-> MovePos (u_insLen);
    else
      if (pco_format-> GetPos () + pco_format-> GetLen () > u_pos)
        pco_format-> ChangeLen (u_insLen);
    }
  }

Für die Klasse ct_HyperText wurde die wesentliche Arbeit bereits im Design getan. Wir 
erweitern die Methodenschnittstelle um Konstruktor und Destruktor. Das Kopieren eines 
vollständigen Hypertextes wird im Rahmen unseres Beispielprogramms nicht berücksichtigt. 
Der Hypertext enthält eine Collection von Themen. Es existieren Verweise auf die Einträge in 
dieser Collection, die Hyperlinks. Die Collection wird mit der Klasse ct_DList implementiert, 
denn in einer DList behalten die EntryIds auch nach Änderungen ihre Gültigkeit. Bevor ein 
Thema gelöscht werden kann, müssen alle Hyperlinks auf dieses Thema gelöscht werden. 
Dazu verwenden wir die Methode DelTopicUsages. Diese Methode wird von der Methode 
DelTopic aufgerufen, kann aber auch separat genutzt werden. Es folgt nun die Deklaration 
der Klasse ct_HyperText und die Implementierung der Methoden DelTopicUsages und DelTopic.

class ct_HyperText: public ct_Object
  {
  ct_String            co_Name;
  t_EntryId            o_RootTopicId;
  ct_DList             co_Topics;
public:
                       ct_HyperText ();
  virtual              ~ct_HyperText ();
  virtual const char * GetTypeName () const;
  const char *         GetName () const;
  void                 SetName (const char * pc_name);
  t_EntryId            GetRootTopicId () const;
  void                 SetRootTopicId (t_EntryId o_rootId);
  const ct_Collection * GetTopics () const;
  ct_Topic *           GetTopic (t_EntryId o_topicId);
  t_EntryId            AddTopic (const char * pc_title);
  t_EntryId            CopyTopic (t_EntryId o_source,
                         const char * pc_newTitle);
  void                 ReplaceTopic (t_EntryId o_repl, t_EntryId o_source,
                         const char * pc_newTitle);
  void                 DelTopicUsages (t_EntryId o_topicId);
  t_EntryId            DelTopic (t_EntryId o_topicId);
  };

void ct_HyperText:: DelTopicUsages (t_EntryId o_topicId)
  {
  for (t_EntryId o_id1 = co_Topics. First ();
       o_id1 != 0;
       o_id1 = co_Topics. Next (o_id1))
    {
    ct_Topic * pco_topic = GetTopic (o_id1);
    t_EntryId o_id2 = pco_topic-> GetHyperLinks ()-> First ();
    while (o_id2 != 0)
      if (pco_topic-> GetHyperLink (o_id2)-> GetTopicId () == o_topicId)
        o_id2 = pco_topic-> DelHyperLink (o_id2);
      else
        o_id2 = pco_topic-> GetHyperLinks ()-> Next (o_id2);
    }
  ASSERT (GetTopic (o_topicId)-> GetRefCount () == 0);
  }

t_EntryId ct_HyperText:: DelTopic (t_EntryId o_topicId)
  {
  if (o_topicId == o_RootTopicId)
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    o_RootTopicId = 0;
  if (GetTopic (o_topicId)-> GetRefCount () > 0)
    DelTopicUsages (o_topicId);
  delete co_Topics. GetObj (o_topicId);
  return co_Topics. Delete (o_topicId);
  }

Nun ist unser Beispielprogramm OHelp komplett. Es ist sicher kein Ausgangspunkt für ein 
perfektes Hilfesystem. Das war auch nicht unsere Absicht. Wir wollten ein kleines, 
überschaubares Programm. Dieses Programm dient uns im folgenden als Studienobjekt für 
Performance-Analysen. Abbildung 1-15 zeigt die Implementierung der Anwendungsklassen 
von OHelp. Der Übersichtlichkeit halber enthält das Diagramm keine privaten Methoden.
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Abb. 1-15:    Die Anwendungsklassen von OHelp

1.5.3 Stunde der Wahrheit

Bevor wir zu OHelp eine Benutzeroberfläche implementieren können, müssen wir alle 
Progammteile gründlich auf Herz und Nieren prüfen. Dazu schreiben wir ein Testprogramm. 
Darin werden alle Methoden mindestens einmal aufgerufen. Bei komplizierten Methoden, 
deren Verhalten vom Kontext abhängig ist, versuchen wir, jeden Kontext einmal zu 
durchlaufen. Auf diese Weise stellen wir die Richtiglkeit der Algorithmen sicher. Das ist aber 
nur die halbe Arbeit. Zu einem gut funktionierenden Programmteil gehört auch, daß die 
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Performance im Rahmen der Erwartungen bleibt. Die Performance (Betriebsverhalten, 
Leistungsfähigkeit) zeigt sich direkt in der Rechengeschwindigkeit und indirekt im 
Speicherbedarf. Bei einem zu hohen Speicherbedarf bremst die Verwaltung des virtuellen 
Speichers das Programm durch ständiges Ein- und Auslagern auf Festplatte, oder das 
Programm bricht wegen Speicherüberlaufs ab. Für einen kritischen Performancetest nutzen 
wir Datenmengen, wie sie in der Praxis im Grenzfall auftreten. Es ist keine Seltenheit, daß in 
einem Hilfesystem über 1000 Themen enthalten sind. Zum Testen von OHelp verwenden 
wir einem Hypertext mit folgendem Umfang:

• 10 000 Themen,
• Titel des Themas mit 15 Zeichen,
• pro Thema 10 Zeilen,
• pro Zeile 30 Zeichen Text und
• pro Zeile je eine Formatangabe und ein Hyperlink.

Nachdem OHelp den algorithmischen Teil des Tests erfolgreich bestanden hat, atmen wir 
erleichtert auf. Bei diesen kleinen Datenmengen verlief auch alles recht flott. Doch was 
passiert nun? Eigentlich sollte das Testprogramm den oben beschriebenen Hypertext 
aufbauen und darin einige Operationen ausführen. Stattdessen bleibt der Computer stehen 
und rührt sich nicht mehr. Haben wir wieder einmal vergessen, die Turbo-Taste zu drücken? 
Oder ist unser Programm in eine Endlosschleife geraten? Jetzt sehen wir wieder Bewegung 
am Computer. Die rote Kontrolldiode der Festplatte regt sich häufiger, und wir hören auch 
akustisch, daß die Festplatte immer stärker beansprucht wird. In unserem Testprogramm 
sind aber gar nicht so viele Dateioperationen enthalten. Es ist wohl das Betriebssystem, das 
mehr und mehr virtuellen Speicher ein- und auslagern muß. Wird das Programm auch die 
letzten Tests erfolgreich abschließen? Wir schwanken in unserer Hoffnung. Dann kommt das 
endgültige Aus. Auf dem Bildschirm steht groß und deutlich die Fehlermeldung Out of 
memory. Nachdem wir uns von diesem Schreck erholt haben, wiederholen wir die 
Performancetests mit geänderten Parametern. Dabei stellen wir nach und nach die folgenden 
Symptome an OHelp fest:

• Bei kleinen Datenmengen ist es flott und benötigt wenig Speicher.
• Beim Aufbau großer Datenmengen benötigt es viel Speicher.
• Reine Abfragen (ohne Veränderung) sind dann zu langsam.
• Beim Verändern großer Datenmengen wird es zunehmend langsamer.
• Im Laufe der Zeit benötigt es mehr und mehr Speicher, obwohl keine neuen Daten 

hinzukommen.

Bei der Entwicklung von OHelp haben wir nicht nur auf einen guten Programmierstil 
geachtet, sondern auch auf die Performance. Wir verwenden primitive Datentypen für 
Längenangabe und EntryId. Formatangaben und Hyperlinks werden mit der 
speicherplatzsparenden Collection ct_Array verwaltet. Ein nochmaliges Durchsehen der 
Programmtexte bringt keine offensichtlichen Effizienzfehler zutage. Was haben wir verkehrt 
gemacht? Woran liegt das schlechte Abschneiden im Performancetest?

Wer ein Haus baut, sollte Baugrund und Baumaterial genau prüfen. Und er sollte die 
Handwerker unter die Lupe nehmen, denen er den Bau anvertraut. Was im Baugewerbe 
üblich ist, darf auch ein Programmierer nicht außer acht lassen. Der Baugrund für OHelp ist 
die Programmiersprache C++. Das Baumaterial ist die C-Standardbibliothek. Die 
Handwerker sind der Compiler und der Linker. Die Programmiersprache haben wir bereits bei 
der Festlegung der Datentypen für Längenangabe und EntryId näher betrachtet. Dabei haben 
wir festgestellt, daß es in der Sprache C++ Konzepte gibt, die die Performance negativ 
beeinflussen. Unter diesem Blickwinkel prüfen wir in den folgenden drei Abschnitten auch 
den Compiler und die Standardbibliothek. Das Übersetzen virtueller und Inline-Methoden 
gehört in den Arbeitsbereich des Compilers. Die dynamische Speicherverwaltung ist 
Bestandteil der Standardbibliothek.
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1.6 Ein Blick hinter die Kulissen des 
Compilers

1.6.1 Virtuelle Methoden

Betrachten wir kurz einige Begriffe, die mit virtuellen Methoden zusammenhängen. 
Vererbung und Polymorphie sind Basiskonzepte der objektorientierten Programmierung. Sie 
werden von jeder objektorientierten Sprache unterstützt. Vererbung bedeutet, daß eine 
Klasse ihre Eigenschaften auf eine andere Klasse überträgt, einschließlich der Attribute und 
Methoden. Man sagt, die geerbte Klasse ist die Basisklasse, und die erbende die abgeleitete 
Klasse. Das Konzept der Vererbung wird oftmals eingesetzt, ein Interface (eine 
Methodenschnittstelle) auf unterschiedliche Art zu implementieren. Das Interface wird durch 
eine abstrakte Basisklasse vorgegeben. Sie enthält nicht implementierte Methoden. Davon 
können keine Objekte gebildet werden, deshalb heißt sie abstrakt. In den abgeleiteten 
Klassen werden die Methoden implementiert. Eine Klasse, in der alle Methoden implemeniert 
sind, heißt konkrete Klasse, denn von ihr können Objekte erzeugt werden.

Ein Objekt einer abgeleiteten Klasse kann in einem Kontext verwendet werden, in dem nur 
das Interface der abstrakten Basisklasse bekannt ist. Dieses Konzept nennt man 
Polymorphie. Ein anschauliches Beispiel für Polymorphie ist in unserer kleinen 
Klassenbibliothek enthalten. Die abstrakte Basisklasse ct_Collection gibt das Interface für 
Collections vor. Die Klassen ct_Array und ct_DList sind konkrete Implementierungen davon. 
Über einen Zeiger können die Methoden der Klasse ct_Collection aufgerufen werden, ohne 
daß bekannt ist, welche konkrete Klasse sich hinter dem Zeiger verbirgt.

Wird eine Methode einer abstrakten Basisklasse aufgerufen, so entscheidet sich erst zur 
Laufzeit des Programms, welche konkrete Methode abgearbeitet werden muß. Dazu bedarf 
es einer neuen Technik, denn normalerweise sind dem Compiler die Methoden schon beim 
Übersetzen des Programms bekannt. Sehen wir uns ein Programmfragment an, in dem beide 
Fälle enthalten sind.

ct_String * pco_string = ....;
ct_Collection * pco_collection = ....;

pco_String-> GetLen ();     // Aufruf von ct_String:: GetLen ()
pco_collection-> GetLen (); // Nicht eindeutig,
  // Aufruf von ct_Array:: GetLen () oder ct_DList:: GetLen ()

Eine Methode, die in einem polymorphen Klassenbaum mehrmals implementiert wird, heißt 
virtuelle Methode. Die Methode ct_String:: GetLen ist es nicht. Virtuell sind hingegen 
ct_Collection:: GetLen, ct_Array:: GetLen und ct_DList:: GetLen. Die Methode ct_Collection:: 
GetLen ist rein virtuell, denn sie ist nicht implementiert. In einigen Programmiersprachen sind 
alle Methoden virtuell. Der Aufruf einer virtuellen Methode ist aber langsamer. Deshalb gibt 
es in C++ beide Formen, die nicht virtuelle und die virtuelle. Eine virtuelle Methode muß 
mit dem Schlüsselwort virtual gekennzeichnet werden. Beim Redefinieren einer virtuellen 
Methode in einer abgeleiteten Klasse ist das Schlüsselwort virtual optional.

Die technische Umsetzung virtueller Methoden ist nicht Bestandteil der Sprachdefinition von 
C++. Jeder Compiler kann dafür seine eigenen Mechanismen verwenden. Zum Ermitteln 
der aufzurufenden Methode muß jedes Objekt auf die konkreten Methoden verweisen. Da 
die Liste der konkreten Methoden für alle Objekte einer Klasse gleich ist, kann diese Liste 
wie ein statisches Attribut behandelt werden. Im Objekt selbst muß nur eine Klassen-
Identität enthalten sein. Darüber kann aus der statischen Liste ein Verweis auf die richtige 
Methode ermittelt werden. Um den Zugriff zu beschleunigen, ist die Klassen-Identität meist 
ein direkter Zeiger auf die Liste, und in der Liste befinden sich direkte Zeiger auf die 
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Methoden. Zur Liste sagt man kurz virtuelle Tabelle. Zeiger und virtuelle Tabelle sind für den 
Programmierer unsichtbar. Wären sie sichtbar, würden sie für die Klasse ct_Array etwa so 
aussehen:

class ct_Array
  {
  void *         pv_ToVirtualTable;
  static void *  apv_VirtualTable [8];
  ....
  };

ct_Array:: ct_Array ()
  {
  pv_ToVirtualTable = & apv_VirtualTable;
  ....
  }

// Kein korrektes C++!
void * ct_Array:: apv_VirtualTable [8] =
  {
  & ct_Array:: ~ct_Array,
  & ct_Array:: GetTypeName,
  & ct_Array:: GetLen,
  & ct_Array:: First,
  & ct_Array:: Next,
  & ct_Array:: GetObj,
  & ct_Array:: AddAfter,
  & ct_Array:: Delete
  };

Der Zeiger auf die virtuelle Tabelle wird im Konstruktor initialisiert und später nicht mehr 
geändert, auch nicht durch einen Gleich-Operator. Die virtuelle Tabelle enthält Zeiger auf 
jede implementierte virtuelle Methode. Die Reihenfolge der Zeiger muß bei allen abgeleiteten 
Klassen gleich sein. Dann kann auf die Tabelle sehr schnell mit einem Index zugegriffen 
werden. Zum Beispiel muß in den virtuellen Tabellen der Klassen ct_Array und ct_DList der 
Destruktor den Index Null, GetTypeName den Index Eins, GetLen den Index Zwei usw. haben. 
Zum Aufruf der virtuellen Methode in pco_collection-> GetLen () wird aus dem Objekt 
*pco_collection der Zeiger auf die virtuelle Tabelle ermittelt. Aus der Tabelle ergibt sich mit 
dem Index Zwei der Zeiger auf die konkrete virtuelle Methode. Schließlich wird diese 
Methode aufgerufen.

Aus dem Blickwinkel der Performance müssen wir bei der Arbeit mit virtuellen Methoden 
zwei Dinge beachten. Zum einen hat jede Klasse, in der eine virtuelle Methode enthalten ist, 
implizit ein zusätzliches Attribut. Das gilt auch für alle davon abgeleiteten Klassen. Zum 
anderen ist der Aufruf einer virtuellen Methode langsamer, denn er erfolgt über mehrfache 
Indirektion.

Aus der Verwendung virtueller Methoden resultiert nicht in jedem Fall eine Verschlechterung 
der Performance. In der Praxis kommt es auf das Verhältnis zwischen der Lösung mit und 
ohne virtuellen Methoden an. Besitzt eine Klasse schon hundert Attribute, spielt die 
Hinzunahme eines weiteren Attributs praktisch keine Rolle. Besitzt sie jedoch nur ein 
einzelnes Attribut vom Typ char, vergrößert sich der Umfang der Klasse durch die 
Verwendung virtueller Methoden um ein Vielfaches. Ähnlich verhält sich die 
Rechengeschwindigkeit. Die weiter oben dargestellte Methode ct_Array:: AddAfter enthält 
viele Anweisungen. Beim Aufruf wirkt sich die Indirektion nur unwesentlich auf die gesamte 
Abarbeitungszeit aus. Die Methode ct_Array:: GetLen hat hingegen nur die eine Anweisung 
return o_Length. Dabei ist der Unterschied zwischen einer nicht virtuellen und einer virtuellen 
Implementierung erheblich. Die folgende Regel faßt diese Beziehungen zusammen. In 
Abbildung 1-16 werden sie graphisch veranschaulicht.
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Virtuelle Methoden können Rechenzeit und Speicherplatz belasten. An 
performancekritischen Stellen suchen wir eine Lösung ohne virtuelle Methoden. Existiert 
diese Lösung nicht, setzen wir weiterhin virtuelle Methoden ein.

Klasse mit Klasse mit
vielen Attributen wenigen Attributen

Methode mit Methode mit
vielen Anweisungen wenigen Anweisungen

Ohne virtuelle Methoden

Relativer Speicherbedarf Relative Rechenzeit

Mit virtuellen Methoden

Abb. 1-16:    Einfluß virtueller Methoden auf die Performance

1.6.2 Inline-Methoden

Das Konzept der Inline-Methoden ist kein Bestandteil der objektorientierten Programmierung. 
Es ist eine Erweiterung von C++ gegenüber C, um den Programmierstil zu verbessern. Was 
sind die Hintergründe für dieses Konzept? Einen Algorithmus, der mehrmals verwendet wird, 
faßt man in einer Methode zusammen. Eine Verwendung des Algorithmus ist gleich dem 
Aufruf der zugehörigen Methode. Beim Aufruf der Methode wird aber nicht nur der 
enthaltene Algorithmus abgearbeitet, sondern auch ein Methodenrahmen. Er ist für den 
Programmierer unsichtbar und wird vom Compiler automatisch hinzugefügt. Der Umfang des 
Methodenrahmens ist stark abhängig von Hardware, Betriebssystem, Compiler und 
Compilerschaltern. Vor dem Aufruf der Methode müssen interne Zustände der Hardware 
gesichert und nach dem Aufruf wiederhergestellt werden. Dieser Rahmen kostet natürlich 
Rechenzeit. Ähnlich wie bei den virtuellen Methoden ist auch die Auswirkung des 
Methodenrahmens auf die Performance von der Größe der Methode abhängig. Die 
Ausführungszeit einer Methode mit vielen Anweisungen wird durch den Methodenrahmen 
nur geringfügig vergrößert.

Es gibt in jedem Programm viele kleine Algorithmen, die nur aus einer einzelnen Anweisung 
bestehen. Wird ein kleiner Algorithmus als Methode implementiert und sehr häufig 
verwendet, kann durch den Methodenrahmen ein erheblicher Geschwindigkeitsverlust 
eintreten. In C hat man bei diesen Fällen den Präprozessor zu Hilfe genommen und für den 
Algorithmus ein Makro definiert. Das ist jedoch aus zwei Gründen kein guter 
Programmierstil. Zum einen sind Makros kein Bestandteil der Sprache C++. Durch 
Mischung von Makros und C++-Konstrukten verschlechtert sich die Lesbarkeit des 
Programms. Zum anderen wird die Fehlersuche erschwert. Beim fehlerhaften Aufruf einer 
Methode meldet der Compiler sehr genau Ursache und Textposition des Fehlers. Wird ein 
Makro falsch verwendet, beziehen sich Fehlermeldung und Textposition auf das expandierte 
Makro. Dieses ist aber im Programmtext nicht zu sehen, und die Rätselrunde zum Auffinden 
des Fehlers beginnt. Ein typisches Beispiel für einen kleinen Algorithmus, der häufig 
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verwendet wird, ist das Berechnen des Minimums zweier ganzer Zahlen. Sehen wir uns dazu 
ein Programmfragment an.

#define MIN(x, y) ((x) < (y) ? (x) : (y))
int i = MIN (5, -7);                    // Richtige Verwendung
char * pc = MIN ("Albert", "Andreas");  // Falsche Verwendung

inline int Min (int i1, int i2) { return i1 < i2 ? i1 : i2; }
int i = Min (5, -7);                    // Richtige Verwendung
char * pc = Min ("Albert", "Andreas");  // Falsche Verwendung

In der Definition der Methode Min haben beide Parameter einen Typ. Werden Parameter mit 
einem falschen Typ übergeben, meldet der Compiler sehr genau diesen Fehler. Das Makro 
MIN ist nicht typsicher, denn es ist eine reine Textoperation. Bei Verwendung des Makros ist 
aber die Ausführungsgeschwindigkeit deutlich besser. Im neuen Konzept der Inline-Methode 
sind beide Vorteile miteinander vereint. Eine Inline-Methode wird wie eine normale Methode 
deklariert und definiert und zusätzlich mit dem Schlüsselwort inline versehen. Eine 
Methode, deren Definition (Anweisungsteil) innerhalb der Klassendeklaration steht, gilt auch 
ohne Schlüsselwort als inline. Dadurch verschlechtert sich aber die Lesbarkeit des 
Programms. Definieren wir eine Inline-Methode außerhalb der Klassendeklaration, müssen 
wir das Schlüsselwort inline bei der Definition angeben. Optional kann es auch in der 
Deklaration stehen. Der Compiler kann eine Methode nur inline expandieren, wenn er ihre 
Definition gesehen hat. Deshalb sollte der Anweisungsteil unter der Klassendeklaration in der 
Headerdatei plaziert werden. Im folgenden Programmausschnitt sind beide Arten der Inline-
Definition enthalten.

class ct_String: public ct_Object
  {
public:
  ....
  inline unsigned   GetLen () const;   // Gut lesbar
  const char *      GetStr (unsigned u_pos) const
    { ASSERT (u_pos <= u_Length);      // Anweisungsteil stört
      return pc_Block + u_pos; }       // an dieser Stelle
  ....
  };

// Inline-Definition in der Headerdatei plazieren!
inline unsigned ct_String:: GetLen () const
  {
  return u_Length;
  }

Die Verwendung einer Inline-Methode ist typsicher wie bei anderen Methoden. Der Compiler 
erzeugt beim Übersetzen aber keinen Methodenaufruf. Ähnlich wie der Präprozessor 
expandiert er die Methode direkt an der Verwendungsstelle. Dadurch entfällt der 
Methodenrahmen. Analog zum Makro ist eine Inline-Methode nur sinnvoll, wenn sie wenige 
Anweisungen enthält. Bei einer Methode mit vielen Anweisungen ist der Rechenzeitgewinn 
gering, und es tritt ein zusätzliches Problem auf. Zum Aufruf einer Methode erzeugt der 
Compiler nur wenig Code. Das Inline-Expandieren einer Methode mit vielen Anweisungen 
benötigt hingegen mehr Code. Wird die Methode häufig verwendet, vergrößert sich der Code 
des gesamten Programms spürbar. Sehen wir uns dazu Abbildung 1-17 an.
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Methode mit Methode mit
vielen Anweisungen wenigen Anweisungen

Ohne Inline-Methoden

Relativer Speicherbedarf Relative Rechenzeit

Mit Inline-Methoden

Methode mit Methode mit
vielen Anweisungen wenigen Anweisungen

Abb. 1-17:    Einfluß von Inline-Methoden auf die Performance

Die Datenkapselung ist ein Basiskonzept der objektorientierten Programmierung. Die Sprache 
C++ unterstützt dieses Konzept durch die Vergabe von Zugriffsrechten für Elemente einer 
Klasse. Attribute, Methoden usw. können private, protected oder public deklariert werden. In 
der Praxis sind Attribute meist privat, und der Zugriff erfogt indirekt über Methoden. Der 
Vorteil des indirekten Zugriffs ist, daß die Implementierung des Attributs dem Anwender der 
Klasse verborgen bleibt. Eine Änderung der internen Darstellung des Attributs betrifft nur 
selten die Zugriffsmethoden. Das Interface der Klasse bleibt dabei konstant. In den 
Anwendungsklassen von OHelp finden wir viele typische Zugriffsmethoden. Zum Beispiel 
wird der Titel eines Themas mit GetTitle abgefragt und mit SetTitle gesetzt. Beide Methoden 
arbeiten mit dem primitiven Datentyp const char *. Die interne Darstellung des Titels mit der 
Klasse ct_String ist für den Anwender nicht sichtbar. Würden wir später eine andere 
Stringklasse verwenden, bliebe das Interface der Zugriffsmethoden konstant, und der 
Anwender müßte nichts ändern.

Durch die Datenkapselung tauchen in einem C++-Programm viele kleine Methoden auf. 
Diese Zugriffsmethoden führen zu einer Verlangsamung des Programms. Erst mit Inline-
Methoden wird der indirekte Zugriff auf Attribute effizient. Definieren wir Zugriffsmethoden 
stets inline, ist unsere objektorientierte Welt wieder in Ordnung. Wir können das Konzept 
der Datenkapselung einsetzen und müssen nicht auf die Performance verzichten.

Oder haben wir etwas übersehen?

Der Compiler kann eine Methode nur inline expandieren, wenn er genau weiß, um welche 
Methode es sich handelt. Beim Aufruf einer virtuellen Methode weiß er es im allgemeinen 
nicht. Ist eine Zugriffsmethode virtuell, müssen wir also einen doppelten Performanceverlust 
hinnehmen. Die konkrete Methode wird über mehrfache Indirektion ermittelt. Danach wird 
sie mit ihrem Methodenrahmen aufgerufen. Sehen wir uns unter diesem Aspekt noch einmal 
das Programmfragment mit virtuellen Zugriffsmethoden an.

ct_String * pco_string = ....;
ct_Collection * pco_collection = ....;

pco_String-> GetLen ();     // Aufruf von ct_String:: GetLen ()
pco_collection-> GetLen (); // Nicht eindeutig,
  // Aufruf von ct_Array:: GetLen () oder ct_DList:: GetLen ()

Ist die Zugriffsmethode ct_String:: GetLen eine Inline-Methode, ergibt sich daraus ein 
Rechenzeitgewinn. Das Inline-Definieren der Methoden ct_Array:: GetLen und ct_DList:: 
GetLen nützt uns in diesem Beispiel wenig, denn der Compiler weiß an der Verwendungsstelle 
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pco_collection-> GetLen () nicht, welche Methode er inline expandieren soll. Stattdessen wird 
der Mechanismus zum Aufruf einer virtuellen Methode verwendet. Abbildung 1-18 
verdeutlicht den doppelten Rechenzeitverlust, der in diesen Fällen eintritt.

Methode mit Methode mit
vielen Anweisungen wenigen Anweisungen

Virtuelle Methode

Relative Rechenzeit

Normale Methode Inline-Methode

Abb. 1-18:    Rechenzeit von virtuellen, normalen und Inline-Methoden

Zugriffsmethoden wie GetLen werden in einem Programm sehr häufig verwendet. Deshalb 
sollten wir uns überlegen, ob es sinnvoll ist, auch virtuelle Methoden inline zu definieren. 
Eine virtuelle Methode kann inline expandiert werden, wenn an der Verwendungsstelle die 
konkrete Klasse bekannt ist, zu der die Methode gehört. Es muß sichergestellt sein, daß das 
Objekt nicht zu einer abgeleiteten Klasse gehört, denn in der abgeleiteten Klasse könnte die 
Methode anders definiert sein. Der genaue Typ eines Objekts ist manchmal aus dem 
Kontrollfluß des Programms ersichtlich. Aber nicht alles, was der Programmierer sieht, sieht 
auch der Compiler. In diesen Fällen hängt es von der Qualität des Compilers ab, ob er die 
virtuelle Methode inline expandiert. Eindeutig ist die Methode erst, wenn der Programmierer 
die zugehörige Klasse mit dem ::-Operator angibt. Betrachten wir ein Programmfragment, in 
dem zahlreiche Verwendungen der virtuellen Methode ct_Array:: GetLen enthalten sind. Die 
Abkürzungen in den Kommentaren bedeuten:

• PO: Dem Programmierer ist der Typ des Objekts bekannt.
• PM: Dem Programmierer ist die konkrete Methode bekannt.
• CO: Dem Compiler ist der Typ des Objekts bekannt.
• CM: Dem Compiler ist die konkrete Methode bekannt.
• ?: Fraglich.
• ??: Sehr fraglich.
• ???: Überaus fraglich.

ct_Array co_array;
ct_Topic co_topic;
ct_Collection * pco_collection1 = new ct_Array;
const ct_Collection * pco_collection2 = co_topic. GetHyperLinks ();

// 1.
// Guter Programmierstil, aber langsam
co_array. GetLen ();         // PO PM CO   CM?
pco_collection1-> GetLen (); // PO PM CO?  CM??
pco_collection2-> GetLen (); // PO PM CO?? CM???

// 2.
// Weniger guter Programmierstil
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co_array. GetLen ();                        // PO PM CO   CM?
((ct_Array *) pco_collection1)-> GetLen (); // PO PM CO?  CM??
((ct_Array *) pco_collection2)-> GetLen (); // PO PM CO?? CM???

// 3.
// Schnell, aber gefährlicher Programmierstil !!
co_array. ct_Array:: GetLen ();                        // PO PM CO   CM
((ct_Array *) pco_collection1)-> ct_Array:: GetLen (); // PO PM CO?  CM
((ct_Array *) pco_collection2)-> ct_Array:: GetLen (); // PO PM CO?? CM

Im ersten Teil geben wir dem Compiler keinerlei Hinweise. Beim Aufruf der Methode GetLen 
über das Objekt co_array ist der Typ des Objekts eindeutig. Der Compiler kann aber sagen: 
Nun, es ist eine virtuelle Methode, deshalb rufe ich sie auch wie eine virtuelle Methode auf. 
Im Falle des Zeigers pco_collection1 kann der Compiler aus dem Kontrollfluß erkennen, daß 
diesem Zeiger ein Objekt der Klasse ct_Array zugewiesen wurde. Da der Zeiger seit der 
Initialisierung nicht geändert wurde, zeigt er immer noch auf ein Array. Beim Zeiger 
pco_collection2 wird es schwieriger. Es muß berücksichtigt werden, daß die Methode 
ct_Topic:: GetHyperLinks einen Zeiger auf ein Objekt des Typs ct_Array liefert usw.

Im zweiten Teil geben wir dem Compiler den Hinweis, daß die Zeiger in beiden Fällen auf die 
abgeleitete Klasse ct_Array verweisen. Das reicht aber zum Ermitteln der konkreten Methode 
nicht aus, denn der Typ des referenzierten Objekts könnte von ct_Array abgeleitet sein. Der 
Compiler müßte wiederum Informationen aus dem Kontrollfluß zu Hilfe nehmen. Im dritten 
Teil beseitigen wir alle Unklarheiten durch genaue Angabe der Klasse, zu der die Methode 
gehört. Das ist in C++ die einzige Möglichkeit, eine virtuelle Methode nicht virtuell 
aufzurufen. In diesen Fällen darf der Compiler keinen Aufruf einer virtuellen Methode 
erzeugen.

Ist die Methode ct_Array:: GetLen inline definiert, haben wir im dritten Teil gute Chancen für 
einen Rechenzeitgewinn. Die genaue Angabe der Klasse mit dem ::-Operator erschwert aber 
die Programmpflege. Ändern wir zum Beispiel den Typ des Objekts co_array in ct_MyArray, 
müssen wir auch den Aufruf der Methode korrigieren und co_array. ct_MyArray:: GetLen () 
schreiben. Die folgende Regel faßt diese Erkenntnisse zusammen.

Wir versuchen, performancekritische Zugriffsmethoden stets inline zu definieren. Wir 
erzwingen nicht das Inline-Expandieren mit dem ::-Operator. Stattdessen suchen wir eine 
Lösung ohne virtuelle Methoden.

1.6.3 Dynamische Speicherverwaltung

In der Entwicklungsphase eines Programms wissen wir nicht genau, wieviel Speicher es zur 
Laufzeit belegen wird. Zum Beispiel ist uns bei OHelp nicht bekannt, wieviele Themen in das 
Hilfesystem gelangen werden und wieviel Text jedes einzelne Thema enthalten wird. Zum 
Bereitstellen dieses Speichers benötigen wir eine dynamische Speicherverwaltung. Die 
Speicherverwaltung heißt dynamisch, weil Anzahl und Größe der angeforderten 
Speicherblöcke variieren können. Zur Verwaltung des Speichers gibt es in der C-Bibliothek 
des Compilers drei Standardfunktionen, malloc zum Anfordern, realloc zum Verändern der 
Größe und free zum Freigeben eines Blocks. Alle drei Funktionen arbeiten mit rohen 
Speicheradressen vom Typ void *. Bei einer Zeichenkette oder einem dynamischen Array 
kann sich die Größe des Speicherblocks im Laufe der Zeit ändern. In solchen Fällen 
verwendet man auch in C++ die C-Standardfunktionen.

Die Größe eines Objekts bleibt während seiner Lebensdauer konstant. Für das Erzeugen und 
Löschen von Objekten gibt es in C++ die komfortableren Operatoren new und delete. Der 
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Operator new fordert einen Speicherblock an, ruft den Konstruktor des Objekts auf und gibt 
einen typisierten Zeiger zurück.

Der Operator delete wird auf einen typisierten Zeiger angewendet. Er ruft den Destruktor des 
Objekts auf und gibt anschließend den belegten Speicher frei. Sehen wir uns als Beispiel 
eine Instanz der Klasse ct_String an. Die Größe des eigentlichen Objekts ist konstant. Es 
kann mit new erzeugt und mit delete gelöscht werden. Die Zeichenkette befindet sich jedoch 
in einem dynamischen Speicherblock und wird mit malloc, realloc und free verwaltet. 
Abbildung 1-19 zeigt das Speicherlayout einer String-Instanz. Jedes zusammenhängende 
Rechteck stellt einen einzelnen Speicherblock dar. Ist die Größe des Speicherblocks bekannt, 
markiert jeder kleine Strich an der linken Seite je ein Byte.

void * pv_ToVirtualTable

t_Length o_Length

char * pc_Block Zeichenkette

Objekt vom Typ ct_String Speicherblock variabler Länge

Abb. 1-19:    Speicherlayout einer Instanz der Klasse ct_String

Jedes moderne Betriebssystem hat eine eigene Speicherverwaltung. Die 
Anwendungsschnittstelle unterscheidet sich aber von System zu System. Zum Beispiel 
arbeiten einige Betriebssysteme nicht mit Speicheradressen, sondern mit Handles. Die 
tatsächliche Speicheradresse erhalten wir erst nach Aufruf einer zusätzlichen Funktion. Die 
Speicherverwaltung eines Betriebssystems ist nicht auf kleine Anforderungen eingerichtet, 
wie wir sie zum Beispiel für ein String-Objekt benötigen. Deshalb ist in der C-
Standardbibliothek eine eigene Speicherverwaltung enthalten. Sie fordert vom 
Betriebssystem große Blöcke an und gibt kleinere an das Anwendungsprogramm weiter. Die 
Schnittstelle dieser Speicherverwaltung ist vom Betriebssystem unabhängig und besteht aus 
den genannten Funktionen malloc, realloc und free. In Abbildung 1-20 sind typische 
Speicheranforderungen eines Anwendungsprogramms und der C-Standardbibliothek zu 
sehen.

Betriebssystem

C-Standardbibliothek

Anwendungsprogramm

40 Byte

32 K Byte

Abb. 1-20:    Typische Speicheranforderungen

Um die Speicherverwaltung effektiv für unsere Zwecke einsetzen zu können, müssen wir 
uns näher mit ihrer Funktionsweise befassen. Betrachten wir zunächst die genaue 
Deklaration der drei Standardfunktionen.

Spirick Tuning    Tutorial    Seite 44



void * malloc (unsigned u_size);
void * realloc (void * pv_block, unsigned u_newsize);
void free (void * pv_block);

Die Funktion malloc erhält als Parameter die Größe des bereitzustellenden Speichers. Sie 
liefert einen Zeiger auf einen Block, der mindestens die angegebene Größe hat. An die 
Funktion free wird nur ein Zeiger auf den Block übergeben. Wie groß der freizugebende 
Block ist, muß die Speicherverwaltung selbst wissen. Das ist eine Erleichterung für den 
Anwender. Er muß sich die Größe des angeforderten Speichers nicht merken. Für die 
Speicherverwaltung bedeutet es aber einen Zusatzaufwand. Einem Aufruf von realloc 
entspricht je einem Aufruf von malloc und free, wobei der Inhalt des in der Größe 
veränderten Speicherblocks erhalten bleiben muß.

Die Freigabe eines Blocks darf die belegten Blöcke nicht beeinflussen, denn das 
Anwendungsprogramm setzt voraus, daß ein angeforderter Speicherblock seine Adresse 
behält. Durch den freigewordenen Block entsteht also im Speicher ein ungenutzter Bereich. 
Auch die Freiblöcke müssen verwaltet werden. Beim Anfordern versucht die 
Speicherverwaltung zunächst, die vorhandenen Freiblöcke zu füllen. Gelingt es nicht, muß 
vom Betriebssystem neuer Speicher geholt werden. Durch wiederholtes Anfordern und 
Freigeben des Speichers entsteht eine Kette von Freiblöcken, die den Speicher in kleine Teile 
zerlegt. Dies nennt man Speicherfragmentierung. Um eine Fragmentierung innerhalb der 
Freiblöcke zu vermeiden, wird bei jeder Freigabe geprüft, ob der freigewordene Block 
physisch an andere freie Blöcke grenzt. In diesem Fall werden benachbarte Freiblöcke zu 
einem größeren Block zusammengefaßt. Durch Rundung der Größe der Blöcke wird der 
Speicherfragmentierung entgegengewirkt. Typischerweise wird jede Anforderung des 
Anwendungsprogramms auf die nächsthöhere 8- oder 16-Byte-Grenze gerundet. Werden 
zum Beispiel 18 Bytes freigegeben und anschließend 22 Bytes angefordert, kann der 
freigewordene Block genutzt werden. Pro Speicherblock (frei oder belegt) entsteht der 
nachstehende Verwaltungsaufwand:

• Speichern der Größe des Blocks,
• Speichern von Informationen über benachbarte Blöcke und
• Rundung der Größe.

Wie groß dieser Aufwand tatsächlich ist, hängt von der Implementierung der 
Speicherverwaltung ab. Eine effektive Codierung der Zusatzinformationen pro Block könnte 
etwa so aussehen: 15 Bit für die Länge (8 Bytes bis 256 KB in 8-Byte-Schritten); ein Bit für 
die Information, ob der Block belegt oder frei ist; 15 Bit für die Länge des Vorgänger-Blocks. 
Die Adresse des Vorgängers ergibt sich aus der Adresse des Blocks vermindert um die 
Länge des Vorgängers. Die Adresse des Nachfolgers entsteht durch Addition der eigenen 
Adresse mit der eigenen Länge. Die Summe dieser Informationen beträgt 31 Bit (4 Bytes).

Wegen der Rundung auf die nächsthöhere 8-Byte-Grenze bleiben null bis sieben Bytes 
ungenutzt. Pro Speicherblock müssen wir also vier bis elf Bytes für die Verwaltung 
einkalkulieren. Das fällt insbesondere bei kleinen Anforderungen ins Gewicht. Hinzu kommt 
die im Laufe der Zeit wachsende Fragmentierung. Diese führt nicht nur zu brach liegendem 
Speicher, sondern auch zu einer Verlangsamung der Verwaltung. Bei jeder neuen 
Anforderung muß die Freiliste geprüft werden. Je länger sie wird, desto länger dauert im 
Durchschnitt diese Überprüfung. Es gibt verschiedene Algorithmen zum Optimieren der 
Freiliste. Zum Beispiel ist es üblich, daß sich der freie Speicher selbst verwaltet und keinen 
zusätzlichen Speicher belegt. Dennoch hat jede dynamische Speicherverwaltung folgende 
Nachteile:

• Sie ist ungeeignet für kleine Anforderungen von zehn oder zwanzig Bytes.
• Häufiges Anfordern und Freigeben führt zur Fragmentierung.
• Sie ist ungeeignet für viele Anforderungen derselben Größe.
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Der zuletzt genannte Nachteil macht sich auch in unserem Hilfesystem bemerkbar. Darin 
sind viele kleine Objekte vom Typ ct_HyperLink und ct_Format enthalten. In einer statischen 
Speicherverwaltung, die speziell auf Objekte dieser Größe ausgerichtet ist, könnte der 
Verwaltungsaufwand pro Objekt auf fast Null reduziert werden. Eine dynamische 
Speicherverwaltung kennt solche Optimierungen jedoch nicht. Alle Nachteile sind für den 
Programmierer unsichtbar. Sie verstecken sich hinter den Standardfunktionen malloc, realloc 
und free und hinter den Operatoren new und delete. Wie bei den virtuellen und den Inline-
Methoden können wir auch nach diesem Blick hinter die Kulissen des Compilers die 
Schwachstellen unseres Programms leichter aufdecken.

1.7 Performance-Analyse von OHelp

Alle bisherigen Erfahrungen zusammengenommen, können wir nun den folgenden 
Fragekatalog aufstellen. Zur Abkürzung bedeutet "Kleine Methode" Methode mit wenigen 
Anweisungen und "Kleine Klasse" Klasse mit wenigen Attributen. Die Antwort Ja steht in 
jedem Fall für eine schlechte Performance.

1. Gibt es Klassen, die nur einen einzelnen Wert enthalten und sehr häufig verwendet 
werden?

2. Gibt es kleine Methoden, die sehr häufig aufgerufen werden, aber nicht inline definiert 
sind?

3. Gibt es kleine virtuelle Methoden, die sehr häufig aufgerufen werden?
4. Gibt es kleine Klassen, die sehr häufig verwendet werden und einen virtuellen 

Tabellenzeiger enthalten?
5. Treten bei einer typischen Datenmenge sehr viele kleine Speicherblöcke auf?
6. Gibt es große Mengen Speicherblöcke derselben Größe?

Die erste Frage können wir zu unseren Gunsten mit Nein beantworten. Alle anderen Fragen 
müssen wir bejahen. Die genaue Analye dieses schlechten Abschneidens wird in den 
folgenden beiden Abschnitten vorgenommen. Die Rechengeschwindigkeit läßt sich nur 
relativ bestimmen. Der Speicherbedarf wird hingegen mit konkreten Datenmengen genau 
berechnet.

1.7.1 Rechenzeitverhalten

Bei der Implementierung von OHelp haben wir keine Inline-Methoden verwendet. Wäre die 
Rechengeschwindigkeit zufriedenstellend, könnten wir auch dabei bleiben. Im 
Performancetest mit großen Datenmengen war das Programm aber zu langsam. Der Zugriff 
auf die Attribute einer Klasse kann fast immer mit einer Inline-Methode erfolgen. Es können 
jedoch auch andere Methoden, die nur aus ein oder zwei Anweisungen bestehen, inline 
definiert werden. Das Umwandeln in eine Inline-Methode ist schnell erledigt. Wir verwenden 
das Schlüsselwort inline und verschieben die Definition in die Headerdatei. Sehen wir uns 
die so geänderte Deklaration von ct_Topic an.

class ct_Topic: public ct_Object
  {
  ....
  inline void                 IncRefCount ();
  inline void                 DecRefCount ();
public:
  inline virtual const char * GetTypeName () const;
  inline ct_HyperText *       GetHyperText () const;
  inline unsigned             GetRefCount () const;
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  ....
  };

inline void ct_Topic:: IncRefCount ()
  {
  u_RefCount ++;
  }

inline void ct_Topic:: DecRefCount ()
  {
  ASSERT (u_RefCount > 0);
  u_RefCount --;
  }

Das Rechenzeitverhalten eines Programms wird im wesentlichen durch die zeitkritischen 
Stellen bestimmt. Zeitkritisch sind die Anweisungen, die am häufigsten abgearbeitet 
werden. Am genauesten finden wir diese Stellen mit einem Programmierwerkzeug, dem 
Profiler. Der Profiler untersucht das Programm zur Laufzeit und liefert eine Statistik. Die 
Aussagekraft dieser Statistik hängt stark vom jeweiligen Profiler und davon ab, wie lange 
wir uns mit ihm beschäftigen. Der Profiler hilft uns erst zu einem Zeitpunkt, an dem es 
eigentlich schon zu spät ist. Das nachträgliche Ändern getesteter Programmteile ist stets mit 
Risiken verbunden. Besser ist das frühzeitige Aufdecken der zeitkritischen Stellen in der 
Entstehungsphase des Programms. Beim Design können wir diese Stellen grob einkreisen. 
Während der Implementierung achten wir besonders auf Schleifen im Anweisungsteil. Treten 
geschachtelte Schleifen auf, sind die inneren Schleifen am meisten zeitkritisch. Sehen wir 
uns unter diesem Aspekt ein Programmfragment an. Darin sind eine Methode der Klasse 
ct_Topic und ein Methodenteil der Benutzerschnittstelle zum formatierten Anzeigen eines 
Themas enthalten. Der Kommentar "1 VM" bedeutet, daß in dieser Programmzeile eine 
virtuelle Methode aufgerufen wird. Virtuelle Methoden innerhalb eines ASSERT-Makros zählen 
nicht.

ct_Format * ct_Topic:: GetFormat (t_EntryId o_formatId) const
  {
  ct_Object * pco_obj = co_Formats. GetObj (o_formatId); // 1 VM
  ASSERT (pco_obj-> IsOfType ("ct_Format"));      // Zählt nicht
  return (ct_Format *) pco_obj;
  }

void ct_TopicView:: ViewFormatted (ct_Topic * pco_topic)
  {
  ct_String co_str = pco_topic-> GetText ();
  const ct_Collection * pco_formats = pco_topic-> GetFormats ();
  t_EntryId o_id;
  for (o_id = pco_formats-> First ();                      // 1 VM
       o_id != 0;
       o_id = pco_formats-> Next (o_id))                   // 1 VM
    {
    ct_Format * pco_format = pco_topic-> GetFormat (o_id); // 1 VM
    ....
    }
  const ct_Collection * pco_hyperLinks = pco_topic-> GetHyperLinks ();
  for (o_id = pco_hyperLinks-> First ();                       // 1 VM
       o_id != 0;
       o_id = pco_hyperLinks-> Next (o_id))                    // 1 VM
    {
    ct_HyperLink * pco_hyli = pco_topic-> GetHyperLink (o_id); // 1 VM
    ....
    }
  }

Der Aufruf von ct_Array:: GetObj in ct_Topic:: GetFormat kann optimiert werden, indem wir 
auch in der Klasse ct_Array kleine Methoden inline definieren. Dann liegt es aber noch am 
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Compiler, ob er die Methode an dieser Verwendungsstelle tatsächlich inline expandiert. Die 
anderen virtuellen Methoden lassen sich nur durch genaue Angabe des Objekttyps 
eliminieren. Das ist aber nicht im Sinne der Polymorphie.

Nicht zufällig gehören in diesem Programmfragment alle virtuellen Methoden zu den 
Collections. Zeitkritische Stellen sind innerhalb von Schleifen. Wie entsteht eine Schleife? 
Dies geschieht durch Iterieren einer Collection. Das bedeutet, daß an fast allen zeitkritischen 
Stellen eines Programms die Collections beteiligt sind. Den Aspekt Geschwindigkeits-
Optimierung haben wir bei der Entwicklung unserer Collections nicht berücksichtigt. Eine 
kleine nachträgliche Änderung wie bei den Inline-Methoden ist in diesem Fall nicht möglich. 
Wir benötigten ein grundlegend anderes Konzept für Collections. Die folgende Regel faßt 
diese Erkenntnisse zusammen.

An fast allen zeitkritischen Stellen eines Programms werden Collections verwendet. 
Collections mit virtuellen Methoden sind für ein schnelles Iterieren und Zugreifen ungeeignet.

Eine Collection mit virtuellen Methoden ist vergleichbar mit einem Flugzeug, das aus 
leichtem Holz oder Kunststoff besteht. Für den Transport kleiner Güter und für einen 
Rundflug über einer Stadt reicht es aus. Wollen wir aber viele Güter transportieren und 
große Stecken überwinden, benötigen wir ein Düsenflugzeug aus einer stabilen 
Metallkonstruktion.

1.7.2 Speicherbedarf

Für jede einzelne Klasse von OHelp untersuchen wir die folgenden Kriterien: Absolute Größe 
in Bytes, Anteil virtueller Tabellenzeiger und Anzahl der Speicherblöcke. Bei komplexen 
Objekten betrachten wir das eigentliche Objekt und die abhängigen Objekte getrennt. Zur 
Berechnung der absoluten Größe von Objekten setzen wir einen 32-Bit-Compiler voraus. Die 
primitiven Datentypen umfassen: char ein Byte, short zwei Bytes, int vier Bytes, long vier 
Bytes und Zeiger vier Bytes.

Wir beginnen mit den fundamentalen Klassen. Weiter oben sahen wir bereits das 
Speicherlayout eines Strings. Betrachten wir nun die Klasse ct_Array. Bei Design und 
Implementierung haben wir uns besondere Mühe gegeben, diese Collection 
speicherplatzoptimal zu gestalten. Abbildung 1-21 zeigt das Speicherlayout eines Arrays mit 
n Einträgen. Die genauen Analyseergebnisse befinden sich in Tabelle 1-2. Die in der 
Collection enthaltenen Objekte sind kein Bestandteil der Collection. Wir müssen aber 
beachten, daß jedes dieser Objekte einen eigenen Speicherblock erfordert.

void * pv_ToVirtualTable

t_Length o_Length

ct_Object * * ppco_Array

ct_Object *

ct_Object *

. . .

ct_Object 1

ct_Object n

. . .

Objekt vom Typ ct_Array Speicher-Block Referenzierte Objekte

Abb. 1-21:    Speicherlayout einer Instanz der Klasse ct_Array

Eine DList ist komfortabler als ein Array. Diesen Komfort müssen wir mit erhöhtem 
Speicherbedarf bezahlen. Jeder Eintrag erfordert ein Node. Dieses Node belegt nicht nur 
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Speicher. Es wird auch in einem einzelnen Block untergebracht. In Abbildung 1-22 sehen wir 
das Speicherlayout einer Collection mit n Einträgen.

void * pv_ToVirtualTable

t_Length o_Length

(ct_DListNode *) o_FirstNode

(ct_DListNode *) o_PrevNode

ct_Object * pco_Object

(ct_DListNode *) o_NextNode

ct_Object 1

Objekt vom Typ ct_DList

ct_Object n

Referenzierte ObjekteObjekte vom Typ ct_DListNode

. . . . . .

(ct_DListNode *) o_PrevNode

ct_Object * pco_Object

(ct_DListNode *) o_NextNode

Abb. 1-22:    Speicherlayout einer Instanz der Klasse ct_DList

Objekttyp Absolute Größe Virt. Tab.-Zeiger Anzahl Blöcke

String ohne Inhalt 12 Bytes 4 Bytes 1

Zeichenkette der Länge n n + 1 Bytes 0 Bytes 1

String der Länge n 12 + n + 1 Bytes 4 Bytes 2

Array ohne Inhalt 12 Bytes 4 Bytes 1

1 Array-Eintrag 4 Bytes 0 Bytes 0

Array mit n Einträgen 12 + 4 * n Bytes 4 Bytes 2

DList ohne Inhalt 12 Bytes 4 Bytes 1

1 DList-Eintrag 12 Bytes 0 Bytes 1

DList mit n Einträgen 12 + 12 * n Bytes 4 Bytes 1 + n

Tab. 1-2:    Speicheranalyse für String, Array und DList

Für eine detaillierte Analyse des Speicherbedarfs der Anwendungsklassen nutzen wir 
dieselben Daten wie beim ersten Performancetest. Zur Erinnerung seien diese Zahlen noch 
einmal wiederholt. In Abbildung 1-23 sehen wir das Speicherlayout eines einzelnen Themas. 
Tabelle 1-3 enthält die Analyseergebnisse.

• 10 000 Themen,
• Titel des Themas mit 15 Zeichen,
• pro Thema 10 Zeilen,
• pro Zeile 30 Zeichen Text und
• pro Zeile je eine Formatangabe und ein Hyperlink.
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void * pv_ToVirtualTable

t_Length o_Length

ct_Object * * ppco_Array

ct_Object *

ct_Object *

. . .

ct_HyperLink 1

ct_HyperLink 10

. . .

Objekt vom Typ ct_Topic Abhängige Objekte

void * pv_ToVirtualTable

t_Length o_Length

char * pc_Block 300 + 1 Zeichen Text

void * pv_ToVirtualTable

t_Length o_Length

ct_Object * * ppco_Array

ct_Object *

ct_Object *

. . .

ct_Format 1

ct_Format 10

. . .

void * pv_ToVirtualTable

t_Length o_Length

char * pc_Block 15 + 1 Zeichen Titel

void * pv_ToVirtualTable

ct_HyperText * pco_HyperText

unsigned u_RefCount

ct_String co_Title

ct_String co_Text

ct_Array co_HyperLinks

ct_Array co_Formats

Abb. 1-23:    Speicherlayout einer Instanz der Klasse ct_Topic

Objekttyp Absolute Größe Virt. Tab.-Zeiger Anzahl Blöcke

Hyperlink 16 Bytes 4 Bytes 1

Formatangabe 16 Bytes 4 Bytes 1

Thema ohne Inhalt 60 Bytes 20 Bytes 1

Titel mit 15 Zeichen 15 + 1 Bytes 0 Bytes 1

Text mit 300 Zeichen 300 + 1 Bytes 0 Bytes 1

10 Array-Einträge 40 Bytes 0 Bytes 1

10 Hyperlinks 160 Bytes 40 Bytes 10

10 Formatangaben 160 Bytes 40 Bytes 10

Thema mit Inhalt 777 Bytes 100 Bytes 25

Tab. 1-3:    Speicheranalyse der Klasse ct_Topic

Ein Thema mit Inhalt belegt 25 einzelne Speicherblöcke. Die dynamische Speicherverwaltung 
benötigt pro Block im Durchschnitt acht Bytes für ihre eigenen Zwecke (siehe Abschnitt 
1.6.3). Daraus ergibt sich ein tatsächlicher Speicherbedarf von 977 Bytes. Von diesem 
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Gesamtspeicher entfallen 300 Bytes auf virtuelle Tabellenzeiger und Speicherverwaltung. 
Das sind über 30 Prozent reine Verwaltungsdaten, die für den Programmierer unsichtbar 
sind. Wegen der großen Anzahl Themen in unserem Datenbeispiel fällt das einzelne 
Hypertext-Objekt kaum ins Gewicht. Interessant ist aber der Aufwand zur Verwaltung der 
Themen. Deshalb lassen wir bei der Analyse der Klasse ct_HyperText zuerst den Inhalt der 
Themen außer acht. Danach berechnen wir den Gesamtaufwand mit Inhalt der Themen. 
Abbildung 1-24 zeigt das Speicherlayout eines Hypertexts. In Tabelle 1-4 befinden sich die 
Ergebnisse der Speicheranalyse.

void * pv_ToVirtualTable

t_Length o_Length

(ct_DListNode *) o_FirstNode

(ct_DListNode *) o_PrevNode

ct_Object * pco_Object

(ct_DListNode *) o_NextNode

ct_Topic 1

Objekt vom Typ ct_HyperText

ct_Topic 10000

Abhängige Objekte

. . . . . .

(ct_DListNode *) o_PrevNode

ct_Object * pco_Object

(ct_DListNode *) o_NextNode

void * pv_ToVirtualTable

t_EntryId o_RootTopicId

void * pv_ToVirtualTable

t_Length o_Length

char * pc_Block 15 + 1 Zeichen Name

ct_String co_Name

ct_DList co_Topics

Abb. 1-24:    Speicherlayout einer Instanz der Klasse ct_HyperText

Objekttyp Absolute Größe Virt. Tab.-Zeiger Anzahl Blöcke

Hypertext ohne Inhalt 32 Bytes 12 Bytes 1

Titel mit 15 Zeichen 15 + 1 Bytes 0 Bytes 1

10 000 DList-Einträge 120 000 Bytes 0 Bytes 10 000

10 000 Themen ohne Inhalt 600 000 Bytes 200 000 Bytes 10 000

Hypertext mit Th. o. I. 720 048 Bytes 200 012 Bytes 20 002

10 000 Themen mit Inhalt 7 770 000 Bytes 1 000 000 Bytes 250 000

Hypertext mit Inhalt 7 890 048 Bytes 1 000 012 Bytes 260 002

Tab. 1-4:    Speicheranalyse der Klasse ct_HyperText

Bei der Verwaltung der Themen ohne Inhalt fallen die Nachteile einer DList auf. Pro Eintrag 
sind zwei Speicherblöcke (Node und Objekt) und zwölf Bytes für das Node erforderlich. Die 
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abschließende Gesamtrechnung zeigt uns, warum beim ersten Test der Speicher 
übergelaufen ist. Für 260 002 einzelne Speicherblöcke müssen wir etwa zwei MB 
Zusatzinformationen einkalkulieren. Zusammen mit den virtuellen Tabellenzeigern ergibt sich 
ein reiner Verwaltungsspeicher von drei MB. Damit haben wir nicht gerechnet. Unsere 
Hardware ist auf das Entwickeln eines kleinen Beispielprogramms ausgerichtet. Den 
nächsten Test sollten wir besser auf einer Workstation durchführen.

Auch bei etwas kleineren Datenmengen treten viele einzelne Speicherblöcke auf. Damit ist 
die beste dynamische Speicherverwaltung überfordert. Wir verstehen nun, warum das 
Testprogramm im Laufe der Zeit immer langsamer wird. Durch häufiges Ändern der Daten, 
wie es auch in der Praxis vorkommt, fragmentiert der Speicher zunehmend. Das führt zu 
einem erhöhten Speicherbedarf und zur Verlangsamung des gesamten Programms.

1.7.3 Auswertung

Die Speicheranalyse hat ergeben, daß unser Programm relativ viel Verwaltungsspeicher 
verbraucht. Wieviel Speicher wird davon tatsächlich benötigt? Der größte Teil der virtuellen 
Tabellenzeiger ist in den Hyperlinks und Formatangaben enthalten. Beide Klassen besitzen im 
Grunde keine virtuellen Methoden. Sie müssen nur wegen unserer Collections von der 
abstrakten Basisklasse erben. Von der Klasse ct_Object erben sie keine Eigenschaften im 
Sinne einer Is-A-Relation, sondern einigen Overhead in Form des virtuellen Destruktors und 
der virtuellen Methode GetTypeName. Beide Klassen tauchen nie in einem polymorphen Kontext 
auf und benötigen keinen virtuellen Destruktor.

Die Situation ist mit einem Büro vergleichbar, in dem nur 380-V-Steckdosen vorhanden sind. 
Für Handwerker mit schweren Maschinen mag es geeignet sein. Was aber tun wir 
Softwareentwickler, wenn wir in diesem Büro arbeiten müssen? Sollen wir alle elektrischen 
Kleingeräte mit einem Drehstromanschluß versehen, einschließlich der Kaffeemaschine? 
Oder ist es nicht besser, das Büro mit einem normalen Stromnetz auszustatten? Die 
folgende Regel verdeutlicht diesen Sachverhalt.

Erben speicherplatzkritische Klassen von einer Basisklasse mit virtuellen Methoden, prüfen 
wir, ob die Vererbung inhaltlich erforderlich ist. Erfolgt sie nur aus formalen Gründen, 
versuchen wir, sie zu umgehen.

Die große Zahl der Speicherblöcke im Testbeispiel wird im wesentlichen durch die Hyperlinks 
und die Formatangaben verursacht. Auch dieser Verwaltungsaufwand ist im Grunde unnötig. 
Beide Klassen werden nur in homogenen Collections verwendet. Unsere Collections sind auf 
diesen Fall nicht eingerichtet. Die verwalteten Objekte werden dynamisch erzeugt. Die 
dynamische Speicherverwaltung ist jedoch für viele gleichgroße Objekte ungeeignet. Besser 
wäre es, wenn sich die Collections selbst um die Verwaltung ihrer Objekte kümmern 
würden.

In unserem Beispielprogramm OHelp kommen keine polymorphen Collections vor. Das 
entspricht natürlich nicht der Praxis. In großen Anwendungsprogrammen treten sowohl 
polymorphe als auch homogene Collections auf. Die meisten performancekritischen 
Collections enthalten jedoch viele gleichartige Objekte. Deshalb richten wir auf die 
homogenen Collections unsere besondere Aufmerksamkeit. An den bisherigen Collections 
mußten wir in der Performance-Analyse die folgenden gravierenden Mängel feststellen:

• Virtuelle Methoden verlangsamen das Iterieren und den Zugriff.
• Die verwalteten Objekte müssen von einer abstrakten Basisklasse erben.
• Homogene Collections belasten die Speicherverwaltung unnötig.
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Es gibt viele Möglichkeiten, die Performance eines Programms zu verbessern. Man kann die 
Anwendungsklassen daraufhin prüfen, ob sie unnötige Informationen enthalten. Das kann 
aber nur vor Ort geschehen. Die verwendeten Algorithmen können verbessert werden, zum 
Beispiel durch angepaßte Sortierverfahren. Allgemeine Datenstrukturen und Algorithmen sind 
jedoch seit vielen Jahren gründlich erforscht. Was bleibt, ist die Optimierung des Einsatzes 
der Programmiersprache und der Standardbibliothek. Bei einer so jungen Sprache wie C++ 
gibt es auf diesem programmtechnischen Gebiet noch viel zu tun. Die folgende Regel faßt 
die wesentlichen Resultate unserer Analysen zusammen und sagt damit, was wir in den 
weiteren Abschnitten untersuchen werden.

Die Hauptfaktoren der programmtechnischen Effizienz sind Speicherverwaltung, 
Objektverwaltung (Collections) und zeitkritische Methoden.
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2 Grundlagen einer besseren Performance

Im ersten Teil des Buchs haben wir gesehen, in welche Performance-Fallen wir bei der 
Entwicklung eines C++-Programms tappen können. Der zweite Teil enthält das Design zur 
Verbesserung. Kleine Änderungen an der Oberfläche reichen dazu nicht aus. Wir werden 
grundlegend neue Konzepte kennenlernen. Zuerst werden wir uns überlegen, was eigentlich 
ein Computerprogramm ist und aus welchen Komponenten es besteht. Die unmittelbar 
folgenden Abschnitte sind deshalb sehr abstrakt.

2.1 Ein Abstecher in die Philosophie

2.1.1 Modellierung - Wichtiger Bestandteil menschlicher 
Tätigkeit

Der Mensch konnte bereits in frühen Stadien der gesellschaftlichen Entwicklung Arbeiten 
ausführen, zu denen kein Tier in der Lage ist. Besonders auffällig ist das hohe Niveau der 
Handwerke und Künste in solchen Gesellschaften, in denen auch die Wissenschaften einen 
hohen Stand erreicht haben. Schon damals setzten die Menschen wissenschaftliche 
Erkenntnisse in ihrer täglichen Arbeit ein. Die Entwicklung und Anwendung der 
Wissenschaften wird stark von informationsverarbeitenden Prozessen beeinflußt. Ein hohes 
Niveau der Aufbewahrung und Weitergabe von Informationen wirkt wie ein Katalysator auf 
die Forschung. Je besser die gesellschaftlichen und technischen Rahmenbedingungen dafür 
sind, desto besser können sich wissenschaftliche Erkenntnisse entwickeln und ausbreiten.

Jede Wissenschaft hat einen Gegenstandsbereich. In diesem Bereich stellt sie 
Untersuchungen an und dokumentiert ihre Ergebnisse. Die frühesten Wissenschaften waren 
noch sehr mit der Natur und der praktischen Tätigkeit des Menschen verbunden. Die 
Mathematik ist die erste Wissenschaft, deren Gegenstand kein Bestandteil der Natur ist. Sie 
befaßt sich mit abstrakten Dingen wie Zahlen, Mengen und Aussagen. Heute gibt es viele 
abstrakte Wissenschaften. Die Informatik zählt mit ihren Teilbereichen auch dazu. Die 
Ergebnisse einer Wissenschaft werden in Form von Begriffen, Axiomen und Theorien fixiert. 
Darin ist der untersuchte Gegenstandsbereich modellhaft abgebildet. Der Wert dieser 
Erkenntnisse besteht in ihrer universellen Verwendbarkeit. Eine wissenschaftliche Erkenntnis 
bezieht sich auf einen bestimmten Kontext. Trifft man in der Praxis auf denselben Kontext, 
kann das vorhandene Wissen angewandt werden. Der Geltungsbereich einer Erkenntnis ist 
abhängig von ihrem Abstraktionsgrad. Je abstrakter sie ist, desto universeller ist sie 
einsetzbar.

Ein wenig gebildeter Obstbauer kennt zahlreiche Regeln zum Bilden von Obstmengen, zum 
Beispiel "Fünf Äpfel plus sieben Äpfel ergibt zwölf Äpfel" und "Fünf Birnen plus sieben 
Birnen ergibt zwölf Birnen". Diese Regeln sind wiederverwendbar. Jedesmal, wenn fünf 
Äpfel und sieben Äpfel in einen Korb gelegt werden, gilt die erste Regel. Sie sind aber so 
konkret, daß sie kaum in eine Wissenschaft aufgenommen werden. Die mathematische 
Regel "5 + 7 = 12" erspart hingegen die vielen Einzelregeln. Sie ist eine abstrakte 
Rechenregel, die auf beliebige Gegenstände anwendbar ist. Das Obstbeispiel ist so einfach, 
daß jedes Kind es versteht. Es zeigt aber exemplarisch, wie kompliziertes Wissen 
zustandekommt und angewandt wird.
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Eine Wissenschaft bildet Modelle von ihrem Gegenstandsbereich. Alle Erkenntnisse werden 
in modellhafter Form dargestellt. Zum Beispiel wird jeder chemischen Substanz eine Formel 
zugeordnet. In einem Lehrbuch der Chemie finden wir nützliches Wissen über zahlreiche 
Substanzen. Sie werden aber nicht in einem Reagenzglas mitgeliefert, sondern als 
chemische Formel abgebildet. Der Wissenschaftler gewinnt im praktischen Experiment oder 
durch abstraktes Untersuchen neues Wissen (siehe Abbildung 2-1). In unserem Obstbeispiel 
ist eine Zahl die Verallgemeinerung von Anzahl. Eine Anzahl von fünf Äpfeln ist das 
Konkrete. Die Zahl Fünf ist das abstrakte Modell. Die zugehörige Wissenschaft ist die 
Mathematik. Sie untersucht abstrakte Modelle wie ganze Zahlen oder logische Aussagen. 
Die einfache Rechenregel "5 + 7 = 12" gehört ebenso zum mathematischen Wissen wie 
die Sätze der Aussagenlogik.

Konkreter Gegenstand
Eigenschaften:

A B C D E F . . .

Abstraktes Modell
Eigenschaften:

A B C

Untersuchung:
Hat Eigensch. "A"

Anwendung vorh. Wissens:
Aus Eigensch. "A" und "B" folgt "C"

Untersuchung:
Hat Eigensch. "B"

Abb. 2-1:    Bildung neuen Wissens in Form eines Modells

Auch in der Anwendung wissenschaftlicher Erkenntnisse werden Modelle gebildet. Zu einem 
konkreten Problem suchen wir ein abstraktes Modell. Im günstigen Fall gibt es bereits 
zahlreiches Wissen über dieses Modell. Dann erhalten wir eine abstrakte Lösung und könnes 
sie in die Praxis umsetzen (siehe Abbildung 2-2). Haben wir zum Beispiel zwei Chemikalien 
in Reagenzgläsern vor uns, müssen wir die zugehörigen Formeln bestimmen. Dann können 
wir nachschlagen, welche Reaktion sich durch Mischen der Substanzen ergibt. Je nach 
Auskunft des Lehrbuchs beginnen wir mit dem Experiment oder erhöhen den 
Sicherheitsabstand der Reagenzgläser. Im Obstbeispiel gehört zum konkreten Problem "Fünf 
Äpfel plus sieben Äpfel" die abstrakte Rechenaufgabe "5 + 7". Dazu finden wir die 
abstrakte Lösung "12". Die Umsetzung in die Praxis ergibt die konkrete Lösung "Zwölf 
Äpfel".

Konkretes Problem

Abstrakte LösungAbstraktes Problem

Konkrete Lösung

Modellierung
Umsetzung

Anwendung vorh. Wissens

Abb. 2-2:    Anwendung abstrakten Wissens zur Lösung eines Problems
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Wissenschaftliche Erkenntnisse haben zahlreiche Gemeinsamkeiten mit 
Computerprogrammen. Wir können ein Programm als einen kleinen, in sich geschlossenen 
Wissensbereich betrachten. Das Wissen wird in einer computerlesbaren Form, zum Beispiel 
einer Programmiersprache, dargestellt. Ein Programm entsteht ähnlich wie neues Wissen 
(siehe Abbildung 2-1). In der Designphase werden Informationen von konkreten Objekten in 
ein objektorientiertes Modell übertragen. Vorhandenes "Computerwissen" liegt in Form 
wiederverwendbarer Bibliotheken vor. Diese werden hauptsächlich während der 
Implementierung eingesetzt. Auch die Anwendung eines Computerprogramms entspricht der 
Verarbeitung abstrakten Wissens (siehe Abbildung 2-2). Stehen wir vor einer konkreten 
Aufgabe und verfügen über ein geeignetes Programm, müssen wir das Problem abstrakt 
formulieren und in den Computer eingeben. Wir erhalten vom Programm eine theoretische 
Lösung und können sie in die Praxis umsetzen.

2.1.2 Arten und Eigenschaften von Modellen

Im folgenden werden einige Grundbegriffe erläutert. Dabei wird nicht versucht, ein neues 
mathematisches oder philosophisches Begriffssystem aufzustellen. Diese Überlegungen 
sollen nur unser Verständnis der Computerprogrammierung vertiefen.

Modelle spielen nicht nur bei der wissenschaftlichen Arbeit des Menschen eine Rolle. Im 
allgemeinsten Sinn ist ein Modell ein Gegenstand, der einem anderen ähnlich ist. Modelle 
werden gebildet, wenn der Bezugsgegenstand für unser Bewußtsein nicht faßbar ist. Zum 
Beispiel träumt ein Kind von einer alten Ritterburg. Die Burg ist aber weit entfernt oder nur in 
einem Märchen vorhanden. Deshalb baut das Kind eine ähnliche Burg in den Sand. Ein Jahr 
später möchte es ein Flugzeug steuern. Dazu muß das Kind aber noch viele Jahre lernen und 
begnügt sich mit einem ferngesteuerten Modellflugzeug. Zwischen Sandburg und Flugzeug 
gibt es einen wesentlichen Unterschied. Das Flugzeug ist ein dynamisches Modell, es kann 
seinen Zustand ändern. Die Burg ändert zwar auch ihren Zustand, wenn ein Haustier darüber 
läuft. Diese Zustandsänderung ist jedoch keine Modelleigenschaft, sondern eine Eigenschaft 
des Materials, aus dem das Modell besteht. Als Modell betrachtet besitzt die Sandburg nur 
statische Eigenschaften.

Modellflugzeug und Sandburg sind reale Gegenstände. Wir können sie sehen und mit den 
Händen danach greifen. Bei der intellektuellen Tätigkeit nutzen wir jedoch abstrakte Modelle. 
Ein abstrakter Gegenstand besteht nicht aus Materie und kann nur mit Hilfe einer 
Darstellung verwendet werden. Ein sehr einfaches, abstraktes Modell ist die ganze Zahl Vier. 
Mögliche Darstellungen sind "||||",  "IV" und "4". Die Darstellungen sind real, der 
dargestellte Gegenstand ist jedoch abstrakt. Ein Regelsystem zur Darstellung gleichartiger 
Gegenstände ist eine Notation. Zum Beispiel ist das Dezimalsystem eine Notation für ganze 
Zahlen. Abstrakte Gegenstände können graphisch oder mit symbolischen Zeichen dargestellt 
werden. Ein Regelsystem, das auf einer endlichen Zeichenmenge operiert, ist eine Sprache.

Wird ein dynamischer Gegenstand abstrakt modelliert, besitzt auch das Modell dynamische 
Eigenschaften. Das dynamische Verhalten des realen Gegenstands ist ein Prozeß. Das 
entsprechende Modell enthält eine Folge von Zuständen. Die gesamte Folge ist eine 
Simulation. Das Flugzeugmodell ist real und dynamisch. Eine Simulation ist ein abstraktes, 
dynamisches Modell. Zur Veranschaulichung benötigt sie eine Darstellung. Eine der ersten 
Anwendungen elektronischer Rechenautomaten war die Berechnung der Flugbahn von 
Geschossen. Das auf dem Übungsplatz abgefeuerte Geschoß ist ein realer Prozeß. Es 
bewegt sich nach den Gesetzen den Newtonschen Mechanik und des Luftwiderstands. 
Diese Gesetze sind lange erforscht und in Lehrbüchern dokumentiert. Durch Programmierung 
kann die Flugbahn simuliert werden. Der Computer liefert uns Darstellungen der Simulation, 
zum Beispiel eine Folge von Koordinaten oder eine Zeichnung.

Der Übergang eines abstrakten Gegenstands von einem Zustand in einen anderen wird meist 
mit Funktionen (im mathematischen Sinn eindeutigen Abbildungen) beschrieben. Auch eine 
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Funktion ist ein abstrakter Gegenstand und benötigt eine Darstellung. Funktionen auf reellen 
oder komplexen Zahlen können graphisch dargestellt werden. Für exakte Berechnungen 
nutzt man jedoch Formelschreibweisen. Eine Funktionsdarstellung mit elementaren 
Einzelschritten ist ein Algorithmus. Für das Formulieren von Algorithmen existieren 
zahlreiche Sprachen. Dazu zählen auch die Programmiersprachen. Abbildung 2-3 zeigt drei 
Darstellungen derselben Funktion. Eine Funktion ist ein statisches Modell, denn sie ändert 
nichts, sondern beschreibt etwas. Die Anwendung der Funktion ist jedoch ein dynamisches 
Modell. Beschreibt die Funktion einen Prozeß, ist ihre Anwendung eine Simulation.

f (x) = x²

int Square (int x)
  {
  return x * x;
  }

Graphische Darstellung Mathematische Formel Algorithmus in C++

Abb. 2-3:    Verschiedene Darstellungen einer Funktion

Ein Modell wird zu einem bestimmten Zweck gebildet. Vom Bezugsgegenstand werden nur 
ausgewählte Eigenschaften auf das Modell übertragen. Bei der Modellierung realer 
Gegenstände ist eine starke Vereinfachung nötig. Vorgänge in der Natur sind kontinuierlich 
und besitzen selten scharfe Grenzen. Die zugehörigen Modelleigenschaften sind meist 
diskret. Sie entsprechen also ganzen Zahlen. Zum Beispiel schaffen Meteorologen 
statistische Modelle von Wettervorgängen. Zur Auswertung gelangen nicht alle 
Erscheinungen, die wir in der Atmosphäre beobachten können, sondern nur ausgewählte 
Meßwerte. Diese werden auf eine sinnvolle Genauigkeit gerundet. Eine rationale Zahl mit 
einigen Kommastellen kann durch Multiplikation mit einer Zehnerpotenz in eine ganze Zahl 
umgewandelt werden. Die Wetterstatistiken sind also diskrete Modelle.

2.1.3 Modellierung mit Computern

Dieser philosophische Exkurs hat unsere grauen Zellen stark beansprucht. Nun sind wir in 
der Lage, das Wesen eines Computerprogramms zu beschreiben. Es ist ein abstraktes, 
statisches und diskretes Modell mit Funktionen und Modellen realer Gegenstände. Durch 
Starten des Programms werden die Funktionen angewendet, und wir erhalten ein 
dynamisches Modell. Die Darstellung eines Programms erfolgt meist mit einer 
Programmiersprache. Moderne CASE-Werkzeuge erlauben auch andere textuelle und 
graphische Ansichten.

Zahlen sind abstrakte Gegenstände und können auf unterschiedliche Weise dargestellt 
werden. In Computern werden besondere Formen der Darstellung verwendet. Zahlen werden 
binär codiert, als Folge von Nullen und Einsen. Ein einzelnes Bit entspricht einem 
physikalischen Zustand in einem Speichermedium. Ein Computer ist aus philosophischer 
Sicht ein technisches Gerät zur Verarbeitung ganzer Zahlen. Er besitzt vier wesentliche 
Eigenschaften:

• Er kann ganze Zahlen darstellen.
• Auf Zahlen können elementare Operationen angewandt werden.
• Die Operationen sind als Zahlen codiert und können gespeichert werden.
• Gespeicherte Operationen können automatisch ausgeführt werden.
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Aus diesen Eigenschaften folgt, daß ein Computer diskrete Modelle darstellen und verändern 
kann. Das Abarbeiten von Funktionen führt zu einem dynamischen Modell. Wir können also 
mit einem Computer Prozesse simulieren. Voraussetzung für die Simulation ist, daß die 
Modelle als ganze Zahlen vorliegen und die Funktionen als elementare Operationen codiert 
sind. Wer schon einmal einen Computer auf Maschinenebene programmiert hat, möchte kein 
größeres Programm auf diese Weise entwickeln. Deshalb formulieren wir unsere Modelle in 
einer höheren Programmiersprache. Mit einem Compiler übersetzen wir das Programm in eine 
ausführbare Form oder führen es mit einem Interpreter direkt aus.

Bei der theoretischen Lösung eines Problems kümmern wir uns wenig um den erforderlichen 
Aufwand. Einem Mathematiker reicht es im allgemeinen, wenn ein Problem in endlich vielen 
Schritten lösbar ist. Soll die Lösung auf einem Computer implementiert werden, müssen wir 
dessen technische Eigenschaften beachten. Das theoretische Modell muß in einer 
Programmiersprache dargestellt werden. Moderne, objektorientierte Sprachen erleichtern uns 
diese Arbeit. Die Ausdrucksmittel entsprechen etwa denen, die wir in unserem abstrakten 
Denken gebrauchen. Dennoch treffen wir überall auf technische Details. Zum Beispiel 
werden in modernen Computern ganze Zahlen mit 8, 16 oder 32 Bit dargestellt. Die 
ganzzahligen Datentypen einer Programmiersprache entsprechen dieser internen Darstellung.

Der Speicher eines Computers besteht aus elementaren Einheiten, den Worten. Ein Wort 
umfaßt eine bestimmte Anzahl Bits. In ihm kann eine Zahl aus dem entsprechenden 
Wertebereich gespeichert werden. Jedes Wort hat eine eindeutige Adresse. Der Zugriff auf 
die gespeicherten Zahlen erfolgt stets über ihre Adresse. In älteren Computern war der 
Adreßraum linear aufgebaut. Die Worte erhielten aufsteigende Nummern. Heute kann der 
Hauptspeicher mit Auslagerungsdateien vergrößert werden. Auch in einem virtuellen 
Speicher hat jedes Wort eine eindeutige Adresse.

Ein Objekt im Sinne der objektorientierten Programmierung ist ein abstraktes, diskretes 
Modell. Es enthält binär codierte Informationen und Funktionen, die darauf angewendet 
werden können. In der objektorientierten Sprechweise sagen wir dazu Attribute und 
Methoden. Mehrere gleichartige Objekte werden zu einer Klasse zusammengefaßt. Die 
Methoden sind für alle Objekte einer Klasse gleich. Deshalb müssen sie nur einmal 
gespeichert werden. Die Werte der Attribute können sich jedoch unterscheiden. Dafür 
benötigt jedes Objekt einen eigenen Speicherbereich.

Wollen wir die Attribute eines Objekts mit einer Programmiersprache beschreiben, müssen 
wir sie aus primitiven Datentypen zusammensetzen. Für die Darstellung des Objekts im 
Computer wird eine bestimmte Menge Speicher benötigt. Der Speicherbedarf ist vom 
Informationsgehalt abhängig. Der Zugriff auf das Objekt erfolgt mit der Adresse seines 
Speichers. Einem einzelnen Objekt können wir einen Namen zuordnen. Die Adresse dieses 
Objekts benötigen wir nicht. Der Compiler ermittelt sie aus dem Namen. Zur Laufzeit des 
Programms entstehen jedoch neue Objekte ohne Namen. Wollen wir darauf zugreifen, 
müssen wir ihre Adresse ermitteln.

Befindet sich ein Objekt in einer Datei, ist der Zugriff komplizierter. Im Hauptspeicher wird 
eine Kopie erzeugt. Diese besitzt eine Adresse und kann direkt manipuliert werden. Das 
geänderte Objekt wird in die Datei zurückgeschrieben. Ähnlich wie der Speicher eines 
Computers besteht auch eine Datei aus Worten. Diese werden vom Dateibeginn aufsteigend 
numeriert. Innerhalb der Datei hat also jedes Objekt eine eindeutige Adresse. Die 
Veränderung der Datei erfolgt zwar indirekt, gleicht im Prinzip jedoch der im Hauptspeicher. 
Zur Vereinfachung betrachten wir deshalb im folgenden keine Dateien und Datenbanken, 
sondern nur den internen Speicher des Computers.

Während der Abarbeitung eines Programms werden Objekte erzeugt und gelöscht. Dafür 
benötigen wir eine Objektverwaltung. Ihre Aufgabe besteht im Sammeln und Ordnen 
dynamisch erzeugter Objekte. In diesen Bereich gehören Collections, wie wir sie in den 
fundamentalen Klassen von OHelp kennengelernt haben. Die Aufbewahrung dieser 
Informationen erfordert Speicher. Die Objektverwaltung beruht also auf einer 

Spirick Tuning    Tutorial    Seite 58



Speicherverwaltung. Diese verarbeitet rohen Speicher und sogt auf unterster Ebene für die 
Darstellung komplexer dynamischer Modelle in einem Computer.

2.2 Zugriff auf Objekte

Nach diesen allgemeinen Überlegungen betrachten wir nun wieder unsere 
Programmiersprache. In einem C++-Programm kann ein Objekt auf eine der folgenden 
Arten entstehen:

• als globale Variable,
• als lokale Variable einer Methode,
• durch den Operator new,
• durch einen expliziten Konstruktor-Aufruf,
• als ein temporäres Objekt,
• als Teil eines anderen Objekts (Attribut oder Basisklasse).

In jedem Fall benötigen wir für den Zugriff auf das Objekt seine Adresse. In einem Zeiger 
oder einer Referenz ist eine Adresse enthalten. Ist das Objekt eine Variable, können wir mit 
dem Namen darauf zugreifen. Er ist identisch mit einer Referenz. Der Compiler hat für die 
Variable Speicher bereitgestellt und rechnet den Namen in die Adresse um. Mit dem Adreß-
Operator "&" können wir auch die Adresse einer Variablen direkt abfragen. Der Operator new 
liefert einen typisierten Zeiger auf ein neu erzeugtes Objekt. Damit können wir auf das 
Objekt zugreifen. Durch einen expliziten Konstruktor-Aufruf erhalten wir eine Referenz auf 
ein temporäres Objekt. Es existiert nur innerhalb der Anweisung, in der es erzeugt wurde, 
und muß in dieser Anweisung weiterverarbeitet werden. Im Abschnitt 1.4.3 "EntryId und 
Längenangabe" wurden weitere Beispiele für temporäre Objekte genannt. Wird ein Objekt als 
Teil eines anderen Objekts erzeugt, erfolgt der Zugriff über die Adresse des umfassenden 
Objekts. Der folgende Programmausschnitt enthält einige Beispiele für Zugriffe auf Objekte.

class ct_Dialog
  {
public:
  void       Show ();
  };

struct st_BigDialog
  {
  ct_Dialog  co_Dialog1;
  ct_Dialog  co_Dialog2;
  };

ct_Dialog TempDialog (); // Methode liefert ein temporäres Objekt

void TestDialog ()
  {
  ct_Dialog co_dialog;           // Lokale Variable
  ct_Dialog * pco_dialog;        // Zeiger auf ein Objekt
  pco_dialog = & co_dialog;      // Berechnung der Adresse der Variablen
  co_dialog. Show ();            // Zugriff mit dem Namen
  ct_Dialog & rco_dialog = co_dialog; // Referenz auf die Variable
  rco_dialog. Show ();           // Zugriff mit der Referenz
  pco_dialog = new ct_Dialog (); // Erzeugen eines neuen Objekts
  pco_dialog-> Show ();          // Zugriff mit dem Zeiger
  (* pco_dialog). Show ();       // Andere Schreibweise für Zeigerzugriff
  ct_Dialog (). Show ();         // Temp. Objekt durch Konstruktor-Aufruf
  TempDialog (). Show ();        // Zugriff auf zweites temporäres Objekt
  st_BigDialog so_bd;            // Umfassende Variable
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  so_bd. co_Dialog2. Show ();    // Zugriff auf einen Teil
  }

2.2.1 Zeiger in C++

Mit einem Zeiger können wir einen Speicherbereich oder ein darin befindliches Objekt 
identifizieren. Die Schreibweise für einen Zeigertyp in C++ ist declaration_specifier * 
const_volatile_opt. Der declaration_specifier enthält den Typ, auf den gezeigt wird. Das 
nachgestellte const_volatile_opt bezieht sich auf den Zeiger selbst. Zeigertypen sind zum 
Beispiel const char * (Zeiger auf ein konstantes Zeichen), int * const (konstanter Zeiger auf 
eine Zahl) oder ct_Dialog * (Zeiger auf ein Dialogobjekt). Ein Objekt des Zeigertyps ist ein 
Zeiger, zum Beispiel const char * pc. Er kann einen beliebigen Wert aus dem Bereich des 
Zeigertyps annehmen. Ein Zeigerwert kann gültig oder ungültig sein. Wir wissen bereits, daß 
ein C++-Zeiger eine Speicheradresse enthält. Gültige Zeigerwerte sind also Adressen, die 
von der Speicherverwaltung zur Verfügung gestellt wurden. Der Wert Null ist per Definition 
ungültig. Die Menge der gültigen Zeigerwerte eines Programms bildet einen Zeigerraum.

In C++ muß zwischen typisierten und untypisierten Zeigern unterschieden werden. Ein 
untypisierter Zeiger enthält im declaration_specifier das Schlüsselwort void, zum Beispiel 
void * oder const void * volatile. Damit können wir kein Objekt, sondern nur einen 
Speicherbereich identifizieren. Der Compiler wandelt automatisch typisierte in untypisierte 
Zeiger um. Umgekehrt müssen wir die Typumwandlung selbst vornehmen. Untypisierte 
Zeiger werden unter anderem beim binären Kopieren von Speicher eingesetzt. Die 
Standardfunktion memmove hat die Deklaration memmove (void * pv_destination, const void * 
pv_source, unsigned u_length). Wir können sie auch mit typisierten Zeigern aufrufen, zum 
Beispiel memmove (& co_dialog1, & co_dialog2, sizeof (ct_Dialog)).

Die Sprache C++ erlaubt die Verwendung weiterer Zeigertypen. Auf globale Methoden und 
nichtstatische Member einer Klasse (Attribute und Methoden) können Zeiger gebildet 
werden. Diese spezialisierten Zeiger betrachten wir nicht näher. Zur Untersuchung der 
Speicher- und Objektverwaltung sind herkömmliche Zeiger ausreichend. Diese enthalten eine 
Speicheradresse und haben deshalb zwei wichtige Eigenschaften. Zum einen ist der Zugriff 
auf die referenzierten Objekte sehr schnell, denn die Hardware des Computers kann 
Adressen direkt verarbeiten. Zum anderen ist ein Zeigerwert nur zur Laufzeit eines 
Programms gültig. Beim nächsten Programmstart kann die Speicherverwaltung andere 
Adressen zur Verfügung stellen. Haben wir ältere Adressen persistent in einer Datei 
gespeichert, führt deren Verwendung zu Fehlern. Das folgende Programmfragment faßt die 
wichtigsten Begriffe zusammen.

char c;
char * pc;  // Zeigertyp: char *, Zeiger: pc
pc = & c;   // Zeigerwert: Adresse von c
* pc = 'f'; // Zugriff mit dem Zeiger: * pc

2.2.2 Indizes von Arrays

Wir können in C++ Arrays von Objekten definieren, zum Beispiel ct_Dialog aco_dialogs [10]. 
Die einzelnen Objekte werden durch einen Index identifiziert. Ein Index kann also wie ein 
Zeiger betrachtet werden. Der Zeigertyp ist bei jedem Array unsigned int. Ein Zeiger ist ein 
Objekt dieses Typs, zum Beispiel unsigned int u_idx. Der Wertebereich des Zeigertyps umfaßt 
alle nichtnegativen ganzen Zahlen. Im obigen Beispiel sind aber nur die Werte von null bis 
neun gültig. Die gültigen Zeigerwerte ergeben sich aus der Größe des Arrays und bilden 
einen Zeigerraum.
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Wollen wir auf ein bestimmtes Objekt zugreifen, benötigen wir seine Adresse. Diese erhalten 
wir durch Indizierung. Zum Beispiel liefert der Ausdruck aco_dialogs [4] eine Referenz auf das 
fünfte Objekt des Arrays. Der Zugriff mit einem Index ist langsamer als mit einem normalen 
Zeiger. Die Adresse des Objekts muß aus der Anfangsadresse des Arrays und dem Index 
berechnet werden. Der Index ist jedoch auch bei späteren Programmstarts noch gültig. Er 
kann also in einer Datei persistent gespeichert und später wieder verwendet werden.

Für den Zugriff auf das fünfte Objekt reicht der Zeigerwert Vier allein nicht aus. Wir müssen 
auch das Array angeben, auf das er sich bezieht. Das ist ein wichtiger Unterschied zu 
normalen Zeigern. Während diese global gültig sind, ergibt ein Index nur mit dem 
zugehörigen Array einen Sinn. Das Array übernimmt die Rolle eines Zeigerverwaltungs-
Objekts. Im folgenden Programmbeispiel sehen wir die wichtigsten Zeigerbegriffe bei einem 
Array.

ct_Dialog aco_dialogs [10];   // Array mit Zeigerraum 0 bis 9
unsigned int u_idx;           // Zeigertyp: unsigned int, Zeiger: u_idx
u_idx = 4;                    // Zeigerwert: 4
aco_dialogs [u_idx]. Show (); // Zugriff mit Zeiger: aco_dialogs [u_idx]

2.2.3 Logische Zeiger

In unserer kleinen Klassenbibliothek haben wir die EntryIds als eine weitere Art Zeiger 
kennengelernt. Diese besitzen ähnliche Eigenschaften wie die Indizes der C++-Arrays. Der 
Zeigertyp ist t_EntryId und gilt für alle von ct_Collection abgeleiteten Klassen. Ein gültiger 
Zeigerwert ist eine EntryId. Mit der Methode GetObj können wir auf das damit referenzierte 
Objekt zugreifen. Die gültigen EntryIds einer Collection bilden einen Zeigerraum. Mit den 
Methoden First und Next können wir ihn vollständig durchlaufen. Eine EntryId ist nur 
zusammen mit ihrer Collection sinnvoll. Sie besitzt also wie ein Index eine lokale Gültigkeit. 
Sehen wir uns zur Veranschaulichung wieder ein Programmfragment an.

ct_DList co_dlist;         // Liste als Zeigerverwaltungs-Objekt
t_EntryId o_id;            // Zeigertyp: t_EntryId, Zeiger: o_id
o_id = co_dlist. First (); // Zeigerwert: Erster gült. Zeiger der Liste
co_dlist. GetObj (o_id)-> GetTypeName (); // Zugriff mit Methode GetObj

Bei der Festlegung des Datentyps für die EntryId haben wir das dynamische Array und die 
DList berücksichtigt und ihn auf unsigned long definiert. Im Performancetest mußten wir 
feststellen, daß vor allem die Collections Mängel aufweisen. Sie sind für einen möglichst 
breiten Einsatz konzipiert. Das vereinfacht ihre Anwendung, erschwert jedoch die 
Anpassung an konkrete Situationen. Die Performance eines Programms wird stark von den 
fundamentalen Klassen beeinflußt. Sie müssen flexibler als bisher gestaltet werden, damit 
wir sie an konkrete Erfordernisse, zum Beispiel eine homogene Collection, anpassen können.

In einer DList belegen die Zeiger einen beachtlichen Teil des Speichers. Ein Node enthält je 
einen Zeiger zum Vorgänger und Nachfolger. Wissen wir von einer Instanz der DList, daß 
darin nicht mehr als hundert Einträge vorkommen, ist ein 32-Bit-Zeiger ungeeignet. Acht Bit 
reichen für die Codierung der Zeiger vollkommen aus. Gibt es von dieser Liste viele 
Instanzen, können wir dadurch viel Speicher sparen. Es ist nicht sinnvoll, einen bestimmten 
Zeigertyp für alle Collections vorzuschreiben. Normale C++-Zeiger, Indizes und EntryIds 
werden deshalb zu logischen Zeigern verallgemeinert. Diese haben folgende Eigenschaften:
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• Ein Zeigertyp ist ein diskreter Datentyp.
• Ein Zeiger kann mit der Zahl Null verglichen werden.
• Es gibt gültige und ungültige Zeigerwerte.
• Der Wert Null ist per Definition ungültig.
• Ein gültiger Zeiger kann in eine Adresse umgerechnet werden.
• Die gültigen Zeigerwerte bilden einen Zeigerraum.
• Dieser wird global oder von einem Objekt verwaltet.

Zeiger können mit beliebigen diskreten Typen dargestellt werden. Sie werden in den 
fundamentalen und Anwendungs-Klassen eines Programms sehr häufig verwendet. Wir 
wissen bereits, daß dafür primitive Datentypen effizienter sind als Klassen. 
Performanceorientierte Zeigertypen sind also void *, unsigned char, unsigned short, unsigned int 
und unsigned long.

2.3 Speicherverwaltung

Die Speicherverwaltung hat den Ruf einer betriebssystemnahen Hilfsarbeit. Bei der 
objektorientierten Umgestaltung der Softwareentwicklung wurde sie bisher außer acht 
gelassen. Die Situation ist mit einem großen Bürogebäude vergleichbar. Viele betrachten 
dort den Heizer als einen Hilfsarbeiter im Keller. Nun wird das Haus nach neuen Richtlinien 
umgestaltet. Rundherum werden neue, größere Fenster eingebaut. Dadurch gelangt mehr 
Licht in die Räume. Das Arbeiten wird angenehmer. Es wurde aber vergessen, die Heizung 
an die neuen Bedingungen anzupassen. Besonders bei klirrender Kälte geht durch die Fenster 
mehr Wärme verloren, und die Leute haben an der Umgestaltung keine Freude mehr.

Das Erzeugen und Löschen von C++-Objekten erfolgt mit den Operatoren new und delete. 
Diese sind keine Erneuerung der Speicherverwaltung, sondern nur eine elegante 
Anwendung. Dynamische Blöcke, zum Beispiel in einer Stringklasse, werden in C++ immer 
noch mit den Standardfunktionen malloc, realloc und free verwaltet. Unser Performancetest 
hat gezeigt, daß die Speicherverwaltung eine wichtige Grundlage des Programms ist. Je 
stärker wir ein Programm algorithmisch optimieren, desto höher werden unsere Ansprüche 
an die Speicherverwaltung (siehe Abbildung 1-2 im Abschnitt 1.1). Deshalb verleihen wir ihr 
nun ein objektorientiertes Gewand.

Ein Speicherverwaltungsobjekt nennen wir im folgenden kurz Store. Es fordert vom 
Betriebssystem oder einem anderen Store große Speicherblöcke und verwaltet kleinere. 
Seine Aufgabe besteht darin, die eigenen Blöcke effizienter zu verwalten als der Lieferant 
der Blöcke. Das gelingt durch neue Techniken oder durch Spezialisierung. Ist ein Store zum 
Beispiel auf Blöcke einer bestimmten Größe spezialisiert, kann er sie besser als eine 
dynamische Speicherverwaltung handhaben. Stores werden wie Collections an 
performancekritischen Stellen eingesetzt. Die Analyse von OHelp hat ergeben, daß dafür 
eine gemeinsame Basisklasse mit virtuellen Methoden ungeeignet ist. Von einer Storeklasse 
fordern wir deshalb nur, daß sie ein Interface wie im folgenden Beispiel besitzt.

class ct_AnyStore
  {
public:
  typedef unsigned char  t_Size;
  typedef unsigned short t_Pointer;

  unsigned long        MaxAlloc () const;
  unsigned             StoreInfoSize () const;
  t_Pointer            Alloc (t_Size o_size);
  t_Pointer            Realloc (t_Pointer o_ptr, t_Size o_size);
  void                 Free (t_Pointer o_ptr);
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  void *               AddrOf (t_Pointer o_ptr) const;
  t_Pointer            LogPtrOf (void * pv_adr) const;
  };

Der Datentyp t_Size wird für die Größe der Speicherblöcke benötigt. Ist er auf unsigned char 
definiert, kann ein Block maximal 255 Bytes umfassen. t_Pointer ist der logische Zeigertyp 
des Stores. Das Beispiel unsigned short bedeutet, daß er bis zu 65535 Blöcke verwalten 
kann. Die ersten beiden Methoden geben über wichtige Eigenschaften des Stores Auskunft. 
MaxAlloc liefert die maximale Größe eines Blocks, zum Beispiel 22 bei einem auf diese Größe 
spezialisierten Store. Mit StoreInfoSize können wir fragen, wieviel Bytes konstanter 
Verwaltungsspeicher (ohne Rundung) pro Block benötigt werden. Die nächsten drei 
Methoden gleichen den Standardfunktionen zur Speicherverwaltung. Mit Alloc wird ein Block 
angefordert. Ist die Größe gleich Null oder kann der Block nicht bereitgestellt werden, wird 
der Nullzeiger zurückgegeben. Die Methode Realloc ändert die Größe eines Blocks. Für beide 
Parameter ist der Wert Null zulässig. Mit Free können wir einen Speicherblock freigeben. 
Auch diese Methode muß den Wert Null als Parameter akzeptieren. AddrOf wandelt einen 
logischen Zeiger in eine Speicheradresse um. Zum logischen Nullzeiger erhalten wir die 
Adresse Null. LogPtrOf berechnet umgekehrt den logischen Zeiger, der zu einer Adresse 
gehört. Betrachten wir die Anwendung dieser Methoden anhand einfacher Beispiele.

ct_AnyStore co_store;          // Store
ct_AnyStore:: t_Pointer o_ptr; // Zugehöriger logischer Zeiger
void * pv;                     // C++-Zeiger, enthält eine Adresse
o_ptr = co_store. Alloc (10);  // 10 Bytes anfordern
pv = co_store. AddrOf (o_ptr); // Adresse des 10-Byte-Blocks ermitteln
o_ptr = co_store. Realloc (o_ptr, 20); // Block vergrößern
pv = co_store. AddrOf (o_ptr); // Neue Adresse ermitteln
co_store. Free (o_ptr);        // Speicher freigeben
pv = 0;                        // Adresse nicht mehr verwenden!

Nach jeder Änderung des logischen Zeigers wird die zugehörige Speicheradresse aktualisiert. 
Wird der Zeiger ungültig, darf die entsprechende Adresse nicht mehr verwendet werden. 
Eine Speicheradresse kann auch in anderen Fällen ungültig werden. Die Verwaltung der 
Blöcke in einem Store erfolgt mit Hilfe der logischen Zeiger. Speicheradressen werden nur 
für den unmittelbaren Zugriff bereitgestellt. Die Gültigkeitsdauer der Adresse ist von der 
Implementierung des Stores abhängig. Es kann sein, daß das Bereitstellen eines neuen 
Blocks alle anderen physisch im Speicher verschiebt. Damit ändern sich ihre Adressen. Die 
logischen Zeiger sind jedoch weiterhin gültig und können für den Zugriff genutzt werden.

2.3.1 Eine runde Sache

Ein großes Problem jeder dynamischen Speicherverwaltung ist die Fragmentierung. Je länger 
die Liste der freien Blöcke wird, desto langsamer wird die Verwaltung des Freispeichers, und 
desto mehr Speicher bleibt ungenutzt. Durch Rundung der Blockgröße kann der 
Fragmentierung entgegengewirkt werden. Beim Blick hinter die Kulissen des Compilers 
sahen wir, daß schon die Speicherverwaltung der Standardbibliothek auf die nächsthöhere 
8- oder16-Byte-Grenze rundet. Werden zum Beispiel 18 Bytes freigegeben und anschließend 
22 Bytes angefordert, kann der freigewordene Block genutzt werden. Auch das Verändern 
der Größe eines Blocks wird durch die Rundung beschleunigt. Verringert sich die Länge einer 
Zeichenkette von 34 auf 30 Bytes, wird eine 16-Byte-Grenze unterschritten. Ein kleinerer 
Block muß gesucht und der Inhalt dorthin kopiert werden. Verringert sich hingegen die 
Länge von 30 auf 26 Bytes, kann derselbe Block genutzt werden. Weder Suchen noch 
Kopieren sind notwendig.

In fundamentalen Klassen sind oft Rundungsmechanismen eingebaut. Eine Stringklasse kann 
nicht nur die Länge der Zeichenkette, sondern auch eine Minimalgröße enthalten. Der 
dynamische Speicherblock wird nie kleiner als die Minimalgröße, auch wenn die eigentliche 
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Zeichenkette kleiner wird. Dadurch wird die Speicherverwaltung von der Behandlung sehr 
kleiner Blöcke entlastet. Ist die Minimalgröße ein nichtstatisches Attribut der Stringklasse, 
kann sie für jede Instanz anders festgelegt werden. Dieser Komfort wird selten benötigt, 
kostet aber einigen Speicher. Ein Stringobjekt ist klein. Die Hinzunahme eines weiteren 
Attributs erhöht den relativen Speicherbedarf erheblich. Sinnvoller ist die Deklaration der 
Minimalgröße als ein statisches Attribut. Die Stringklasse könnte etwa so aussehen.

class ct_RoundedString
  {
  static unsigned      u_MinSize;
  unsigned             u_Length;
  char *               pc_Block;

  unsigned             RoundedSize ();
public:
  ....
  };

unsigned ct_RoundedString:: RoundedSize ()
  {
  if (u_Length + 1 < u_MinSize)
    return u_MinSize;
  else
    return u_Length + 1;
  }

Das statische Attribut u_MinSize gilt für alle Instanzen dieser Stringklasse. Die private 
Methode RoundedSize berechnet eine gerundete Größe. Sie verwendet die Länge, die 
Minimalgröße und eventuell andere Rundungsverfahren. Bisher wurde ein neuer Block durch 
die Anweisung realloc (pc_Block, u_Length + 1) angefordert. Nun schreiben wir realloc 
(pc_Block, RoundedSize ()).

Speicherblöcke variabler Länge werden nicht nur in Strings, sondern auch in Bitmaps, 
Arraycollections usw. verwendet. Wollten wir die dynamische Speicherverwaltung durch 
Rundung effektiv entlasten, müßten wir in vielen Klassen Rundungsmechanismen vorsehen. 
Die Rundung ist jedoch keine Eigenschaft der dargestellten Modelle. Mit einer Stringklasse 
wird eine Folge von Zeichen modelliert. Diese besitzt eine bestimmte Länge, aber keine 
gerundete Größe. Auch das Modell der Zeichenfolge benötigt keine Rundung. Sie ist nur zur 
Entlastung der Speicherverwaltung erforderlich und gehört somit in deren Arbeitsbereich.

Eine ähnliche Arbeitsteilung wird vom Model-View-Controller-Konzept vorgeschlagen. Es 
beschreibt die Architektur interaktiver Programme. Danach ist es zum Beispiel unzulässig, 
daß das Model eine Fehlermeldung auf dem Bildschirm anzeigt. Die Anzeige der Nachricht 
und die Auswertung der Benutzereingabe gehören in den Bereich Controller. Analog dazu 
sollten in Strings und Arrays keine Rundungsmechanismen enthalten sein. Diese Klassen 
benötigen Speicher zur Darstellung ihrer Informationen. Das effektive Verwalten des 
Speichers ist jedoch nicht ihre Aufgabe. Die Rundung der Größe dynamischer Blöcke steht 
auf derselben Ebene wie deren Anfordern und Freigeben. Es gehört in den Bereich der 
Speicherverwaltung. Ändern wir nach diesem Konzept die Stringklasse.

class ct_RoundedStore
  {
public:
  typedef unsigned int t_Size;
  typedef void *       t_Pointer;
private:
  t_Size               o_MinSize;
  t_Size               Round (t_Size o_size);
public:
  ....
  } co_RoundedStore;
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class ct_RoundedString
  {
  ct_RoundedStore:: t_Size    o_Length;
  ct_RoundedStore:: t_Pointer o_Block;
public:
  ....
  };

const char * ct_RoundedString:: GetStr ()
  {
  return (const char *) co_RoundedStore. AddrOf (o_Block);
  }

void ct_RoundedString:: Insert (unsigned u_pos, const char * pc_ins)
  {
  ....
  o_Block = co_RoundedStore. Realloc (o_Block, o_Length + 1);
  ....
  }

In diesem Beispiel wird die spezialisierte Storeklasse ct_RoundedStore deklariert. Sie enthält 
das Attribut o_MinSize. Die private Methode Round rundet eine gegebene Größe mit Hilfe der 
Minimalgröße und eventuell anderer Verfahren. Sie wird von den Methoden Alloc und Realloc 
aufgerufen. Die Klasse ct_RoundedStore kann als globale oder lokale Variable oder als Teil 
anderer Klassen verwendet werden. Das Objekt co_RoundedStore realisiert eine globale 
Verwaltung der Minimalgröße und der gerundeten Blöcke. Die Stringklasse ct_RoundedString 
zeigt eine Anwendung des Stores. Die Attribute o_Length und o_Block richten sich nach den 
Typen t_Size und t_Pointer der Storeklasse. Zum Verändern der Größe des Blocks wird die 
Methode ct_RoundedStore:: Realloc aufgerufen. Für dynamische Arrays kann dasselbe oder 
ein anderes globales Storeobjekt verwendet werden.

2.3.2 Rundungstechniken

Die Rundung spart auf der einen Seite Speicher, denn die Liste der freien Blöcke wird 
kleiner. Auf der anderen Seite kostet sie Speicher, denn die belegten Blöcke sind größer als 
nötig. Zum Beispiel bleiben bei der Rundung von 67 auf 80 Bytes die letzten 13 Bytes 
ungenutzt. Der Gesamtspeicherbedarf eines Programms ergibt sich aus der Summe der 
belegten und freien Blöcke. Ist er gleich oder geringfügig höher als bei der ungerundeten 
Speicherverwaltung, haben wir dennoch einen Performancegewinn erzielt. Die 
Rundungstechniken sorgen für eine kleinere Freiliste. Dadurch wird die Verwaltung des 
freien Speichers wesentlich beschleunigt. Abbildung 2-4 verdeutlicht diese Verhältnisse.

Ohne Rundung Mit Rundung

Gesamter Speicherbedarf Rechenzeit für Freispeicher

Ohne Rundung Mit Rundung

Belegt, genutzt Belegt, genutzt

Belegt, ungenutzt
Frei (ungenutzt)

Frei (ungenutzt)

Abb. 2-4:    Auswirkung der Rundung auf die Performance
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Welche Rundungstechnik für ein Anwendungsprogramm die beste ist, hängt von dessen 
Speicheranforderungen ab. Belegt es zunehmend neuen Speicher und gibt wenig Speicher 
frei, sollte keine Rundung eingesetzt werden. Die Freiliste ist klein und kann wenig optimiert 
werden. Die Rundung würde aber die belegten Blöcke vergrößern. Je mehr Speicher das 
Programm freigibt und neu anfordert, desto besser wirkt sich die Rundung auf die 
Performance aus. Eine grobere Rundung erhöht den Anteil des belegten, ungenutzten 
Speichers, verringert aber die Fragmentierung. Je stärker die Belastung der 
Speicherverwaltung ist, desto grober sollte die Rundungstechnik sein (siehe Abbildung 2-5 
und Rechenzeittest weiter unten).

Geringe Belastung Mittlere Belastung

Ohne Rundung

Performance der Speicherverwaltung

Feine Rundung Grobe Rundung

Starke Belastung

Abb. 2-5:    Rundungstechniken bei zunehmender Belastung

Ziel einer Rundungstechnik ist es, die Anzahl der Blockgrößen zu minimieren. Je weniger 
Blockgrößen es gibt, desto höher ist die Wahrscheinlichkeit, in der Freiliste ein passendes 
Element zu finden. Gibt es für eine Anforderung keinen freien Block, muß neuer Speicher 
verwendet werden. Ohne Rundung existieren zwischen ein und hundert Bytes genau hundert 
mögliche Blockgrößen. Werden 67 Bytes angefordert, ist die Wahrscheinlichkeit gering, daß 
die Freiliste einen Block dieser Größe enthält. Die Verwendung einer Schrittweite ist eine 
einfache Rundungstechnik. Werden die Blöcke zum Beispiel auf eine 16-Byte-Grenze 
gerundet, gibt es zwischen ein und 128 Bytes nur noch acht verschiedene Größen (16, 32, 
48, 64, 80, 96, 112 und 128 Bytes). Die Anforderung 67 wird auf 80 Bytes gerundet. Die 
Wahrscheinlichkeit, in der Freiliste einen 80iger Block zu finden, ist größer.

Wir haben die Festlegung einer Minimalgröße bereits als eine Rundungstechnik 
kennengelernt. Ergänzen wir die Schrittweite 16 um die Minimalgröße 50 Bytes, existieren 
zwischen ein und 128 Bytes nur noch die Größen 64, 80, 96, 112 und 128 Bytes. Damit 
wird die Speicherfragmentierung weiter eingeschränkt. Der Gesamtspeicherbedarf erhöht 
sich jedoch. Alle Anforderungen von ein bis 64 Bytes werden auf 64 Bytes gerundet. 
Besonders bei kleinen Blöcken ist der relative Anteil ungenutzten Speichers hoch. Eine 
Minimalgröße lohnt also nur, wenn die Anzahl der kleinen Blöcke gering ist.

Die Rundung auf eine 16-Byte-Grenze ist im Bereich von ein bis 128 Bytes sinnvoll. Bei 
größeren Blöcken wirkt sie der Fragmentierung kaum noch entgegen. Zum Beispiel nützt es 
wenig, einen Block von 375 auf 384 Bytes zu runden. Eine gute Rundungstechnik sollte sich 
der Größe der Blöcke anpassen. Wir benötigen eine relative Schrittweite. Zwischen 128 und 
256 Bytes kann die Schrittweite auf 32 erhöht werden, zwischen 256 und 512 Bytes auf 
64 usw. Die Berechnung der gerundeten Größe wird dadurch komplizierter. Zu einem 
gegebenen Wert (375) müssen wir die nächstkleinere Zweierpotenz ermitteln (256). Diese 
wird durch den Schritt-Teiler Vier dividiert, und wir erhalten die Schrittweite (64). Wir 
könnten uns auch nach Zehnerpotenzen richten. Die Berechnung von Zweierpotenzen ist 
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jedoch schneller, denn sie läßt sich auf einfache Shift-Operationen zurückführen. In 
Abbildung 2-6 sehen wir relative Schrittweiten bei verschieden großen Schritt-Teilern.

0 16 32 48 64 80 96 112 128 160 192 224 256

Minimalgröße = 16, Schritt-Teiler = 1, 2 und 4

ST = 4

ST = 2

ST = 1
0 16 32 64 128 256

0 16 32 48 64 96 128 192 256

Abb. 2-6:    Auswirkung des Schritt-Teilers auf die Rundung

Zur Vereinfachung der Berechnung fordern wir, daß sowohl Minimalgröße als auch Schritt-
Teiler Zweierpotenzen sind. Ein Schritt-Teiler, der größer als die Minimalgröße ist (zum 
Beispiel 32 und16), ergibt keinen Sinn. Er ist in unserem Rundungsverfahren nicht erlaubt. In 
Abbildung 2-6 haben wir für die Berechnung der Schrittweite einen sturen Algorithmus 
eingesetzt. Er berechnet beim Schritt-Teiler Vier zwischen 16, 32 und 64 die Schrittweiten 
Vier und Acht. Auch dieses Verhalten ergibt keinen Sinn. Wir ändern den Algorithmus, so 
daß die Schrittweite nicht kleiner als die Minimalgröße werden kann (siehe Abbildung 2-7).

0 16 32 48 64 80 96 112 128 160 192 224 256

Minimalgröße = 16, Schritt-Teiler = 1, 2 und 4 (Schrittweite >= Minimalgröße)

ST = 4

ST = 2

ST = 1
0 16 32 64 128 256

0 16 32 48 64 96 128 192 256

Abb. 2-7:    Verbesserts Rundungsverfahren

Ein größerer Schritt-Teiler (8, 16 usw.) verkleinert die Schrittweite und erhöht die Anzahl 
möglicher Blockgrößen. Damit passen sich die Blöcke den tatsächlichen Anforderungen 
besser an, die Fragmentierung nimmt aber wieder zu. Beim kleinstmöglichen Schritt-Teiler 
Eins ergibt sich hingegen die binäre Rundung. Dabei werden alle Anforderungen auf die 
nächstgrößere Zweierpotenz gerundet. Der Anteil des pro Block ungenutzten Speichers ist 
größer als bei anderen Rundungsverfahren. Die binäre Rundung wirkt aber der 
Fragmentierung am stärksten entgegen. Sie ist besonders für Programme mit vielen 
Anforderungen und Freigaben geeignet.

An einem rechen- und speicherintensiven Programm wurde der folgende Test durchgeführt: 
Es wurde einmal ohne und einmal mit binärer Rundung gestartet. Am Programm selbst 
wurde nichts geändert. Es wurde nur die Speicherverwaltung der C-Standardbibliothek durch 
einen Store mit binärer Rundung ersetzt. Der Gesamtspeicherbedarf blieb etwa gleich. Beim 
zweiten Mal lief das Programm aber 2,5 mal schneller. Das bedeutet, daß beim ersten 
Programmstart etwa 70 Prozent der Rechenzeit auf die Standardfunktionen malloc, realloc 
und free entfielen (siehe Abbildung 2-8).
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Abb. 2-8:    Anteile der Gesamtrechenzeit

Neben den genannten Rundungstechniken sind weitere denkbar. Eine Kombination aus 
Minimalgröße, relativer Schrittweite und variablem Schritt-Teiler ist jedoch für die meisten 
Fälle ausreichend. Vor allem mit dem Schritt-Teiler können wir die Rundung an konkrete 
Erfordernisse anpassen. Wird die Speicherverwaltung wenig beansprucht, wählen wir einen 
großen Schritt-Teiler (z.B. 16). Bei starker Belastung verwenden wir mit dem Schritt-Teiler 
Eins die binäre Rundung. In der Praxis müssen wir beachten, daß jede Rundungstechnik 
gleichmäßig verteilte Speicheranforderungen voraussetzt. Eine konkrete Anwendung ist 
darauf zu prüfen, ob sie viele ungünstige Blöcke anfordert. Zum Beispiel sind bei der 
Schrittweite 16 die Werte 17, 33, 49 usw. ungünstig.

Jede dynamische Speicherverwaltung beansprucht pro Block einige Bytes 
Verwaltungsspeicher. Wir können ihn von einem Storeobjekt mit der Methode StoreInfoSize 
abfragen. Bei der Berechnung der gerundeten Größe muß er berücksichtigt werden. Erst 
dann wirkt die Rundung effektiv der Fragmentierung entgegen. Im folgenden Rechenbeispiel 
beträgt die Schrittweite 16 und die StoreInfoSize vier Bytes. 20 Bytes sollen freigegeben und 
danach zweimal zehn Bytes angefordert werden. Ohne Berücksichtigung der StoreInfoSize 
werden 20 Bytes auf 32 gerundet. Die interne Größe des Blocks beträgt 36 Bytes. Zehn 
Bytes werden auf 16 gerundet. Benötigt werden also zwei Blöcke der internen Größe 20, 
insgesamt 40 Bytes. Dafür reicht der freigegebene Speicher von 36 Bytes nicht aus, und 
neuer Speicher muß verwendet werden. Berücksichtigen wir die StoreInfoSize, werden 20 
Bytes auf 28 gerundet. De facto werden 32 Bytes freigegeben. Zehn Bytes werden nun auf 
zwölf gerundet und zwei neue Blöcke der internen Größe 16 benötigt. Dafür kann der 
freigewordene Block genutzt werden (siehe Abbildung 2-9).

Rundung ohne StoreInfoSize

0 8 16 24 32 40

Rundung mit StoreInfoSize

0 8 16 24 32 40

Intern 36

Intern 20 Intern 20

Intern 32

Intern 16 Intern 16
124 4

44

4 4 12

28

16 16

32 1 x 32

2 x 16

BytesBytes

Abb. 2-9:    Rundung und StoreInfoSize

2.3.3 Feste Speicherverwaltung

Eine dynamische Speicherverwaltung verursacht pro Block einen doppelten Overhead. Die 
angeforderte Größe wird gerundet, und einige Bytes Verwaltungsspeicher werden 
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hinzugefügt. Bei Anforderung vieler Blöcke derselben Größe ist eine feste 
Speicherverwaltung günstiger. Sie ist auf Blöcke einer bestimmten Größe spezialisiert. Im 
einfachsten Fall werden sie direkt hintereinander in einem größeren, dynamischen Block 
untergebracht. Betrachten wir auch dazu ein Rechenbeispiel. Die Blockgröße betrage zehn 
Bytes. Die dynamische Speicherverwaltung benötigt dafür 16 Bytes, für fünf Blöcke 
insgesamt 80 Bytes. Werden die fünf mal zehn Bytes in einem einzelnen Block 
hintereinander gespeichert, entsteht ein Block der internen Größe 64 Bytes, also 16 Bytes 
weniger (siehe Abbildung 2-10).

0 8 16 24 32 40

Intern 64

Intern 16 Intern 16
124 4

4

12

10

5 x 10 einzeln gerundet

5 x 10 im Block gerundet

48 56 64 72 80

Intern 16
4 12

Intern 16
4 12

Intern 16
4 12

10 10 10 10 10 frei

Bytes

Abb. 2-10:    Dynamische und feste Speicherverwaltung

Im Durchschnitt ist die feste Speicherverwaltung effektiver als die dynamische. Es gibt 
jedoch auch Grenzfälle. Beträgt zum Beispiel die Blockgröße zwölf Bytes, entsteht bei der 
dynamischen Verwaltung kein Rundungs-Overhead. Für fünf Blöcke belegt sie 80 Bytes, die 
feste Verwaltung 64 Bytes. Kommt ein Block hinzu, benötigt die dynamische 96 Bytes. Die 
feste belegt nun in einem Block 72 Bytes. Bei binärer Rundung wird er intern auf 128 Bytes 
gerundet. Für acht Blöcke benötigen beide denselben Speicher (128 Bytes). Ab neun 
Blöcken ist die feste Speicherverwaltung wieder günstiger. Für einen Block der Größe 14 
Bytes benötigt die dynamische Verwaltung intern 32 Bytes. Der Overhead beträgt pro Block 
18 Bytes. Bei dieser Blockgröße ist die feste Verwaltung deutlich sparsamer (siehe 
Abbildung 2-11), ebenso bei sehr kleinen Blöcken von vier oder acht Bytes. Dynamische 
Speicherverwaltungen besitzen meist eine Minimalgröße von 16 Bytes und sind auf kleinere 
Blöcke nicht eingerichtet.

4 8 12 16 20

128

256

192

64

Speicherbedarf

Blöcke
Anzahl

4 8 12 16 20

128

256

192

64

Blockgröße 12 Bytes Blockgröße 14 Bytes

Dynamische Speicherverwaltung

Feste Speicherverwaltung

Speicherbedarf

Blöcke
Anzahl

Abb. 2-11:    Speicherbedarf bei 12- und 14-Byte-Blöcken
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Eine Speicherverwaltung darf ihre Blöcke physisch verschieben. Dabei ändern sich deren 
Adressen. Die logischen Zeiger müssen jedoch ihre Gültigkeit behalten. Die einfachste 
Zuordnung logischer Zeiger zu den Blöcken einer festen Speicherverwaltung ist die 
Indizierung. Die fortlaufende Nummer innerhalb des umfassenden Blocks ist zugleich der 
logische Zeiger. Die Zählung muß mit der Nummer Eins beginnen, denn der Zeigerwert Null 
ist per Definition ungültig. Die Verwaltung dieser Zeiger erfordert keinen Zusatzaufwand. Die 
Blöcke dürfen aber nicht einzeln verschoben werden. Dadurch würde sich ihr Index ändern. 
Auch bei einer festen Speicherverwaltung können beliebige Blöcke freigegeben werden. 
Befindet sich der freizugebende Block am Ende des umfassenden Blocks, kann dieser 
verkleinert werden. Für andere Blöcke wird eine Freiliste angelegt, denn die nachfolgenden 
Blöcke müssen ihren Index behalten (siehe Abbildung 2-12).

 1  2  3  4  5  6  7  8
Summe 8

Summe 7

Freigeben

Summe 8

Summe 8

Freigeben

 1  2  3  4  5  6  7

 1  2  3  4  5  6  7  8

 1  2  3  4  5  6 frei  8

Abb. 2-12:    Freigabe bei fester Speicherverwaltung

Die freien Blöcke haben alle dieselbe Größe. Deshalb ist die Behandlung der Freiliste nicht 
schwer. Ein freier Block benötigt keine Größenangabe, sondern nur einen Verweis auf das 
nächste Element der Freiliste. Es entstehen jedoch einige Nachteile im Vergleich zur 
dynamischen Verwaltung. Für eine neue Anforderung sollte der freie Block mit dem kleinsten 
Index verwendet werden. Dadurch erhöht sich die Wahrscheinlichkeit, daß am Ende des 
umfassenden Blocks etwas frei wird und dieser verkleinert werden kann. Die Freiliste muß 
also sortiert sein. Bei einer dynamischen Speicherverwaltung werden benachbarte Freiblöcke 
zusammengefaßt und können für größere Anforderungen genutzt werden. Die freien Blöcke 
einer festen Verwaltung stehen nur für Anforderungen derselben Größe zur Verfügung. 
Abbildung 2-13 zeigt ein Beispiel für eine sortierte Freiliste.

 1 frei frei  4  5  6 frei frei frei frei frei frei 13 frei 15 16
Summe 16

Abb. 2-13:    Freiliste im umfassenden Block

Der  umfassende  Block  kann  nur  verkleinert  werden,  wenn  der  physisch  letzte  Block 
freigegeben wird. Treten freie Blöcke in der Mitte auf, bleibt der Speicher ungenutzt. Je 
mehr Blöcke freigegeben werden, desto größer wird dieses Problem. Eine Lösung dafür ist 
die Aufteilung des Festspeichers auf mehrere Blöcke. Diese können mit einer Arraycollection 
verwaltet werden. Pro Teilblock entsteht der Overhead eines zusätzlichen Zeigers. Sind die 
Teilblöcke größer als hundert Bytes, fällt er kaum noch ins Gewicht. Die Verwaltung der 
Freiliste wird jedoch wesentlich effizienter. Praktische Tests haben ergeben, daß 250 bis 
1000 Elemente pro umfassendem Block optimal sind. Treten mehr auf, sollte er in Teilblöcke 
zerlegt werden (siehe Abbildung 2-14).
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 1 frei frei  4

 5  6

13 frei 15 16

Summe 4

Summe 4

Summe 2

Zeiger

Zeiger

NULL

Zeiger

Abb. 2-14:    Aufteilung auf mehrere Blöcke

2.4 Objektverwaltung

In der objektorientierten Sprechweise ist ein Programm eine Sammlung von Objekten. Mit 
einem Computer können wir Objekte speichern und deren Methoden aufrufen. Dabei 
entstehen neue Objekte, und alte werden gelöscht. Einige Objekte sind bereits im statischen 
Modell eines C++-Programms enthalten. Dazu zählen Variable und temporäre Objekte. Die 
Bereitstellung von Speicher und die Verwaltung ihrer Adressen übernimmt der Compiler. 
Globalen Variablen und statischen Attributen der Klassen werden beim Programmstart feste 
Speicherbereiche zugewiesen. Lokale Variable und temporäre Objekte legt der Compiler auf 
dem Stack ab. Um dynamisch erzeugte Objekte müssen wir uns selbst kümmern. Die 
Speicherverwaltung stellt den erforderlichen Speicher zur Verfügung. Für das Sammeln und 
Ordnen ist die Objektverwaltung zuständig.

Ihre theoretische Grundlage ist die Mengenlehre. Nach der Art der Elemente unterscheiden 
wir homogene und polymorphe Mengen. Eine homogene Menge enthält nur gleichartige 
Objekte, in einer polymorphen können Objekte verschiedener Typen zusammengefaßt 
werden. Sind die Elemente einer Menge einzeln bekannt, sprechen wir von einer statischen 
Menge. Sie kann im statischen Modell eines C++-Programms mit einem Datentyp 
beschrieben werden. Ein C++-Array ist zum Beipiel eine statische homogene Menge. 
Anzahl und Typ der Elemente sind bekannt. Sie werden mit einem Index identifiziert. 
Statische polymorphe Mengen können mit Strukturen (struct) und Klassen (class) dargestellt 
werden. Darin besitzt jedes Element (Attribut) einen eindeutigen Namen.

Das Gegenteil einer statischen ist eine dynamische Menge. Anzahl und Typ ihrer Elemente 
ergeben sich erst zur Laufzeit des Programms. Die Beschreibung dynamischer Mengen ist 
kein Bestandteil der Sprache C++. Da sie jedoch häufig verwendet werden, existieren 
zahlreiche Implementierungen in Klassenbibliotheken. In den fundamentalen Klassen unseres 
Beispielprogramms OHelp haben wir zwei Arten dynamischer Mengen kennengelernt, die 
Collections ct_Array und ct_DList. Damit können wir polymorphe Mengen modellieren. Der 
Performancetest hat gezeigt, daß dieses Collection-Konzept nicht ausreicht. In einem 
Programm treten auch viele dynamische homogene Mengen auf. Zur Unterscheidung von 
den Collections nennen wir sie im folgenden Container (siehe Tabelle 2-1).

Homogene Menge Polymorphe Menge

Statische Menge C++-Array Struktur und Klasse

Dynamische Menge Container Collection
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Tab. 2-1:    Modellierung von Mengen in C++

Ein Container ist auf Objekte eines bestimmten Typs spezialisiert. Wir können ihn als Low-
Level-Collection bezeichnen, denn er ist nicht so universell wie eine Collection einsetzbar. 
Diese bietet mehr Programmierkomfort. In den Bereich der Objektverwaltung gehören auch 
Datenbanken. Sie besitzen einen noch größeren Funktionsumfang. Datenbanken dienen der 
persistenten Verwaltung von Objekten in einem Netzwerk. Eine Behandlung dieses Themas 
geht aber weit über das Ziel des Buchs hinaus. Wir konzentrieren uns auf Dinge, die sich mit 
den sprachlichen Mitteln von C++ darstellen lassen. Dazu gehören Container und 
Collections. Sie bilden den Kern der Verwaltung dynamischer Objekte und haben einen 
großen Einfluß auf die Performance. Abbildung 2-15 zeigt den Aufbau der Objektverwaltung 
und ihre Position innerhalb der Verwaltungshierarchie eines Programms.

Betriebssystem

Speicherverwaltung

Anwendungsprogramm

Container

Collections

Datenbanken

Objektverwaltung

Abb. 2-15:    Verwaltungshierarchie eines Programms

2.4.1 Container

Container sind für den Einsatz an performancekritischen Stellen gedacht. Bei allen Fragen 
des Designs und der Implementierung versuchen wir, eine Lösung mit bestmöglicher 
Performance zu finden. Mengen, die nur einen geringen Einfluß auf die Performance 
ausüben, können wir mit den komfortableren Collections darstellen. Die Analyse von OHelp 
ergab bei Collections die folgenden Performancemängel:

• Virtuelle Methoden verlangsamen das Iterieren und den Zugriff.
• Die verwalteten Objekte müssen von einer abstrakten Basisklasse erben.
• Homogene Collections belasten die Speicherverwaltung unnötig.

Das erste Problem beheben wir, indem wir für Container keine abstrakte Basisklasse 
deklarieren. Dadurch entfallen virtuelle Methoden, die in abgeleiteten Klassen (konkreten 
Containern) redefiniert werden müssen. Wir fordern jedoch, daß alle Container ein 
einheitliches Interface besitzen. Damit vereinfacht sich ihre Handhabung. Im Abschnitt 1.2.2 
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"Überblick ist Alles" haben wir festgestellt, daß viele Klassen mit demselben Interface 
genauso einfach wie eine einzelne zu bedienen sind. Ein breites Spektrum solcher Klassen 
bietet hohe Flexibilität. Während der Implementierung kann ein Container durch einen 
anderen ersetzt werden, ohne daß seine Verwendungen davon betroffen sind.

Das zweite Problem lösen wir mit den sprachlichen Mitteln von C++. Ein Container ist eine 
Menge gleichartiger Objekte. Wir fordern nicht, daß sie von einer bestimmten Basisklasse 
erben. Der Container soll sich an seine Objekte anpassen. Eine normale Klasse besitzt diese 
Fähigkeit nicht. In der Sprache C++ können wir jedoch parametrisierte Datentypen mit 
Hilfe von Templates darstellen. Einen neuen Container entwerfen wir also in Form eines 
Klassentemplates. Der Elementtyp ist ein Parameter des Containers.

Eine Collection enthält genau genommen keine Objekte. Sie werden außerhalb erzeugt und 
gelöscht. Die Collection verwaltet nur Zeiger darauf. Das ist die Ursache des dritten 
Problems. Die vielen einzelnen Objekte belasten die Speicherverwaltung. In einem Container 
ist es leicht möglich, den Speicher zu optimieren. Er ist eine homogene Menge und kennt die 
Größe seiner Objekte. Wir fordern also, daß ein Container den Speicher für seine Elemente 
selbst verwaltet. Er baut direkt auf der Speicherverwaltung auf und ist enger mit ihr 
verbunden als eine Collection (siehe Abbildung 2-16).

Objekt *

Objekt *

. . .

Objekt 1

Objekt n

. . .

Objekt 1

Objekt n

. . .

Container Collection

Abb. 2-16:    Container und Collection

Beim Entwurf der Schnittstelle für Container orientieren wir uns an den Collections von 
OHelp. Die Datentypen für die Länge und zur Identifizierung eines Eintrags werden nicht 
global definiert. Sie können sich von Container zu Container unterscheiden und sind als 
geschachtelte Typen in der Klasse enthalten. Den Begriff EntryId ersetzen wir durch 
"logischer Zeiger". Auch der Objekttyp ist nicht global vorgegeben. Er gelangt als dritte 
Typdefinition in die Containerklasse. Die Methodennamen übernehmen wir im wesentlichen 
von den Collections. Die Methoden zum Einfügen und Löschen nennen wir jedoch 
geringfügig anders, denn der Container verwaltet den Speicher seiner Objekte selbst (siehe 
Beispiel weiter unten). Add nennen wir nun AddObj, Delete DelObj usw. Sehen wir uns nun die 
vollständige Deklaration eines Containertemplates an.

template <class t_obj>
  class gct_AnyContainer
    {
  public:
    typedef unsigned short t_Length;
    typedef void *       t_Pointer;
    typedef t_obj        t_Object;

    t_Length             GetLen () const;
    t_Pointer            First () const;
    t_Pointer            Next (t_Pointer o_ptr) const;
    t_Object *           GetObj (t_Pointer o_ptr) const;
    t_Pointer            AddObj (const t_Object * po_obj = 0);
    t_Pointer            AddObjCond (const t_Object * po_obj);
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    t_Pointer            AddObjAfter (t_Pointer o_ptr,
                           const t_Object * po_obj = 0);
    t_Pointer            DelObj (t_Pointer o_ptr);
    };

Der größte Unterschied zwischen einem Container und einer Collection besteht in der 
Bereitstellung des Speichers für die Objekte. Sie befinden sich physisch im Container, und er 
ruft auch ihre Konstruktoren und Destruktoren auf. Ein neues Objekt wird im Container mit 
seinem Standard- oder Kopier-Konstruktor erzeugt. Der Parameter der Methode AddObj hat 
den Vorgabewert Null. Ein Aufruf der Methode ohne Parameter führt zur 
Standardinitialisierung des neuen Objekts. Ein vorhandenes Objekt kann nicht in den 
Container übernommen, sondern nur kopiert werden. Dazu muß der Methode AddObj ein 
Zeiger auf das zu kopierende Objekt übergeben werden. Das neue Objekt wird dann mit dem 
Kopier-Konstruktor erzeugt.

Die Methode DelObj verwaltet ebenfalls das referenzierte Objekt und den zugehörigen 
Speicher. Sie ruft zuerst den Destrukor des Objekts auf. Dann wird die Verbindung zum 
Container gelöscht und der belegte Speicher freigegeben. Das folgende Programmfragment 
enthält je ein Beispiel für das Erzeugen, Kopieren und Löschen eines Objekts in einem 
Container.

ct_String co_string = "Vorhandener Text";
ct_String * pco_string;
gct_AnyContainer <ct_String> co_container;
gct_AnyContainer <ct_String>:: t_Pointer o_ptr;

// Neues Objekt im Container erzeugen und initialisieren
o_ptr = co_container. AddObj ();
pco_string = co_container. GetObj (o_ptr);
(* pco_string) = "Neuer Text";

// Vorhandenes Objekt in den Container kopieren
o_ptr = co_container. AddObj (& co_string);

// Objekt aus dem Container nehmen und löschen
co_container. DelObj (o_ptr);

Auch die Methode AddObjAfter besitzt einen Parameter mit dem Vorgabewert Null. Sie dient 
dem positionierten Einfügen eines Objekts in den Container. Ein Aufruf ohne 
Objektparameter führt zum Erzeugen eines neuen Objekts mit dem Standard-Konstruktor. 
Der Methode AddObjCond muß stets ein Zeiger auf ein Objekt übergeben werden. Sie prüft mit 
dem Gleich-Operator, ob das angegebene Objekt schon im Container enthalten ist. Wird ein 
gleiches Objekt gefunden, liefert sie den logischen Zeiger darauf. Andernfalls wird ein neues 
Objekt mit dem Kopier-Konstruktor erzeugt und dessen logischer Zeiger zurückgegeben.

Eine Übergangsform zwischen Container und Collection ist ein Zeiger-Container, also ein 
Container, der Zeiger enthält. Dabei nutzen wir die Effizienz des Containers und die 
Allgemeinheit der Collection. Dieser Container besitzt keine virtuellen Methoden und kann 
Verweise auf Objekte abgeleiteter Klassen enthalten. Bei der Arbeit mit einem 
Zeigercontainer müssen wir darauf achten, daß die Methode AddObj einen Zeiger auf einen 
Zeiger erwartet und GetObj einen Zeiger auf einen Zeiger liefert. Die eigentlichen Objekte 
müssen wie bei einer Collection außerhalb erzeugt und gelöscht werden.

ct_String co_string = "Vorhandener Text";
ct_String * pco_string;
gct_AnyContainer <ct_String *> co_container;
gct_AnyContainer <ct_String *>:: t_Pointer o_ptr;

// Neues Objekt erzeugen und in den Container aufnehmen
pco_string = new ct_String ("Neuer Text");
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o_ptr = co_container. AddObj (& pco_string);

// Vorhandenes Objekt in den Container kopieren
pco_string = new ct_String (co_string);
o_ptr = co_container. AddObj (& pco_string);

// Objekt aus dem Container nehmen und löschen
pco_string = * co_container. GetObj (o_ptr);
co_container. DelObj (o_ptr);
delete pco_string;

Eine Containerklasse besitzt zahlreiche Ähnlichkeiten mit einer Storeklasse. Beide sind auf 
gute Performance ausgelegt und erben nicht von einer abstrakten Basisklasse mit virtuellen 
Methoden.  Den Datentypen  t_Size und  t_Pointer eines  Stores  entsprechen  im Container 
t_Length und  t_Pointer.  Ein  Container  verwaltet  keinen rohen Speicher,  sondern Objekte. 
Deshalb enthält  er als dritten Datentyp  t_Object.  Der Storemethode  AddrOf entspricht  die 
Containermethode  GetObj.  Während  AddrOf einen  untypisierten  Zeiger  auf  einen 
Speicherbereich  liefert  (void *),  erhalten  wir  von  GetObj einen  typisierten  Zeiger  auf  das 
referenzierte  Objekt.  Den  reinen  Speichermethoden  Alloc und  Free ähneln  die 
objektbezogenen Methoden AddObj und DelObj. Sie verwalten nicht nur den Speicher, sondern 
erzeugen bzw. löschen auch das darin befindliche Objekt.

Von einem Store fordern wir nicht, daß die Speicherbereiche ihre physische Adresse 
behalten. Das gilt auch für die Adressen der Objekte in einem Container. Erst dadurch wird 
es möglich, den Speicher effizient zu verwalten. Nach dem Einfügen oder Löschen eines 
Objekts kann der Container andere Objekte im Speicher verschieben. In einem 
Arraycontainer verlieren auch die logischen Zeiger ihre Gültigkeit. Ein Listencontainer stellt 
sicher, daß der logische Zeiger, den wir beim Einfügen erhalten, bis zum Löschen dasselbe 
Objekt identifiziert.

Bei der Arbeit mit Containern werden unterschiedliche Anforderungen an die Gültigkeit von 
Verweisen gestellt. Machmal müssen die logischen Zeiger ihre Gültigkeit behalten, 
manchmal die Adressen der Objekte. Ein Zeigercontainer stellt sicher, daß die referenzierten 
Objekte im Speicher an derselben Stelle bleiben. In einem Listencontainer bleiben auch die 
logischen Zeiger gültig. In Tabelle 2-2 sehen wir die Kombinationen, die sich daraus 
ergeben. Die Sternchen geben Auskunft über die Effizienz des Containertyps. Viele 
Sternchen stehen für eine gute Performance.

Logischer Zeiger ungültig Logischer Zeiger gültig

Adresse ungültig Objekt-Array (****) Objekt-Liste (***)

Adresse gültig Zeiger-Array (**) Zeiger-Liste (*)

Tab. 2-2:    Logische Zeiger und Adressen in Containern

2.4.2 Collections

Das Collection-Konzept übernehmen wir im wesentlichen aus dem ersten Teil des Buchs. Die 
Namensgebung passen wir jedoch an die Stores und Container an. Um Verwechslungen mit 
den lokalen Typen der Container zu vermeiden, nennen wir die beiden globalen Typen der 
Collections t_CollLen und t_CollPtr. Die Methoden zum Einfügen und Löschen von Objekten 
heißen nun AddPtr und DelPtr. Eine Collection verwaltet keine Objekte, sondern nur Zeiger 
darauf. Werden Container und Collections gleichzeitig eingesetzt, dürfen die Methoden 
AddObj und AddPtr nicht miteinander verwechselt werden. Der folgende Programmausschnitt 
zeigt die neue Deklaration der abstrakten Basisklasse ct_Collection.
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typedef unsigned long t_CollLen;
typedef unsigned long t_CollPtr;

class ct_Collection: public ct_Object
  {
public:
  virtual t_CollLen    GetLen () const = 0;
  virtual t_CollPtr    First () const = 0;
  virtual t_CollPtr    Next (t_CollPtr o_ptr) const = 0;
  virtual ct_Object *  GetObj (t_CollPtr o_ptr) const = 0;
  virtual t_CollPtr    AddPtr (ct_Object * pco_obj) = 0;
  virtual t_CollPtr    AddPtrCond (ct_Object * pco_obj) = 0;
  virtual t_CollPtr    AddPtrAfter (t_CollPtr o_ptr,
                         ct_Object * pco_obj) = 0;
  virtual t_CollPtr    DelPtr (t_CollPtr o_ptr) = 0;
  };

Die Methoden der Collections müssen nicht mehr einzeln programmiert werden. Für die 
Implementierung einer konkreten Collection nutzen wir einen entsprechenden 
Zeigercontainer, zum Beispiel einen Arraycontainer für eine Arraycollection. In der 
Anwendung verhalten sich Collections ähnlich wie Zeigercontainer. Die referenzierten 
Objekte müssen außerhalb erzeugt und gelöscht werden. Das folgende Programmfragment 
enthält je ein Beispiel für das Erzeugen, Kopieren und Löschen eines Objekts in einer 
Collection.

ct_String co_string = "Vorhandener Text";
ct_String * pco_string;
ct_Collection * pco_collection = ....;
t_CollPtr o_ptr;

// Neues Objekt erzeugen und in die Collection aufnehmen
pco_string = new ct_String ("Neuer Text");
o_ptr = pco_collection-> AddPtr (pco_string);

// Vorhandenes Objekt in die Collection kopieren
pco_string = new ct_String (co_string);
o_ptr = pco_collection-> AddPtr (pco_string);

// Objekt aus der Collection nehmen und löschen
pco_string = pco_collection-> GetObj (o_ptr);
pco_collection-> DelPtr (o_ptr);
delete pco_string;

2.5 Sicherheitstraining

2.5.1 Reservespeicher

Moderne Betriebssysteme verfügen über einen virtuellen Speicher. Der Arbeitsspeicher des 
Computers wird mit Hilfe von Auslagerungsdateien vergrößert. Damit steht einem 
Anwendungsprogramm ein Vielfaches des Hauptspeichers zur Verfügung. Aber auch der 
virtuelle Speicher geht einmal zu Ende. Unsere Ansprüche wachsen schneller als die 
Hardware. Das Multitasking ermöglicht es, mehrere Anwendungen hintereinander zu starten. 
Das Schließen vergessen wir meist und werden erst daran erinnert, wenn das 
Betriebssystem sagt: Out of memory.

Als Softwareentwickler müssen wir an jeder Stelle des Programms damit rechnen, daß kein 
freier Speicher mehr zur Verfügung steht. Unterlassen wir diese Prüfungen, kann unser 
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Programm unkontrolliert verlassen werden. Das ist meist mit ärgerlichem Datenverlust 
verbunden. Die traditionelle Lösung des Problems besteht in der Prüfung jeder einzelnen 
Speicheranforderung. Kann kein Speicher bereitgestellt werden, erhalten wir von den 
Standardfunktionen malloc und realloc einen Nullzeiger. Diese Konvention gilt auch für die 
Methoden Alloc und Realloc der Storeklassen.

Eine typische Situation für einen Speicherüberlauf ist das Laden einer Textdatei. Betrachten 
wir dazu ein Programmbeispiel. Die Klasse ct_TextFile enthält alle Definitionen zum Einlesen 
einer Datei. Andere Eigenschaften werden hier nicht berücksichtigt. Der Text wird intern als 
Folge von Zeilen dargestellt. Für eine Zeile verwenden wir die Klasse ct_String, für die Folge 
die Collection ct_DList. Die Methode Read liest den gesamten Text ein und setzt eine 
Statusvariable. Tritt dabei ein Fehler auf, wird der halb eingelesene Text mit der Methode 
ClearList gelöscht.

class ct_TextFile
  {
public:
  enum et_ErrorModes
    {
    ec_Ok,
    ec_OutOfMemory,
    ....
    };
private:
  ct_DList *         pco_TextLines;
  et_ErrorModes      eo_ErrorMode;

  void               ClearList ();
  et_ErrorModes      ReadLine (FILE * pco_file, t_CollPtr & ro_ptr);
public:
  void               Read ();
  ....
  };

void ct_TextFile:: Read ()
  {
  eo_ErrorMode = ec_Ok;
  t_CollPtr o_ptr = 0;
  FILE * pco_file;
  .... // Datei öffnen
  while (! feof (pco_file))
    {
    eo_ErrorMode = ReadLine (pco_file, o_ptr);
    if (eo_ErrorMode != ec_Ok)
      {
      ClearList ();
      break;
      }
    }
  .... // Datei schließen
  }

Das Einlesen einer einzelnen Zeile erfolgt mit der Methode ReadLine. Ihre Parameter sind ein 
Zeiger auf die geöffnete Datei und eine Referenz auf einen logischen Zeiger. Dieser enthält 
den Zeigerwert der zuletzt gelesenen Zeile und bekommt den neuen Zeigerwert zugewiesen. 
Eine neue Zeile benötigt drei Speicherblöcke, je einen für das Stringobjekt, die eigentliche 
Zeichenkette und das DList-Node. In allen drei Fällen kann der Speicher ausgehen. Wurde 
das Stringobjekt erzeugt, aber der Speicher für die Zeichenkette fehlt, muß das Objekt vor 
der return-Anweisung gelöscht werden. Dasselbe gilt, wenn die Liste kein neues Node 
bereitgestellt hat. Die Methode ClearList kann nur Stringobjekte löschen, die schon in der 
Liste enthalten sind.
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ct_TextFile:: et_ErrorModes
  ct_TextFile:: ReadLine (FILE * pco_file, t_CollPtr & ro_ptr)
  {
  static char ac_buffer [BUFFER_SIZE];
  .... // Neue Zeile aus Datei in ac_buffer lesen
  ct_String * pco_textLine = new ct_String (ac_buffer);
  if (pco_textLine == 0) // Kein Stringobjekt?
    return ec_OutOfMemory;
  if (pco_textLine-> GetStr () == 0) // Keine Zeichenkette?
    {
    delete pco_textLine;
    return ec_OutOfMemory;
    }
  ro_ptr = pco_TextLines-> AddPtrAfter (ro_ptr, pco_textLine);
  if (ro_ptr == 0) // Nicht in die Liste eingefügt?
    {
    delete pco_textLine;
    return ec_OutOfMemory;
    }
  }

Der Anweisungsteil der Methode ReadLine besteht zum größten Teil aus Fehlerabfragen und 
deren Behandlung. Für einen korrekten Test der Methode müßte die Speicherverwaltung so 
manipuliert werden, daß alle drei Fehlersituationen einmal auftreten. Implementierung, Test 
und Wartung solcher Programmteile sind sehr aufwendig. Deshalb wurde die 
Ausnahmebehandlung (Exception Handling) in den neuen C++-Standard aufgenommen. 
Damit soll das Reagieren auf Fehler vereinfacht und vereinheitlicht werden. Die Grundidee 
des Exception Handlings besteht darin, die Fehlerbehandlung vom übrigen Programmcode zu 
trennen. Eine Verbundanweisung ohne Fehlerbehandlung wird versuchsweise ausgeführt. 
Tritt dabei ein Fehler auf, wird er von einem separaten Programmteil behandelt. Betrachten 
wir eine Definition der Methode ReadLine mit Exception Handling.

ct_TextFile:: et_ErrorModes
  ct_TextFile:: ReadLine (FILE * pco_file, t_CollPtr & ro_ptr)
  {
  try
    {
    static char ac_buffer [BUFFER_SIZE];
    .... // Neue Zeile aus Datei in ac_buffer lesen
    ro_ptr = pco_TextLines-> AddPtrAfter (ro_ptr, new ct_String (ac_buffer));
    }
  catch (xalloc)
    {
    return ec_OutOfMemory;
    }
  return ec_Ok;
  }

Der Programmcode ist kürzer und übersichtlicher geworden. Hinter dem Schlüsselwort try 
steht der eigentliche Inhalt der Methode. Dieser ist so implementiert, als könnte kein Fehler 
auftreten. Daran können sich mehrere catch-Blöcke anschließen. Jeder ist für eine bestimmte 
Fehlerart zuständig. Wir betrachten in unserem Beispiel nur Speichermangelfehler. Diese 
erzeugen eine Ausnahme (Exception) des Typs xalloc. Wird sie von der Speicherverwaltung 
ausgelöst, bricht die Ausführung der aktuellen Anweisung ab, und das Programm wird im 
zugehörigen catch-Block fortgesetzt.

Tritt in einer Verbundanweisung eine Exception auf, werden wie beim normalen Verlassen 
die Destruktoren lokaler Objekte aufgerufen. Nach einer Exception in einem Konstruktor 
werden alle vollständig konstruierten Teilobjekte (Attribute und Basisklassen) zerstört. Diese 
Mechanismen vereinfachen die Aufräumarbeit, sind aber nicht auf dynamisch erzeugte 
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Objekte anwendbar. In der Methode ReadLine wird mit dem Operator new ein neues 
Stringobjekt erzeugt. Kann es wegen Speichermangels nicht in die Liste eingefügt werden, 
bleibt es nutzlos im Speicher liegen. Wir müssen die Fehlerbehandlung noch einmal 
überarbeiten.

ct_TextFile:: et_ErrorModes
  ct_TextFile:: ReadLine (FILE * pco_file, t_CollPtr & ro_ptr)
  {
  ct_String * pco_textLine = 0;
  try
    {
    static char ac_buffer [BUFFER_SIZE];
    .... // Neue Zeile aus Datei in ac_buffer lesen
    pco_textLine = new ct_String (ac_buffer);
    o_ptr = pco_TextLines-> AddPtrAfter (o_ptr, pco_textLine);
    }
  catch (xalloc)
    {
    delete pco_textLine;
    return ec_OutOfMemory;
    }
  return ec_Ok;
  }

Das Exception Handling ist komfortabel wie andere C++-Mechanismen, die wir schon 
behandelt haben. Wollen wir es einsetzen, müssen wir aufmerksam auf Seiteneffekte 
achten. Auch hier wartet so manche Falle im Unsichtbaren darauf, daß wir hineintappen. Für 
die Behandlung von Speichermangelfehlern bietet es keine befriedigende Lösung. Wir 
müssen immer noch viele Fälle einzeln behandeln. Dynamischer Speicher wird an zahlreichen 
Stellen des Programms benötigt. Ebenso zahlreich sind die möglichen Fehlersituationen. 
Wollen wir den Aufwand für deren Behandlung auf ein Minimum reduzieren, müssen wir uns 
nach einer anderen Technik umsehen.

Optimal wäre es, wenn wir vor einer speicherintensiven Operation prüfen könnten, ob noch 
genügend freier Speicher vorhanden ist. Die Größe des verfügbaren Speichers wird uns 
jedoch von den meisten Betriebssystemen nicht mitgeteilt, oder wir erhalten nur eine grobe 
Schätzung. Zur Verbesserung des Speichermanagements müssen wir uns selbst etwas 
einfallen lassen. Um herauszufinden, ob der freie Speicher zu Ende geht, fordern wir beim 
Programmstart einen großen Block Reservespeicher an. Kann eine Speicheranforderung nicht 
erfüllt werden, geben wir den Reservespeicher frei und versuchen es erneut. Das Programm 
kann solange weiterarbeiten, bis auch der Reservespeicher aufgebraucht ist.

Um die Handhabung des Reservespeichers zu vereinfachen, integrieren wir ihn in eine 
Storeklasse. Kann der Store keinen neuen Speicher bereitstellen, gibt er die Reserve frei. Als 
Anwender des Stores merken wir davon nichts. Die Methoden Alloc, Realloc und Free 
arbeiten normal weiter. Die neue Abfragemethode HasReserve liefert aber den Wert false. Das 
ist für uns das Warnsignal. Nun dürfen wir nicht mehr viel Speicher anfordern. Stattdessen 
sollten wir solange Speicher freigeben, bis der Reservespeicher wieder verfügbar ist. Nach 
jeder Freigabe versucht der Store, den Reservespeicher erneut anzufordern. Gelingt es, 
liefert HasReserve wieder den Wert true. Entwerfen wir eine Storeklasse mit Reservespeicher, 
sollten die neuen Attribute und Methoden static deklariert werden, damit nicht jede Instanz 
eine eigene Reserve anlegt.

class ct_SafeStore
  {
  static unsigned      u_ReserveLen;
  static void *        pv_Reserve;
public:
  // Allgemeines Store-Interface
  static void          SetReserveLen (unsigned u_resLen);
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  static unsigned      GetReserveLen ();
  static bool          HasReserve ();
  };

Mit dieser Technik muß nicht mehr jede einzelne Speicheranforderung geprüft werden. 
Stattdessen fragen wir punktuell, ob noch Reservespeicher vorhanden ist. Die Häufigkeit der 
Abfragen muß mit der Größe des Reservespeichers übereinstimmen. Zwischen zwei 
Abfragen darf nicht mehr Speicher angefordert werden, als wir in Reserve haben. 
Beschränken wir uns zum Beispiel beim Laden einer Textdatei auf eine Zeilenlänge von 64 K 
Bytes, ist ein Reservespeicher von 65 K Bytes ausreichend. Die Abfrage muß dann bei jeder 
einzelnen Zeile erfolgen. Betrachten wir die geänderte Definition der Methode ReadLine.

ct_TextFile:: et_ErrorModes
  ct_TextFile:: ReadLine (FILE * pco_file, t_CollPtr & ro_ptr)
  {
  static char ac_buffer [BUFFER_SIZE];
  .... // Neue Zeile aus Datei in ac_buffer lesen
  ro_ptr = pco_TextLines-> AddPtrAfter (ro_ptr, new ct_String (ac_buffer));
  if (GetGlobalStore ()-> HasReserve ())
    return ec_Ok;
  else
    return ec_OutOfMemory;
  }

Ohne Reservespeicher ist es schwer, bei Speichermangel die Konsistenz der Daten zu 
gewährleisten. Mit der Storemethode Realloc können wir einen dynamischen Block 
vergrößern. Der Inhalt des kleineren Blocks wird dabei in den größeren kopiert. Der 
übergebene Zeiger auf den alten Block verliert seine Gültigkeit. Der Rückgabewert der 
Methode ist der Zeiger auf den neuen Block. Reicht der Speicher zum Vergrößern nicht aus, 
liefert Realloc den Wert Null. Dann ist der alte Block nicht mehr verfügbar, und ein neuer 
existiert nicht. Die Daten, die sich im Block befanden, sind verlorengegangen.

Ein Store mit Reservespeicher stellt sicher, daß elementare Operationen zu Ende geführt 
werden können. Reicht der Speicher zum Vergrößern eines Blocks nicht aus, wird der 
Reservespeicher freigegeben. Dieser sollte groß genug sein. Dann kann der größere Block 
bereitgestellt und der alte Inhalt übernommen werden. Diese Schritte laufen innerhalb der 
Methode Realloc ab. Für den Anwender der Stores bleiben sie verborgen. Er erhält einen 
Zeiger auf den vergrößerten Block. Die nächste Abfrage der Methode HasReserve liefert aber 
den Wert false.

2.5.2 Referenzzähler und sichere Zeiger

Zeiger, die ins Leere zeigen (Dangling Pointers), sind ein Alptraum jedes 
Softwareentwicklers. Komplex strukturierte Daten enthalten zahlreiche Verweise von 
Objekten auf andere. Die Konsistenz dieser Daten zu gewährleisten, ist keine leichte 
Aufgabe. Besonders schwierig ist das Verwalten von Objekten, die viele Abhängigkeiten 
besitzen. Fallen alte weg oder kommen neue hinzu, verkürzt oder verlängert sich die 
Lebensdauer. Werden Objekte zu spät gelöscht, kann der Speicher überlaufen. Werden sie 
zu früh entfernt, entstehen Dangling Pointers.

Bei der Implementierung der Anwendungsklassen von OHelp haben wir Referenzzähler 
kennengelernt. Sie geben Auskunft über die Anzahl der Verweise auf ein Objekt. Existieren 
keine Verweise mehr, kann es gelöscht werden. Der Referenzzähler der Klasse ct_Topic 
enthält die Anzahl der Hyperlinks auf dieses Thema. Es kann erst gelöscht werden, wenn 
keine zugehörigen Hyperlinks mehr existieren. In diesem Beispiel sind die Abhängigkeiten 
einseitig. Ein Hyperlink zeigt auf ein Thema. Das Thema besitzt jedoch keinen Verweis zu 
den referenzierenden Hyperlinks.
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In der Praxis treten oft mehrseitige Abhängigkeiten auf. Auch dafür sind Referenzzähler 
geeignet. Sie gelten dann sogar als alleiniges Existenzkriterium des Objekts. Wird eine 
Referenz gelöscht, und der Zähler erreicht den Wert Null, zerstört sich das Objekt selbst. Der 
Destruktor entfernt Referenzen auf andere Objekte, die sich möglicherweise auch zerstören. 
Bilden die Referenzen Zyklen, besteht die Gefahr der Entstehung isolierter Inseln. Beim 
Löschen der letzten Referenz auf einen Zyklus verliert er die Verbindung zur Außenwelt. Die 
Objekte sind nicht mehr erreichbar. Sie können auch nicht gelöscht werden, denn ihre 
Referenzzähler sind ungleich Null. In Abbildung 2-17 sehen wir die Entstehung einer 
isolierten Insel. Die Zahlen in Klammern sind die Referenzzähler.

Objekt (2)

Objekt (1) Objekt (1)Objekt (1)

Objekt (1)Objekt (1)Verweis

Verweis

Abb. 2-17:    Insel durch zyklische Referenzzähler

Referenzzähler in Objekten sind oft eine ungenaue Modellbildung. In vielen Fällen sind sie 
Zusatzinformationen, die keine Modelleigenschaften widerspiegeln. Ähnlich der Rundung 
dynamischer Blöcke gehören sie in den Store, der die referenzierten Objekte verwaltet. Eine 
Speicherverwaltung mit Referenzzählern läßt sich leicht realisieren. Wir sagen dazu kurz 
Refstore. Er ordnet jedem Block einen Referenzzähler zu und besitzt keine eigene 
Blockverwaltung, sondern baut auf einem anderen Store auf. Dieser kann seine Blöcke 
dynamisch oder fest verwalten. Eine Refstore-Klasse (z. B. ct_RefStore) enthält neben dem 
allgemeinen Store-Interface die Methoden IncRef, DecRef und GetRef. Diese erwarten als 
Parameter einen gültigen logischen Zeiger und greifen damit auf den Referenzzähler des 
Blocks zu.

Wird von einem Refstore neuer Speicher gefordert, beschafft er ihn vom darunter liegenden 
Store und initialisiert den zugehörigen Referenzzähler. Unabhängig vom Objekt, das im Block 
untergebracht wird, kann der Referenzzähler erhöht und erniedrigt werden. Der Refstore 
stellt sicher, daß der logische Zeiger gültig bleibt, solange noch Verweise auf den 
Speicherblock existieren. Soll der Block freigegeben werden, und der Referenzzähler ist 
ungleich Null, wird nur ein Flag gesetzt. Dieses kann mit den Methoden IsAlloc und IsFree 
abgefragt werden. Ein Zugriff auf den Block ist danach nicht mehr sinnvoll, und die 
zugehörigen Verweise müssen entfernt werden. Erst wenn der Referenzzähler den Wert Null 
erreicht, wird der Speicher im anderen Store freigegeben, und der Zeiger verliert seine 
Gültigkeit (siehe Beispiel weiter unten).

Ein Referenzzähler wird mit der Klasse ct_RefCount dargestellt. Diese enthält zwei 
Informationen. Der eigentliche Referenzzähler ist eine nichtnegative ganze Zahl. Er kann mit 
den Methoden IncRef und DecRef geändert und mit GetRef abgefragt werden. Das zweite 
Attribut ist ein Wahrheitswert und benötigt nur ein Bit. Es gibt Auskunft darüber, ob der 
zugehörige Block im Refstore genutzt oder freigegeben ist. Mit den Methoden IsAlloc und 
IsFree kann es abgefragt werden. Die Methode IsNull liefert den Wahrheitswert true, wenn 
der Referenzzähler gleich Null und der Block frei ist. Das bedeutet, daß der Block im anderen 
Store freigegeben werden kann. Abbildung 2-18 zeigt das Interface der Klassen ct_RefCount 
und ct_RefStore.
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0,n  1

ct_RefCount
o_RefCount
b_Alloc

ct_RefCount
Init
IncRef
DecRef
GetRef
IsAlloc
SetAlloc
IsFree
SetFree
IsNull

ct_RefStore

o_Store

MaxAlloc
StoreInfoSize
Alloc
Realloc
Free
operator []
AddrOf
IncRef
DecRef
GetRef
IsAlloc
IsFree

Abb. 2-18:    Referenzzähler und Refstore

Für die Referenzzähler ist keine eigene Verwaltung nötig. Sie können am Beginn des Blocks, 
zu dem sie gehören, untergebracht werden. Der Block vergrößert sich dadurch. Beim Zugriff 
auf den nutzbaren Speicher fragt der Refstore den darunter liegenden Store nach der 
Adresse und addiert sizeof (ct_RefCount) Bytes. Der Zugriff auf den Referenzzähler erfolgt 
mit der Anfangsadresse des Blocks (siehe Abbildung 2-19). Das ct_RefCount-Objekt und die 
Adreßrechnung sind für den Anwender nicht sichtbar. Sie verbergen sich hinter dem 
Interface der Klasse ct_RefStore.

ct_RefCount Nutzbarer Speicher

IncRef (o_ptr)
DecRef (o_ptr)

Refstore:: AddrOf (o_ptr)

Store:: AddrOf (o_ptr)

IsAlloc (o_ptr)
IsFree (o_ptr)

GetRef (o_ptr)

Abb. 2-19:    Ein Block im Refstore

Das folgende Prinzipbeispiel zeigt die Anwendung eines Refstores. Am Anfang werden drei 
Objekte definiert, ein Refstore, ein logischer Zeiger und ein C++-Zeiger (Zeilen 3 bis 5). 
Dann werden vom Refstore 15 Bytes angefordert. Er erhöht die Größe um sizeof 
(ct_RefCount) Bytes und gibt die Anforderung an den darunter liegenden Store weiter. Der 
logische Zeiger des Blocks wird der Variablen o_ptr zugewiesen. Damit der logische Zeiger 
gültig bleibt, erhöhen wir seinen Referenzzähler (Zeile 7). Wir sehen, daß der Speicher 
verwendbar ist (Zeile 8), und können seine Adresse berechnen (Zeile 9). In Zeile 10 wird der 
Speicher im Refstore freigegeben. Der Referenzzähler ist ungleich Null. Deshalb wird nur das 
Flag b_Alloc auf false gesetzt. Der logische Zeiger ist noch gültig, aber auf den Speicher 
kann nicht mehr zugegriffen werden (Zeilen 11 und 12). Beim Verkleinern des 
Referenzzählers wird die Bedingung IsNull erfüllt. Der Refstore gibt nun den Speicher 
physisch frei (Zeile 13). Damit verliert der logische Zeiger seine Gültigkeit und darf nicht 
mehr verwendet werden (Zeile 14).
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 1   void TestRefstore ()
 2     {
 3     ct_RefStore co_refStore;
 4     ct_RefStore:: t_Pointer o_ptr;
 5     void * pv;
 6     o_ptr = co_refStore. Alloc (15);
 7     co_refStore. IncRef (o_ptr);
 8     ASSERT (co_refStore. IsAlloc (o_ptr));
 9     pv = co_refStore. AddrOf (o_ptr);
10     co_refStore. Free (o_ptr);
11     ASSERT (co_refStore. IsFree (o_ptr));
12     // pv = co_refStore. AddrOf (o_ptr);  Nicht mehr erlaubt!
13     co_refStore. DecRef (o_ptr);
14     o_ptr = 0;
15     }

Ein Referenzzähler muß stets paarig erhöht und erniedrigt werden. Vergessen wir einmal das 
Herunterzählen, bleibt er ständig größer als Null, und der zugehörige Speicher kann nicht 
freigegeben werden. Deshalb verpacken wir den logischen Zeiger in einem Klassenobjekt. 
Die Zugriffsmethode SetPtr und der Destruktor verändern den Referenzzähler, auf den 
gezeigt wird. Entsteht ein neuer Verweis, wird der zugehörige Referenzzähler erhöht. Beim 
Löschen eines Verweises wird er um eins erniedrigt. Vor dem Speicherzugriff fragen wir das 
Zeigerobjekt mit der Methode CanAccess, ob es gültig ist. Wir nennen es einen sicheren 
Zeiger, denn es sagt uns, wann es ins Leere zeigt.

Das folgende Programmfragment enthält die Deklaration einer sicheren Zeigerklasse und die 
Definition dreier wichtiger Methoden. In diesem Beispiel ist der Refstore nicht global 
bekannt. Deshalb benötigt der sichere Zeiger einen Verweis auf den zugehörigen Refstore. 
Die Zeigerklasse besitzt statt eines Standard-Konstruktors einen Konstruktor mit der Adresse 
des Refstore-Objekts. Bei einer sicheren Zeigerklasse dürfen wir nicht vergessen, einen 
Kopier-Konstruktor, Destruktor und Gleich-Operator zu definieren.

class ct_SafePtr
  {
  ct_RefStore *        pco_RefStore;
  ct_RefStore:: t_Pointer o_Ptr;
public:
                       ct_SafePtr (ct_RefStore * pco_refStore);
                       ct_SafePtr (const ct_SafePtr & co_init);
                       ~ct_SafePtr ();
  ct_SafePtr &         operator = (const ct_SafePtr & co_asgn);
  ct_RefStore:: t_Pointer GetPtr () const;
  void                 SetPtr (ct_RefStore:: t_Pointer o_newPtr);
  bool                 CanAccess () const;
  void *               GetAddr () const;
  };

void ct_SafePtr:: SetPtr (ct_RefStore:: t_Pointer o_newPtr)
  {
  if (o_Ptr != o_newPtr)
    {
    if (o_Ptr != 0)
      pco_RefStore-> DecRef (o_Ptr);
    o_Ptr = o_newPtr;
    if (o_Ptr != 0)
      pco_RefStore-> IncRef (o_Ptr);
    }
  }

bool ct_SafePtr:: CanAccess () const
  {
  return (o_Ptr != 0) && pco_RefStore-> IsAlloc (o_Ptr);
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  }

void * ct_SafePtr:: GetAddr () const
  {
  ASSERT (CanAccess ());
  return pco_RefStore-> AddrOf (o_Ptr);
  }

2.5.3 Wem gehört was?

Mit Refstores und sicheren Zeigern ist das Problem isolierter Inseln noch nicht gelöst. Aber 
wir verfügen nun über die technischen Mittel für eine Lösung. Der prinzipielle Fehler besteht 
darin, Referenzzähler als alleiniges Existenzkriterium für Objekte zu betrachten. Aus dem 
Sachgebiet, das wir modellieren, können meist andere Kriterien abgeleitet werden. Wir 
versuchen, jedem Objekt einen Eigentümer zuzuordnen. Dieser löscht das Objekt, wenn er 
es nicht mehr benötigt. Andere Objekte, die Verweise darauf besitzen, dürfen es nicht 
löschen.

Verbindungen mit sicheren Zeigern ermöglichen das Zerstören von Objekten durch ihren 
Eigentümer. Ein Objekt kann auch gelöscht werden, wenn noch Verweise darauf existieren. 
Wird beim Prüfen eines Verweises festgestellt, daß er ungültig ist, muß er entfernt werden. 
Mit dem Entfernen des letzten Verweises wird automatisch der Speicher des gelöschten 
Objekts freigegeben (siehe Abbildung 2-20).

Objekt (2) VerweisEigentümer

Speicher (1) VerweisEigentümer

VerweisEigentümer Frei (0)

Abb. 2-20:    Löschen eines Objekts durch den Eigentümer

Enthält ein Objekt abhängige Objekte, müssen die eigenen von den Objekten anderer 
Eigentümer unterschieden werden. Für das Löschen der eigenen Objekte ist das Objekt 
selbst zuständig. Wird ein Verweis zu einem anderen Objekt entfernt, darf nur der 
Referenzzähler erniedrigt werden. Spätestens im Destruktor müssen alle Verweise zu 
abhängigen Objekten entfernt werden (siehe Abbildung 2-21).
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Verweis

Objekt (1)

Abb. 2-21:    Entfernen der Verweise im Destruktor

In einem größeren Programm mit komplex strukturierten Daten kann möglicherweise nicht 
jedem Objekt ein Eigentümer zugeordnet werden. Wir versuchen, auch diesen Objekten ein 
Zuhause zu geben, und lassen sie nicht mit losen Verbindungen im Speicher herumirren, 
sondern übergeben sie einem globalen Eigentümer. Globale Objekte werden beim 
Programmstart automatisch erzeugt und am Programmende zerstört. Sie sind zusammen mit 
ihren abhängigen Objekten stets erreichbar und sorgen für einen ordnungsgemäßen 
Programmabschluß.

Objekte müssen nicht während ihrer gesamten Lebensdauer demselben Eigentümer gehören. 
Ein Eigentumswechsel ist keine Gefahr für die Konsistenz unserer Daten. Wir müssen jedoch 
darauf achten, jeden angefangenen Eigentumsprozeß korrekt zu Ende zu führen. Es ist 
üblich, für bestimmte Objekttypen Erzeuger- und Entsorgerobjekte zu verwenden. Zum 
Beispiel ist ein Store sowohl Erzeuger als auch Entsorger für rohe Speicherblöcke. Die 
Methode Alloc liefert einen Zeiger auf einen Block. Dieser geht in das Eigentum des 
Aufrufers der Methode über. Benötigt er den Speicher nicht mehr, gibt er ihn mit der 
Methode Free an den Store zurück.

Für abhängige Objekte, die schon im statischen Modell eines Programms bekannt sind, 
bietet die Programmiersprache C++ geeignete Darstellungsformen. Ein eigenes Objekt 
gelangt als Attribut in die Klasse. Andere Objekte werden mit Zeigern referenziert. Zeiger auf 
eigene Objekte sollten sparsam verwendet werden. Sie sind zum Beispiel nötig, wenn ein 
Objekt während des Programmlaufs seinen Eigentümer wechselt. Enthält ein Objekt eine 
Menge abhängiger Objekte, werden sie in einem Container oder einer Collection 
zusammengefaßt. Ein Container ist nicht nur ein Mittel der Programmoptimierung. Er enthält 
seine Objekte physisch und sorgt somit für saubere Eigentumsverhältnisse. Von einer 
Collection können wir nur durch Zusatzwissen ermitteln, ob sie Eigentümer der Objekte ist 
oder nur Verweise darauf enthält.

Zyklische Verweisketten sind keine Seltenheit. In unserem Beispielprogramm OHelp kann ein 
Thema einen Verweis auf ein anderes Thema enthalten, das wiederum auf das ursprüngliche 
verweist. Ein Thema kann programmtechnisch sogar auf sich selbst verweisen, auch wenn 
der Verweis inhaltlich keinen Sinn ergibt. Bei diesen Verweisen herrschen saubere 
Eigentumsverhältnisse. Das Thema ist Eigentümer seiner Hyperlinks. Ein Hyperlink ist jedoch 
kein Eigentümer des Themas, auf das es verweist.

Erlaubt das Design eines Programms eine zyklische Verweiskette, die nur aus Eigentümern 
besteht, können auch isolierte Inseln entstehen (siehe Abbildung 2-22). Dieser Designfehler 
sollte unbedingt korrigiert werden. Eine einfache Lösung bietet ein globaler Eigentümer. Die 
Objekte der Verweiskette gehen in seinen Besitz über. Wird der letzte Verweis auf den 
Zyklus entfernt, sind die Objekte immer noch über ihren Eigentümer erreichbar. Dieser 
entscheidet, wann die Objekte gelöscht werden.
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Eigentümer (1)Eigentümer (2)Verweis

Eigentümer (1)

??

Verweis (2)Verweis (3)Verweis

Verweis (2)

OK

Globaler Eigentümer

Abb. 2-22:    Korrektur eines Designfehlers

In Abbildung 2-23 sehen wir die Auflösung einer zyklischen Verweiskette mit sauberen 
Eigentumsverhältnissen. Der Eigentümer außerhalb der Kette kann zum Beispiel ein 
Hypertext sein. Im Zyklus befinden sich ein Thema und ein Hyperlink. Der auswärtige 
Eigentümer ruft den Destruktor des inneren Objekts auf. Dieses zerstört das Verweisobjekt, 
das ihm gehört. Der Destruktor des Verweisobjekts erniedrigt den Referenzzähler des 
Speicherblocks, auf den es verwies. Am Ende erreichen beide Referenzzähler den Wert Null, 
und der belegte Speicher wird freigegeben. Die folgende Regel faßt die wichtigsten 
Erkenntnisse dieses Abschnitts zusammen.

Refstores und sichere Zeiger ermöglichen das Zerstören von Objekten durch ihren 
Eigentümer. Attribute und Container sichern saubere Eigentumsverhältnisse. Damit wird die 
Entstehung isolierter Inseln verhindert.
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Eigentümer Speicher (1)

Eigentümer Speicher (1)

Verweis (1)

Frei (0)

Eigentümer Frei (0) Frei (0)

Abb. 2-23:    Auflösung einer Insel

2.6 Einige Programmiertechniken

2.6.1 Operatoren new und delete

Bei der Implementierung eines Containers stehen wir vor einem technischen Problem: C++-
Objekte müssen in selbst verwaltetem Speicher erzeugt und gelöscht werden. Ein Container 
enthält seine Objekte nicht nur logisch, sondern auch physisch. Er verwaltet ihren Speicher 
und ruft ihre Konstruktoren und Destruktoren auf. Wird ein neues Objekt in einen Container 
eingefügt, stellt er den Speicherplatz zur Verfügung und initialisiert es mit dem Standard- 
oder Kopierkonstruktor. Beim Entfernen eines Objekts wird zuerst der Destruktor aufgerufen 
und dann der belegte Speicher freigegeben.

In der Programmiersprache C++ existiert nur eine Möglichkeit, ein Objekt in einem selbst 
verwalteten Speicherblock zu initialisieren, das Definieren eines eigenen Operators new. Ein 
direkter Konstruktoraufruf ist zum Erzeugen eines temporären Objekts erlaubt. Mit einem 
Zeiger, der auf einen rohen Speicherbereich verweist, kann jedoch kein Konstruktor 
aufgerufen werden.

class ct_AnyClass
  { 
public:
            ct_AnyClass ();
  void      AnyMethod ();
  };

// Temp. Objekt erzeugen, AnyMethod aufrufen, temp. Objekt zerstören
ct_AnyClass (). AnyMethod ();

// Speicher bereitstellen und Konstruktor aufrufen
void * pv = malloc (sizeof (ct_AnyClass));
ct_AnyClass * pco = ((ct_AnyClass *) pv)-> ct_AnyClass (); // Kein C++ !!
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Die Operatoren new und delete weichen in Syntax und Semantik von anderen Operatoren ab. 
Deshalb betrachten wir zunächst einen normalen Operator. Er ist eine nichtstatische 
Methode einer Klasse oder eine globale Funktion. Im folgenden Programmfragment sehen 
wir eine Klasse mit einem Kleiner-Operator. Er kann auf zwei Arten aufgerufen werden, in 
der Operatorschreibweise oder wie eine normale Methode der Klasse. Beide Aufrufsformen 
sind semantisch identisch. Der Compiler fügt beim Aufruf eines Operators keine 
unsichtbaren Anweisungen hinzu.

class ct_AnyClass
  {
public:
  bool      operator < (const ct_AnyClass & co_compare) const;
  } co_Obj1, co_Obj2;

// Aufruf in Operatorschreibweise
if (co_Obj1 < co_Obj2) ....

// Aufruf in Methodenschreibweise
if (co_Obj1. operator < (co_Obj2)) ....

Dieselbe Semantik erzielen wir mit einem globalen Kleiner-Operator. Er kann auf private 
Attribute der Klasse nur zugreifen, wenn die Klasse eine entsprechende friend-Deklaration 
enthält. Der Aufruf in Operatorschreibweise gleicht syntaktisch dem vorigen Beispiel. Der 
direkte Aufruf erfolgt mit seinem Namen und den aktuellen Parametern. Beide Aufrufe 
stimmen semantisch mit dem Aufruf einer globalen Funktion überein. Auch hier fügt der 
Compiler keine unsichtbaren Anweisungen hinzu.

class ct_AnyClass
  {
  friend bool operator < (const ct_AnyClass &, const ct_AnyClass &);
  } co_Obj1, co_Obj2;

bool operator < (const ct_AnyClass & co1, const ct_AnyClass & co2);

// Aufruf in Operatorschreibweise
if (co_Obj1 < co_Obj2) ....

// Aufruf in Funktionsschreibweise
if (operator < (co_Obj1, co_Obj2)) ....

Wir können die Operatoren new und delete global oder in einer Klasse definieren. Global 
dürfen sie innerhalb eines Programms nur einmal definiert werden. Wollen wir einer Klasse 
spezielle Operatoren zuordnen, müssen wir sie als statische Methoden in die 
Klassendeklaration aufnehmen. Sie können keine normalen Methoden sein, denn sie werden 
auf rohe Speicherbereiche angewendet, die kein gültiges Objekt enthalten. new und delete 
werden vom Compiler auch als statisch angesehen, wenn das Schlüsselwort static fehlt. 
Beide Operatoren haben feste Vorgaben für Parameter und Rückgabewerte (siehe folgenden 
Programmausschnitt). Ein Operator new erwartet die Größe des bereitzustellenden Speichers 
und liefert die Adresse auf den Speicherblock oder Null, wenn kein Speicher zur Verfügung 
steht. Ein Operator delete erwartet die Adresse des gelöschten Objekts.

#include <stddef.h> // Für globalen Typ size_t

class ct_AnyClass
  {
public:
  static void *  operator new (size_t u_size);
  static void    operator delete (void * pv);
  };
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Ein Aufruf von new und delete in Methodenschreibweise gleicht semantisch dem Aufruf 
anderer statischer Methoden. Der Compiler fügt keine unsichtbaren Anweisungen hinzu. 
Diese Aufrufe führen nur zum Bereitstellen bzw. Freigeben von Speicher und nicht zum 
Aufruf von Konstruktoren oder Destruktoren.

void * pv = ct_AnyClass:: operator new (15);
ct_AnyClass:: operator delete (pv);

Verwenden wir new und delete in Operatorschreibweise, passiert im Unsichtbaren mehr, als 
auf dem Papier steht. Der Ausdruck new ct_AnyClass entspricht einem Aufruf der unten 
stehenden Methode CreateNewObject. Zuerst wird die Methode ct_AnyClass:: operator new mit 
der Größe der Klasse aufgerufen. Konnte der Speicher bereitgestellt werden, wird darin das 
Objekt initialisiert. Der untypisierte Zeiger wird in einen typisierten umgewandelt und als 
Ergebnis zurückgegeben.

ct_AnyClass * ct_AnyClass:: CreateNewObject ()
  {
  ct_AnyClass * pco =
    (ct_AnyClass *) ct_AnyClass:: operator new (sizeof (ct_AnyClass));
  if (pco != 0)
    pco-> ct_AnyClass (); // Kein C++ !!
  return pco;
  }

Die Verwendung von delete in Operatorschreibweise, zum Beispiel delete pco_anyObject, 
entspricht einem Aufruf der Methode DestroyObject im folgenden Pseudo-C++. Zuerst wird 
das Objekt mit seinem Destruktor zersört. Dann gibt die Methode operator delete den 
Speicher frei. Der Compiler stellt sicher, daß Destruktor und delete-Operator 
zusammenpassen. Besitzt das referenzierte Objekt einen virtuellen Destruktor, werden 
Destruktor und delete-Operator der tatsächlichen Klasse ermittelt und aufgerufen. Die 
Besonderheit besteht darin, daß der Operator delete eine statische Methode ist und nicht 
virtuell sein kann. Der Compiler ermittelt die richtige delete-Methode mit Hilfe des 
Destruktors.

void ct_AnyClass:: DestroyObject (ct_AnyClass * pco)
  {
  if (pco != 0)
    {
    typedef classof (* pco) t_trueClass; // Kein C++ !!
    pco-> ~t_trueClass ();               // Kein C++ !!
    t_trueClass:: operator delete (pco);
    }
  }

Mit new und delete können wir auch Arrays von Objekten erzeugen und löschen. Im neuesten 
C++-Standard existieren dafür die spezialisierten Operatoren new [] und delete []. Bei der 
Arbeit mit dynamisch erzeugten C++-Arrays müssen wir darauf achten, ein mit new [] 
erzeugtes Array mit delete [] und nicht mit delete zu löschen. Haben wir vergessen, für eine 
Klasse die Operatoren new [] und delete [] zu definieren, werden die globalen Äquivalente 
genutzt, auch wenn die Klasse eigene Operatoren new und delete enthält.

Die Operatormethoden new [] und delete [] besitzen dieselben Parameter und Rückgabewerte 
wie new und delete. Sie wissen nicht, daß sie den Speicher eines Arrays verwalten und wie 
groß dieses Array ist. Das bedeutet, daß der Compiler noch mehr im Unsichtbaren tun muß. 
Wird delete [] in der Operatorschreibweise auf einen typisierten Zeiger angewendet, muß 
der Compiler die Größe des Arrays aus dem Array selbst ermitteln, um die korrekte Anzahl 
Destruktoren aufzurufen. Beim Erzeugen eines dynamischen Arrays mit dem Operator new [] 
muß also die Größe des Arrays im Speicher hinterlegt werden. Sollen n Objekte vom Typ 
ct_AnyClass erzeugt werden, fordert der Compiler n * sizeof (ct_AnyClass) + sizeof (size_t) 
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Bytes von der Methode new []. Er speichert die Größe des Arrays und ruft anschließend n 
mal den Konstruktor der Klasse ct_AnyClass auf.

Von den Sprachdesignern wird empfohlen, auch dynamische C++-Arrays primitiver 
Datentypen mit dem Operator new [] zu erzeugen. Zum Beispiel sollten wir new char [20] statt 
malloc (20) verwenden. Zum Verwalten des Speichers werden stets die globalen 
Operatorfunktionen new, new [], delete und delete [] aufgerufen. Primitive Datentypen 
besitzen keine Konstruktoren und Destruktoren. Wird ein so erzeugtes Array mit delete [] 
gelöscht, müssen keine Destruktoren aufgerufen werden. Der Compiler benötigt die implizit 
gespeicherte Länge des Arrays in diesem Fall nicht. Sie stellt aber einen Speicheroverhead 
dar. In den unsichtbaren Anweisungen zum Erzeugen eines Arrays mit new [] sollte der 
Compiler also primitive Datentypen und Klassen unterschiedlich behandeln.

class ct_AnyClass
  {
public:
  static void *  operator new (size_t u_size);
  static void *  operator new [] (size_t u_size);
  static void    operator delete (void * pv);
  static void    operator delete [] (void * pv);
  };

ct_AnyClass * pco_Object  = new ct_AnyClass;      // ct_AnyClass:: new
ct_AnyClass * pco_Objects = new ct_AnyClass [10]; // ct_AnyClass:: new []
delete pco_Object;     // ct_AnyClass:: delete
delete [] pco_Objects; // ct_AnyClass:: delete []

char * pc_Char  = new char;      // :: new
char * pc_Chars = new char [10]; // :: new []
delete pc_Char;     // :: delete
delete [] pc_Chars; // :: delete []

Der Operator new kann mit zusätzlichen Parametern mehrfach überladen werden. Beim Aufruf 
in Operatorschreibweise wird der erste, implizite Parameter nicht angegeben, sondern nur 
die folgenden. Die Parameter des Operators new dürfen nicht mit Konstruktorparametern des 
zu erzeugenden Objekts verwechselt werden. Ein Überladen des Operators delete ist nicht 
möglich. Er existiert ähnlich wie ein Destruktor für jede Klasse nur einmal.

class ct_AnyClass
  {
public:
                 ct_AnyClass ();
                 ct_AnyClass (const char * pc);
                 ~ct_AnyClass ();
  static void *  operator new (size_t u_size);
  static void *  operator new (size_t u_size, int i);
  static void    operator delete (void * pv);
  };

int i_newParam = 5;
ct_AnyClass * pco = new (i_newParam) ct_AnyClass ("ConstructorParam");
delete pco;

Nun verfügen wir über das nötige Detailwissen, um das anfangs gestellte Problem zu lösen. 
Ein C++-Objekt, zum Beispiel vom Typ ct_AnyClass, soll in selbst bereitgestelltem Speicher 
erzeugt und gelöscht werden. Die Klasse besitzt möglicherweise eigene Operatoren new und 
delete. An der Klassendeklaration können wir nachträglich nichts ändern. Deshalb benötigen 
wir eine Hilfsklasse. Diese enthält als einziges Attribut das zu erzeugende Objekt und als 
einzige Methoden new und delete. Der Operator new besitzt als zweiten Parameter einen 
untypisierten C++-Zeiger. Dieser verweist auf den außerhalb bereitgestellten Speicher und 
wird unverändert zurückgegeben. Der Operator delete hat eine leere Definition. Ein Aufruf in 
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Operatorschreibweise bewirkt nur das Zerstören des Objekts mit seinem Destruktor. Der 
Speicher wird außerhalb der delete-Methode freigegeben.

Mit dieser Technik können wir Objekte in beliebig bereitgestelltem Speicher erzeugen und 
löschen. Im folgenden Programmfragment sehen wir die Deklaration eines Klassentemplates. 
Es erwartet als Parameter den Typ des Objekts. Die Hilfsklasse erbt nicht von der 
Objektklasse, sondern enthält sie als Attribut. Somit können wir das Template auch auf 
primitive Datentypen anwenden. Unter der Templatedeklaration sehen wir die Einzelschritte, 
mit denen ein Objekt erzeugt und gelöscht wird.

template <class ct_part>
  class gct_NewDel
    {
    ct_part        co_part;
  public:
    ct_part *      GetObj () { return & co_part; }
    static void *  operator new (size_t, void * pv) { return pv; }
    static void    operator delete (void *) { }
    };

ct_MyStore co_MyStore;

// Speicher anfordern
void * pv_mem =
  co_MyStore. AddrOf (co_MyStore. Alloc (sizeof (ct_AnyClass)));

// Hilfsobjekt erzeugen
gct_NewDel <ct_AnyClass> * pco_obj =
  new (pv_mem) gct_NewDel <ct_AnyClass>;

// Auf das eigentliche Objekt zugreifen
pco_obj-> GetObj ()-> ....;

// Hilfsobjekt zerstören
delete pco_obj;

// Speicher freigeben
co_MyStore. Free (co_MyStore. LogPtrOf (pco_obj));

2.6.2 Jungle of Scopes

Store- und Containerklassen enthalten geschachtelte Datentypen, zum Beispiel t_Pointer. In 
C sind alle Typen global. Die Typdefinition innerhalb der Klassen und Methoden ist eine 
Erweiterung von C++. Das von den Sprachdesignern entworfene Regelsystem für 
Gültigkeitsbereiche (Scopes) ist jedoch an einigen Stellen unübersichtlich. Für eine bessere 
Orientierung in diesem Regelwerk unternehmen wir nun einen kleinen Spaziergang durch den 
Jungle of Scopes.

Außerhalb jeder Klasse und Funktion befinden wir uns im Gültigkeitsbereich der Dateien, 
dem File Scope. Besser verständlich ist die Bezeichnung globaler Scope. Alle Namen, die 
darin deklariert werden, sind global gültig. Er kann die Deklaration von Datentypen, 
Konstanten, Variablen, Funktionen und Templates enthalten. Die Scopes der globalen 
Funktionen und Klassen sind dem globalen Gültigkeitsbereich direkt untergeordnet (siehe 
Abbildung 2-24).
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Globaler Scope

Scope einer globalen Klasse

Globale Typen (typedef, enum, class)
Globale Konstanten (z. B. true und false)

Globale Funktionen (z. B. malloc und free)
Templates

Scope einer globalen Funktion

Globale Variable (z. B. co_GlobalStore)

. . . .

. . . .

Abb. 2-24:    Globaler Scope

Die Definition einer globalen Funktion oder einer Methode (Klassen-Funktion) setzt sich aus 
Verbundanweisungen zusammen. Eine Verbundanweisung wird durch geschweifte 
Klammern begrenzt und trägt auch die Bezeichnung Block. Der äußerste Block hat eine 
besondere Bedeutung. Ihm werden die formalen Parameter der Methode zugeordnet. Jede 
Verbundanweisung bildet einen Scope. Seine genaue Bezeichnung lautet Local Scope. Darin 
können sich Typen, Konstanten, Variable und weitere Verbundanweisungen befinden. Der 
äußerste Block mit seinen Unterblöcken ergibt den Function Scope. Er ist ausschließlich für 
Sprungmarken relevant. Alle anderen Namen gelten nur innerhalb des Blocks, in dem sie 
deklariert werden, und seinen Teilblöcken (siehe Abbildung 2-25).

Scope einer Funktion oder Methode

Scope einer Verbundanw.
Lokale Typen

(einschließlich Parameter)
Äußerste Verbundanweisung

Lokale Konstanten
Lokale Variable
Innere Verbundanweisungen

. . . .

Scope einer lokalen Klasse
. . . .

Scope einer Verbundanw.

Sprungmarken

Abb. 2-25:    Methoden- und lokaler Scope

Auch eine Klasse besitzt einen Scope. Neben Attributen und Methoden können darin 
Datentypen, zum Beispiel Klassen, deklariert werden. Zur Unterscheidung von lokalen 
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Klassen in Verbundanweisungen werden sie geschachtelte Klassen (Nested Classes) 
genannt. Sie sind ein Strukturierungsmittel für Gültigkeitsbereiche. Ihre Attribute und 
Methoden sind kein Bestandteil der äußeren Klasse (siehe Abbildung 2-26).

Scope einer Klasse
Geschachtelte Typen
Attribute
Methoden

Scope einer Methode
. . . .

Scope einer geschachtelten Klasse
. . . .

Abb. 2-26:    Klassenscope

C++ erlaubt das mehrfache Schachteln von Scopes. In einem inneren dürfen Namen des 
umfassenden Scopes neu definiert werden. Der innerste Scope hat die höchste Priorität. 
Dort werden Namen zuerst gesucht. Ist ein Name unbekannt, wird die Suche schrittweise 
nach außen fortgesetzt. Eine Ausnahme bilden abgeleitete Klassen. Das folgende 
Programmfragment zeigt die Deklaration zweier Klassen mit geschachtelten Datentypen.

typedef char t1;
typedef char t2;
typedef char t3;

class ct_Base
  {
public:
  typedef short t1;
  typedef short t2;
  };

class ct_Derived: public ct_Base
  {
public:
  typedef long t1;
  void Method ();
  };

void ct_Derived:: Method ()
  {
  t1 * po1; // Entspricht  long  * po1;  oder  ct_Derived:: t1 * po1;
  t2 * po2; // Entspricht  short * po2;  oder  ct_Base:: t2 * po2;
  t3 * po3; // Entspricht  char  * po3;  oder  ::t3 * po3;
  }

Beide Klassen sind von außen betrachtet direkt dem globalen Scope untergeordnet. Wäre 
der Scope der abgeleiteten Klasse der Basisklasse untergeordnet, müßten wir mit ct_Base:: 
ct_Derived:: Method auf die Methode zugreifen. Der Zugriff erfolgt aber mit ct_Derived:: 
Method. Befinden wir uns jedoch innerhalb des Scopes der abgeleiteten Klasse, sind wir dem 
Scope der Basisklasse untergeordnet. Die Suche von Namen erfolgt in der Reihenfolge: 
Abgeleitete Klasse, Basisklasse, globaler Scope (siehe Abbildung 2-27).
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Globaler Scope

Klassenscope ct_Base

Klassenscope ct_Derived

Methodenscope

Globaler Scope

Klassenscope ct_Base

Klassenscope ct_Derived

Methodenscope

Sicht von Außen Sicht von Innen

Abb. 2-27:    Äußere und innere Sicht eines Klassenscopes

Nach diesen allgemeinen Betrachtungen wenden wir uns wieder den Stores und Containern 
zu. Sie setzen für Parameter und Rückgabewerte ihrer Methoden geschachtelte Typen ein. 
Wollen wir einen geschachtelten Typ außerhalb der Klasse verwenden, müssen wir seinen 
Scope angeben, zum Beispiel ct_AnyStore:: t_Pointer. Die Definition einer Methode wird 
entweder in der Klassendeklaration oder im globalen Scope plaziert. Das Inline-Definieren 
innerhalb der Klassendeklaration wollen wir aber vermeiden, um die Lesbarkeit zu erhöhen.

Die Definition einer Methode beginnt mit dem Rückgabewert. Dieser gehört genau 
genommen in den Scope der Methode. Der Methodenname ist an dieser Stelle aber noch 
nicht bekannt. Deshalb muß bei Rückgabewert und Methodenname die zugehörige Klasse 
angegeben werden. Die Liste der formalen Parameter steht hinter dem Methodennamen. 
Dort kann der Compiler den korrekten Scope ermitteln. Der Methodenscope ist dem 
Klassenscope untergeordnet. Deshalb sind geschachtelte Typen in der Parameterliste 
bekannt und benötigen keine explizite Scopeangabe (siehe Abbildung 2-28).

ct_AnyStore:: t_Pointer ct_AnyStore:: Alloc (t_Size o_size)  {  . . . .  }

Rückgabewert
(Im globalen Scope)

Methodenname
(Im globalen Scope)

Parameter und Anweisungen
(Im Scope der Methode)

Abb. 2-28:    Scopes in einer Methodendefinition

Geschachtelte Datentypen erhöhen wesentlich die Flexibilität einer Klassenbibliothek. Wir 
werden nicht darauf verzichten und gewöhnen uns lieber an die umständliche 
Methodendefinition. Bei einer globalen Klasse wie in Abbildung 2-28 ist der Schreibaufwand 
akzeptabel. Etwas mehr müssen wir für ein Klassentemplate investieren. Dort setzt sich der 
Scope aus dem Templatenamen und den Templateparametern zusammen. Diese 
Schreibweise ist so unleserlich, daß sogar einige Compiler darüber ins stolpern geraten.

template <class t_obj>
  class gct_AnyContainer
    {
  public:
    typedef void *       t_Pointer;
    t_Pointer            Next (t_Pointer o_ptr) const;
    ....
    };
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template <class t_obj>
  gct_AnyContainer <t_obj>:: t_Pointer
  gct_AnyContainer <t_obj>:: Next (t_Pointer o_ptr) const
    {
    ....
    }

Der Spaziergang durch den Jungle of Scopes soll nicht ausarten. Für Dschungelfreunde 
unternehmen wir aber noch einen kleinen Abstecher in die Tiefe. Wollen wir einen Zeiger 
oder eine Referenz auf eine Klasse deklarieren, benötigen wir nicht ihre vollständige, sondern 
nur eine Vorwärtsdeklaration. In C++ existieren dafür zwei Möglichkeiten.  Eine reine 
Vorwärtsdeklaration enthält nur das Schlüsselwort (class, struct, union) und den Namen. In 
einer gemischten wird noch ein anderer Name deklariert oder definiert.

Befinden wir uns in einem lokalen oder Klassenscope, verhält sich eine reine 
Vorwärtsdeklaration anders als eine gemischte. Eine reine erzeugt stets einen neuen 
Klassennamen im inneren Scope. Bei einer gemischten Vorwärtsdeklaration wird zuerst 
geprüft, ob der angegebene Name schon in einem äußeren Scope existiert. Ist er unbekannt, 
wird er im inneren Scope deklariert. Das folgende Programmfragment zeigt einige Beispiele 
für Vorwärtsdeklarationen von Klassen.

class ct1;        // Reine Vorwärtsdekl. globale Klasse ct1
class ct2 * pco2; // Gem.  Vorwärtsdekl. globale Klasse ct2

class ct_Global
  {
  ct1 * pco1;       // Verwendung globale Klasse ct1
  class ct2 * pco2; // Verwendung globale Klasse ct2
  class ct3 * pco3; // Gem.  Vorwärtsdekl. geschachtelte Klasse ct3
  class ct1;        // Reine Vorwärtsdekl. geschachtelte Klasse ct1
  ct1 * pco4;       // Verwendung geschachtelte Klasse ct1
  :: ct1 * pco5;    // Verwendung globale Klasse ct1
  };

Die friend-Deklaration einer Klasse hat syntaktische Ähnlichkeit mit einer reinen 
Vorwärtsdeklaration. Semantisch ähnelt sie einer gemischten. De facto ist sie weder das 
eine noch das andere. Ist der Name der friend-Klasse bekannt, wird die bekannte Klasse wie 
bei einer gemischten Vorwärtsdeklaration verwendet. Ist der Name noch unbekannt, wird er 
im umfassenden Scope deklariert (nicht im inneren!). Enthält zum Beispiel eine globale 
Klasse eine unbekannte friend-Deklaration, wird die neue Klasse dem globalen Scope 
zugeordnet.

class ct1; // Reine Vorwärtsdekl. globale Klasse ct1

class ct_Global
  {
  friend class ct1; // Verwendung globale Klasse ct1
  friend class ct2; // Friend-Vorwärtsdekl. globale Klasse ct2
  };
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3 C++-Bausteine für High-Performance-
Programme

Im zweiten Teil des Buchs haben wir zahlreiche Konzepte zur Verbesserung der Performance 
eines Programms kennengelernt. Der dritte Teil enthält ihre Implementierung. Sie ist ein 
wichtiger Bestandteil programmtechnischer Konzepte. Das beste Konzept ist wertlos, wenn 
es nicht sachgerecht in die Praxis umgesetzt wird. C++ bietet mehr 
Optimierungsmöglichkeiten als andere objektorientierte Sprachen. Wir werden versuchen, 
viele dieser Möglichkeiten für unser Performance-Tuning einzusetzen.

3.1 Beginn beim Fundament

3.1.1 Dynamische Stores

Das Fundament der Verwaltungshierarchie eines Programms bildet die Speicherverwaltung. 
Darauf bauen die Objektverwaltung und das eigentliche Anwendungsprogramm auf. 
Innerhalb der Speicherverwaltung bilden auch die Stores eine Hierarchie. Auf der untersten 
Stufe stehen ein oder mehrere Stores in direkter Verbindung zur C-Laufzeitbibliothek oder 
zum Betriebssystem.

Die Speicherverwaltung konkreter Betriebssysteme wollen wir nicht betrachten. Stattdessen 
nutzen wir die systemunabhängige Schnittstelle der C-Standardbibliothek. Die darauf 
aufbauende Storeklasse nennen wir ct_StdStore. Sie besitzt keine neue Funktionalität, 
sondern hüllt die Standardfunktionen malloc, realloc und free in ein objektorientiertes 
Gewand. Leider erfahren wir von der Standardbibliothek nicht, wieviele Bytes konstanten 
Verwaltungsspeicher (ohne Rundung) sie pro Block benötigt. Wir müssen also vom 
Durchschnittswert Vier ausgehen (siehe Abschnitt 1.6.3). Die Methoden der Storeklasse 
sind so einfach, daß wir sie inline definieren können. Das folgende Programmfragment 
enthält die Deklaration der Klasse und die Definition dreier Methoden.

class ct_StdStore
  {
public:
  typedef unsigned     t_Size;
  typedef void *       t_Pointer;

  inline unsigned long MaxAlloc () const;
  inline unsigned      StoreInfoSize () const;
  inline t_Pointer     Alloc (t_Size o_size);
  inline t_Pointer     Realloc (t_Pointer o_ptr, t_Size o_size);
  inline void          Free (t_Pointer o_ptr);
  inline void *        AddrOf (t_Pointer o_ptr) const;
  inline t_Pointer     LogPtrOf (void * pv_adr) const;
  };

inline unsigned ct_StdStore:: StoreInfoSize () const
  {
  return 4;
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  }

inline ct_StdStore:: t_Pointer ct_StdStore:: Alloc (t_Size o_size)
  {
  return malloc (o_size);
  }

inline void * ct_StdStore:: AddrOf (t_Pointer o_ptr) const
  {
  return o_ptr;
  }

Die Rundung der Blockgröße ist eine erste Erweiterung der Standardfunktionalität. Die neue 
Storeklasse nennen wir ct_RndStore. Sie baut auf dem Standardstore auf und nutzt seine 
Methoden. Die globale Speicherverwaltung der C-Standardbibliothek ist in einem Programm 
nur einmal enthalten. Deshalb nehmen wir die Klasse ct_StdStore als statisches Attribut in 
den Roundstore auf. Für die Rundung verwenden wir ein Verfahren mit Minimalgröße und 
variabler Schrittlänge (siehe Abschnitt 2.3.2). Die Schrittlänge wird über einen Schritt-Teiler 
gesteuert. Der Roundstore verfügt weiterhin über einen Reservespeicher variabler Größe 
(siehe Abschnitt 2.5.1). Im folgenden Programmausschnitt sehen wir die vollständige 
Deklaration der Klasse ct_RndStore.

class ct_RndStore
  {
public:
  typedef ct_StdStore:: t_Size    t_Size;
  typedef ct_StdStore:: t_Pointer t_Pointer;
private:
  static t_Size        o_ReserveLen; // Länge des Reservespeichers
  static t_Pointer     o_ReservePtr; // Zeiger auf den Reservespeicher
  static ct_StdStore   co_Store;     // Statischer Standardstore
  t_Size               o_MinSize;    // Minimalgröße
  unsigned             u_StepDiv;    // Schritt-Teiler
  unsigned             u_StepDivLog; // Hilfsgröße

  t_Size               Round (t_Size o_size);
public:
                       ct_RndStore ();
  unsigned long        MaxAlloc () const;
  unsigned             StoreInfoSize () const;
  t_Pointer            Alloc (t_Size o_size);
  t_Pointer            Realloc (t_Pointer o_ptr, t_Size o_size);
  void                 Free (t_Pointer o_ptr);
  inline void *        AddrOf (t_Pointer o_ptr) const;
  inline t_Pointer     LogPtrOf (void * pv_adr) const;
  static void          SetReserveLen (t_Size o_resLen);
  static t_Size        GetReserveLen ();
  static bool          HasReserve ();
  void                 SetMinSize (t_Size o_minSize);
  inline t_Size        GetMinSize () const;
  void                 SetStepDiv (unsigned u_stepDiv);
  inline unsigned      GetStepDiv () const;
  };

Der Roundstore besitzt keine eigene Speicherverwaltung. Er wirkt wie ein Nachbrenner zu 
einer vorhandenen. Zum Verändern der Größe eines Blocks mit der Methode Realloc wird die 
ursprüngliche Größe benötigt. Der darunter liegende Store gibt aber keine Auskunft über die 
Größe seiner Blöcke. Deshalb muß der Roundstore zu jedem Block die gerundete Größe 
speichern. Er verfährt dabei ähnlich wie ein Refstore. Der Block wird um sizeof (t_Size) 
Bytes vergrößert und die gerundete Größe am Anfang des Blocks untergebracht.
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Die Methode AddrOf eines Refstores berechnet die Speicheradresse eines logischen Zeigers. 
Dabei werden zur Blockadresse des darunter liegenden Stores sizeof (ct_RefCount) Bytes 
addiert (siehe die Abschnitte 2.5.2 und 3.2.3). Beim Roundstore können wir diese 
Adreßrechnung vereinfachen. Der Zeigertyp des darunterliegenden Stores ist bekannt. Der 
Standardstore verwendet untypisierte C++-Zeiger. Dazu können wir schon beim Anfordern 
des Speichers sizeof (t_Size) Bytes addieren. Die Methode Alloc des Roundstores liefert also 
einen untypisierten C++-Zeiger auf den nutzbaren Bereich des Blocks. Realloc und Free 
verarbeiten ebenfalls diese Zeiger (siehe Abbildung 3-1). In der Methode AddrOf ist keine 
Adreßrechnung mehr nötig. Damit beschleunigt sich der Zugriff auf den vom Roundstore 
verwalteten Speicher.

inline void * ct_RndStore:: AddrOf (t_Pointer o_ptr) const
  {
  return o_ptr;
  }

o_RoundedSize Nutzbarer Speicher

ct_RndStore:: Alloc (o_size)

ct_RndStore:: AddrOf (o_ptr)

ct_RndStore:: Realloc (o_ptr, o_size)
ct_RndStore:: Free (o_ptr)

ct_StdStore:: Alloc (o_size)

ct_StdStore:: AddrOf (o_ptr)

ct_StdStore:: Realloc (o_ptr, o_size)
ct_StdStore:: Free (o_ptr)

Abb. 3-1:    Logische Zeiger im Roundstore

Mehrere Methoden des Roundstores sind an der Verwaltung des Reservespeichers beteiligt. 
Betrachten wir als Beispiel die Implementierung von Realloc. Nach Überprüfung der 
Spezialfälle o_ptr == 0 und o_size == 0 wird der Zeiger auf die alte, gerundete Größe ermittelt 
(po_oldSize). Anschließend berechnen wir die neue gerundete Größe (o_newSize) und 
vergleichen sie mit der alten. Sind beide gleich, befindet sich die Größenänderung innerhalb 
der Schrittweite, und wir geben den unsprünglichen Zeiger zurück. Andernfalls versuchen 
wir, vom Standardstore einen Block der neuen, gerundeten Größe anzufordern. Gelingt es 
nicht, geben wir den Reservespeicher frei und versuchen es erneut. Steht nun der neue 
Speicher zur Verfügung, kopieren wir den Inhalt des alten Blocks in den neuen und tragen an 
dessen Beginn die gerundete Größe ein. Abschließend wird der alte Block freigegeben und 
der Rückgabewert berechnet.

ct_RndStore:: t_Pointer
ct_RndStore:: Realloc (t_Pointer o_ptr, t_Size o_size)
  {
  if (o_ptr == 0)
    return Alloc (o_size);
  else
    if (o_size == 0)
      {
      Free (o_ptr);
      return 0;
      }
    else
      {
      t_Size * po_oldSize = (t_Size *) o_ptr - 1;
      t_Size o_newSize = Round (o_size);
      if (o_newSize == * po_oldSize)
        return o_ptr;
      else
        {
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        t_Size * po_newSize = (t_Size *) co_Store. Alloc (o_newSize);
        if ((po_newSize == 0) && (o_ReservePtr != 0))
          {
          co_Store. Free (o_ReservePtr);
          o_ReservePtr = 0;
          po_newSize = (t_Size *) co_Store. Alloc (o_newSize);
          }
        if (po_newSize != 0)
          {
          memcpy (po_newSize, po_oldSize,
            o_newSize < * po_oldSize ? o_newSize : * po_oldSize);
          * po_newSize = o_newSize;
          }
        Free (o_ptr);
        return po_newSize != 0 ? po_newSize + 1 : 0;
        }
      }
  }

Die private Methode Round berechnet zu einer gegebenen Blockgröße den gerundeten Wert. 
Sie wird bei jedem Aufruf der Methoden Alloc und Realloc verwendet, ist also zeitkritisch. 
Das Attribut u_StepDivLog dient der Beschleunigung der Berechnung. Es enthält den um eins 
vergrößerten Zweierlogarithmus des Schritt-Teilers u_StepDiv. In unserem 
Rundungsalgorithmus müssen Minimalgröße und Schritt-Teiler Zweierpotenzen sein. Diese 
Bedingung prüfen wir mit der Formel ((X & - X) == X). Sie beruht auf der Eigenschaft 
moderner Computer, negative Zahlen im Basiskomplement und nicht im Zweierkomplement 
darzustellen. Die Methode SetStepDiv stellt weiterhin sicher, daß der Schritt-Teiler nicht 
größer als die Minimalgröße werden kann.

void ct_RndStore:: SetStepDiv (unsigned u_stepDiv)
  {
  ASSERT (u_stepDiv != 0);
  ASSERT ((u_stepDiv & - u_stepDiv) == u_stepDiv);
  u_StepDiv = u_stepDiv;
  if (u_StepDiv > o_MinSize)
    u_StepDiv = o_MinSize;
  unsigned u = u_StepDiv;
  u_StepDivLog = 0;
  while (u > 0)
    {
    u >>= 1;
    u_StepDivLog ++;
    }
  }

Beim Runden müssen wir die StoreInfoSize des Standardstores berücksichtigen. Am Anfang 
addieren wir sie und sizeof (t_Size) zur Blockgröße. Dann vergleichen wir die Blockgröße mit 
der Minimalgröße. Ist sie kleiner, geben wir die um die StoreInfoSize verminderte 
Minimalgröße zurück. Andernfalls berechnen wir die Schrittweite o_stepWidth. Dazu 
verwenden wir die Hilfsvariable o_shiftedSize. Sie ist gleich der durch 2 * u_StepDiv geteilten 
Blockgröße. Mit dem Attribut u_StepDivLog können wir die Division durch eine schnellere 
Shiftoperation ersetzen. Die Schrittweite ist nun die zu o_shiftedSize nächstgrößere 
Zweierpotenz. Der Anfangswert dieser Zwischenrechnung ist o_MinSize. Damit stellen wir 
sicher, daß die Schrittweite nicht kleiner als die Minimalgröße werden kann. Mit der Formel 
(o_size & - o_stepWidth) wird die Blockgröße auf das nächstkleinere Vielfache der Schrittweite 
abgerundet. Dazu addieren wir die Schrittweite und subtrahieren abschließend die 
StoreInfoSize des Standardstores. Dieser Algorithmus ist sehr schnell, erfordert aber, daß wir 
die Blockgröße am Anfang um eins vermindern.

ct_RndStore:: t_Size ct_RndStore:: Round (t_Size o_size)
  {
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  o_size += sizeof (t_Size) + co_Store. StoreInfoSize () - 1;
  if (o_size < o_MinSize)
    return o_MinSize - co_Store. StoreInfoSize ();
  else
    {
    register t_Size o_stepWidth = o_MinSize;
    register t_Size o_shiftedSize = o_size >> u_StepDivLog;
    while (o_stepWidth <= o_shiftedSize)
      o_stepWidth <<= 1;
    return (o_size & - o_stepWidth) + o_stepWidth -
      co_Store. StoreInfoSize ();
    }
  }

Zur Veranschaulichung führen wir nun ein Rechenbeispiel durch. Schritt-Teiler und sizeof 
(t_Size) seien gleich vier. Der um eins vergrößerte Zweierlogarithmus von vier ist gleich drei. 
Die Blockgröße betrage 184 Bytes. Am Anfang zählen wir 4 + 4 - 1 dazu und erhalten 191. 
Die Hilfsvariable o_shiftedSize erhält den Wert 191 >> 3 gleich 23. In der while-Schleife 
wird die nächstgrößere Zweierpotenz berechnet. Wir erhalten die Schrittweite 32. Mit (191 
& - 32) wird die Blockgröße auf 160 abgerundet. Wir addieren 32 und subtrahieren die 
StoreInfoSize. Das Ergebnis lautet 188.

Ein Block dieser Größe wird vom Standardstore angefordert. Die interne Größe 
(einschließlich StoreInfoSize) beträgt 192 Bytes und ist, wie erhofft, eine runde Zahl (6 * 
32). Der Roundstore nutzt die ersten vier der 188 Bytes für die Speicherung der Blockgröße. 
Nutzbar bleiben 184 Bytes. Mit dem Anfangswert 185 liefert die Methode Round den Wert 
220. Davon sind 216 Bytes nutzbar.

Die dynamischen Storeklassen ct_StdStore und ct_RndStore bilden die Grundlage unserer 
Speicherverwaltung. Alle anderen Stores, die wir kennen lernen werden, bauen darauf auf. 
Abbildung 3-2 faßt die Attribute und Methoden beider Klassen zusammen. Ein statisches 
Attribut ist kein echter Teil eines Objekts. Es gehört allen Instanzen gemeinsam. Deshalb 
erscheint die Beziehung zwischen Standard- und Roundstore als Objekt-Verbindung 
(durchgehende Linie) und nicht als Teil-Ganzes-Beziehung (Dreieck).

 0,n 1 

ct_StdStore

MaxAlloc
StoreInfoSize
Alloc
Realloc
Free
AddrOf
LogPtrOf

ct_RndStore
o_ReserveLen
o_ReservePtr
co_Store
o_MinSize
u_StepDiv
u_StepDivLog

ct_RndStore
MaxAlloc
StoreInfoSize
Alloc
Realloc
Free
AddrOf
LogPtrOf
SetReserveLen
GetReserveLen
HasReserve
SetMinSize
GetMinSize
SetStepDiv
GetStepDiv
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Abb. 3-2:    Standard- und Roundstore

3.1.2 Globale Stores

Logische Zeiger und Stores sind eine Verallgemeinerung vorhandener Programmiertechniken. 
Eine feste Speicherverwaltung wird durch ein C++-Array realisiert. Indizes sind nur lokal im 
zugehörigen Array gültig. Für dynamische Speicheranforderungen nutzten wir bisher die C-
Standardbibliothek. C++-Zeiger, die durch malloc bereitgestellt wurden, besitzen eine 
globale Gültigkeit. Analog dazu sind Stores mit einer festen Speicherverwaltung meist 
Bestandteil eines einzelnen Objekts, zum Beispiel eines Containers. Sie besitzen nur einen 
lokalen Gültigkeitsbereich. Dynamische Storeklassen werden hingegen als globale Objekte 
verwendet.

Wollen wir zum Beispiel eine spezialisierte dynamische Speicherverwaltung für eine 
Stringklasse einsetzen, sollte nicht jedes Stringobjekt über einen eigenen Store verfügen. 
Sinnvoller ist die Definition eines globalen Storeobjekts, das alle Instanzen der Stringklasse 
gemeinsam nutzen. Ein Stringobjekt kann auf zwei Arten mit dem globalen Store verbunden 
werden. Entweder enthält jeder String einen Zeiger auf den Store, oder die Stringklasse ist 
ein generischer Datentyp (ein Template) und besitzt den Store als Parameter. Im ersten Fall 
müssen wir einigen Overhead inkauf nehmen. Jedes Stringobjekt wird um einen C++-
Zeiger vergrößert. Zum Kombinieren der Stringklasse mit verschiedenen Storeklassen müßte 
sie auf eine abstrakte Storebasisklasse mit virtuellen Methoden verweisen.

Die Verwendung einer Storeklasse als Templateparameter führt zu einer besseren 
Performance. Dabei stehen wir jedoch vor einem technischen Problem. Als Parameter für 
C++-Templates sind weder Methoden noch globale Objekte zugelassen. Möglich sind nur 
Datentypen und primitive Konstanten (Zahlen und Adressen). Ein globales Storeobjekt kann 
nicht als Parameter dienen, sondern nur seine Adresse. Der direkte Zugriff auf ein Objekt mit 
einem Zeiger widerspricht jedoch dem Konzept der Datenkapselung. In dynamisch gelinkten 
Bibliotheken kann es sogar zu einem Fehlverhalten des Programms führen. Auf globale 
Objekte und statische Attribute der Klassen sollte stets mit Nicht-Inline-Methoden 
zugegriffen werden.

C++ ist eine umfangreiche Programmiersprache. Sie enthält hardwarenahe Techniken (zum 
Beispiel die Zeigerarithmetik) und komfortable Konzepte (zum Beispiel virtuelle Basisklassen). 
Beim Parametrisieren eines Klassentemplates mit einem globalen Objekt läßt sie uns jedoch 
im Strich. Zum Glück verfügt jeder C++-Compiler über einen Präprozessor. Durch diese 
Hintertür können wir das Problem elegant lösen. Präprozessormakros enthalten einfache 
Textoperationen, die vor dem eigentlichen C++-Compiler ausgeführt werden. Der ##-
Operator ist sogar die einzige Möglichkeit zur Bildung neuer Namen.

Benötigt wird eine Methodenschnittstelle für den indirekten Zugriff auf ein globales Objekt. 
Wir wollen die Schnittstelle als Templateparameter nutzen und verpacken sie in einer Klasse. 
Dieser geben wir das allgemeine Store-Interface, denn sie mappt die Funktionalität eines 
Storeobjekts. Die Klasse besitzt keine Attribute. Dennoch ist ihre Größe ungleich Null. Der 
C++-Standard besagt, daß jedes Objekt eine eindeutige Adresse besitzen muß. Einer 
Klasse ohne Attribute und virtuelle Tabellenzeiger weist der Compiler die Größe ein Byte zu. 
Da die Methoden auf keine Attribute zugreifen, können wir sie static deklarieren. Der Aufruf 
einer statischen Methode ist geringfügig schneller, denn sie enthält keinen this-Zeiger. Zum 
Erzeugen der Klasse definieren wir zwei Makros. In GLOBAL_STORE_DCL wird die Klasse 
deklariert. GLOBAL_STORE_DEF enthält die Definition ihrer Methoden.

#define GLOBAL_STORE_DCL(t_store, Obj, Size, t_size)                \
  class ct_ ## Obj ## Size ## Store                                 \
    {                                                               \
  public:                                                           \
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    typedef t_size              t_Size;                             \
    typedef t_store:: t_Pointer t_Pointer;                          \
    static unsigned long MaxAlloc ();                               \
    static unsigned    StoreInfoSize ();                            \
    static t_Pointer   Alloc (t_Size);                              \
    static t_Pointer   Realloc (t_Pointer, t_Size);                 \
    static void        Free (t_Pointer);                            \
    void *             AddrOf (t_Pointer o_p) const { return o_p; } \
    t_Pointer          LogPtrOf (void * pv) const { return pv; }    \
    static t_store *   GetStore ();                                 \
    };

#define GLOBAL_STORE_DEF(t_store, Obj, Size)                        \
  unsigned long ct_ ## Obj ## Size ## Store:: MaxAlloc ()           \
    { return co_ ## Obj ## Store. MaxAlloc (); }                    \
  unsigned ct_ ## Obj ## Size ## Store:: StoreInfoSize ()           \
    { return co_ ## Obj ## Store. StoreInfoSize (); }               \
  ct_ ## Obj ## Size ## Store:: t_Pointer                           \
  ct_ ## Obj ## Size ## Store:: Alloc (t_Size o_s)                  \
    { return co_ ## Obj ## Store. Alloc (o_s); }                    \
  ct_ ## Obj ## Size ## Store:: t_Pointer                           \
  ct_ ## Obj ## Size ## Store:: Realloc (t_Pointer o_p, t_Size o_s) \
    { return co_ ## Obj ## Store. Realloc (o_p, o_s); }             \
  void ct_ ## Obj ## Size ## Store:: Free (t_Pointer o_p)           \
    { co_ ## Obj ## Store. Free (o_p); }                            \
  t_store * ct_ ## Obj ## Size ## Store:: GetStore ()               \
    { return & co_ ## Obj ## Store; }

Der Parameter t_store bezeichnet die Storeklasse, zum Beispiel ct_StdStore oder ct_RndStore. 
Obj enthält eine Identität für das globale Objekt. Sie muß bei jedem Objekt anders gewählt 
werden. Zum Beispiel wird aus der Identität String das globale Objekt co_StringStore 
generiert. Zu einem globalen Store können mehrere Klassen erzeugt werden. Diese 
unterscheiden sich durch ihren Namen und den geschachtelten Datentyp t_Size. Der 
Makroparameter Size enthält eine Kurzbezeichnung zur Namensbildung, t_size den 
entsprechenden C++-Typ. Size und t_size müssen inhaltlich zusammenpassen, zum 
Beispiel Char und unsigned char. 

Die Methode AddrOf eines Stores ist zeitkritisch. Sie wird bei jedem Zugriff auf einen 
Speicherblock aufgerufen. In den Klassen ct_StdStore und ct_RndStore ist ein logischer Zeiger 
gleich der Adresse des Blocks. Die daraus generierten Klassen nutzen diese Eigenschaft und 
definieren die Methoden AddrOf und LogPtrOf inline. Verwenden wir die Makros 
GLOBAL_STORE_DCL und GLOBAL_STORE_DEF für andere Storeklassen, müssen wir auf die Bedingung 
o_ptr == AddrOf (o_ptr) achten.

Eine generierte Storeklasse enthält nur das normale Interface. Für Erweiterungen wie die 
Minimalgröße benötigen wir das globale Objekt. Dazu dient die Methode GetStore. Zum 
Beispiel wird im Makro GLOBAL_STORE_DCL (ct_RndStore, String, Int, unsigned int) die Klasse 
ct_StringIntStore deklariert. Verwenden wir ein Objekt dieser Klasse (zum Beispiel co_store), 
können wir die Methode SetMinSize nicht direkt aufrufen. GetStore liefert aber den Verweis 
auf das globale Objekt von Typ ct_RndStore. Die Minimalgröße können wir mit dem Aufruf 
co_store. GetStore ()-> SetMinSize (32) ändern. Das expandierte Makro zur Deklaration der 
Klasse ct_StringIntStore enthält den folgenden Text.

class ct_StringIntStore
  {
public:
  typedef unsigned int            t_Size;
  typedef ct_RndStore:: t_Pointer t_Pointer;
  static unsigned long MaxAlloc ();
  static unsigned      StoreInfoSize ();
  static t_Pointer     Alloc (t_Size);
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  static t_Pointer     Realloc (t_Pointer, t_Size);
  static void          Free (t_Pointer);
  void *               AddrOf (t_Pointer o_p) const { return o_p; }
  t_Pointer            LogPtrOf (void * pv) const { return pv; }
  static ct_RndStore * GetStore ();
  };

Zur Definition der Methoden einer generierten Klasse benötigen wir den Makroparameter 
t_size nicht. Die Kurzbezeichnung Size ist jedoch zur Namensbildung weiterhin erforderlich. 
Im Makro GLOBAL_STORE_DEF (ct_StdStore, Std, Char) werden die Methoden der Klasse 
ct_StdCharStore definiert. Sie greifen auf das globale Objekt co_StdStore zu.

unsigned long ct_StdCharStore:: MaxAlloc ()
  { return co_StdStore. MaxAlloc (); }
unsigned ct_StdCharStore:: StoreInfoSize ()
  { return co_StdStore. StoreInfoSize (); }
ct_StdCharStore:: t_Pointer
ct_StdCharStore:: Alloc (t_Size o_s)
  { return co_StdStore. Alloc (o_s); }
....
ct_StdStore * ct_StdCharStore:: GetStore ()
  { return & co_StdStore; }

Als Datentyp t_Size einer Storeklasse können die vorzeichenlosen Versionen von int, char, 
short und long eingesetzt werden. Zum Generieren der entsprechenden Klassen eines 
globalen Stores verwenden wir wieder zwei Makros. In GLOBAL_STORE_DCLS werden die vier 
Klassen und eine globale Funktion deklariert, mit der wir auf das Objekt zugreifen können. 
GLOBAL_STORE_DEFS enthält die Definitionen des globales Objekts und der Methoden der 
generierten Klassen.

#define GLOBAL_STORE_DCLS(t_store, Obj)                  \
  t_store * Get ## Obj ## Store ();                      \
  GLOBAL_STORE_DCL (t_store, Obj, Int,   unsigned int)   \
  GLOBAL_STORE_DCL (t_store, Obj, Char,  unsigned char)  \
  GLOBAL_STORE_DCL (t_store, Obj, Short, unsigned short) \
  GLOBAL_STORE_DCL (t_store, Obj, Long,  unsigned long)

#define GLOBAL_STORE_DEFS(t_store, Obj)                  \
  t_store co_ ## Obj ## Store;                           \
  t_store * Get ## Obj ## Store ()                       \
    { return & co_ ## Obj ## Store; }                    \
  GLOBAL_STORE_DEF (t_store, Obj, Int)                   \
  GLOBAL_STORE_DEF (t_store, Obj, Char)                  \
  GLOBAL_STORE_DEF (t_store, Obj, Short)                 \
  GLOBAL_STORE_DEF (t_store, Obj, Long)

Zur Erleichterung der Anwendung generieren wir für die dynamischen Storeklassen 
ct_StdStore und ct_RndStore je ein globales Objekt der Identität Std bzw. Rnd. Das Generieren 
weiterer Objekte, zum Beispiel für eine spezialisierte Stringklasse, bleibt dem Anwender 
überlassen. Die Deklaration der Klasse ct_StdStore ergänzen wir um das Makro 
GLOBAL_STORE_DCLS (ct_StdStore, Std). Darin wird der folgende Text erzeugt.

ct_StdStore * GetStdStore ();    // Zugriffsfunktion auf globales Objekt
class ct_StdIntStore   { .... }; // Globale Klasse mit t_Size == u. int
class ct_StdCharStore  { .... }; // Globale Klasse mit t_Size == u. char
class ct_StdShortStore { .... }; // Globale Klasse mit t_Size == u. short
class ct_StdLongStore  { .... }; // Globale Klasse mit t_Size == u. long

Analog verfahren wir mit dem Roundstore. In der Headerdatei plazieren wir das 
Deklarationsmakro GLOBAL_STORE_DCLS (ct_RndStore, Rnd). Das folgende Programmfragment 
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zeigt das expandierte Definitionsmakro GLOBAL_STORE_DEFS (ct_RndStore, Rnd), das sich in der 
Implementierungsdatei befindet.

ct_RndStore co_RndStore;
ct_RndStore * GetRndStore ()
  { return & co_RndStore; }
unsigned long ct_RndIntStore:: MaxAlloc ()
  { return co_RndStore. MaxAlloc (); }
....
unsigned long ct_RndCharStore:: MaxAlloc ()
  { return co_RndStore. MaxAlloc (); }
....
unsigned long ct_RndShortStore:: MaxAlloc ()
  { return co_RndStore. MaxAlloc (); }
....
unsigned long ct_RndLongStore:: MaxAlloc ()
  { return co_RndStore. MaxAlloc (); }
....

Wir können die generierten Klassen leicht von der eigentlichen Storeklasse ct_RndStore 
unterscheiden. Sie enthalten im Namen die Kurzbezeichnung ihres Größentyps, zum Beispiel 
ct_RndShortStore. In der Anwendung dürfen wir sie nicht miteinander verwechseln. Die Klasse 
ct_RndStore besitzt eigene Attribute, zum Beispiel o_MinSize. Die generierten Klassen besitzen 
keine Attribute. Sie mappen die Funktionalität eines globalen Objekts und verfügen nur über 
das allgemeine Store-Interface. Diesen Unterschied können wir in einem Designdiagramm 
gut erkennen (siehe Abbildung 3-3).
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Abb. 3-3:    Globale Klassen des Roundstores

Im Designdiagramm besitzen die globalen Klassen eine Objekt-Verbindung zur Klasse 
ct_RndStore. Die genaue Art der Verbindung können wir dem Diagramm jedoch nicht 
entnehmen. In Abbildung 3-4 wird eine andere Darstellungsform gewählt. Dort sehen wir, 
daß die Verbindung der Klassen über ein globales Objekt erfolgt.
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Abb. 3-4:    Andere Darstellung der Klassen

3.1.3 Globale C++-Speicherverwaltung

Wollen wir einen Store für die globale C++-Speicherverwaltung einsetzen, müssen wir die 
vorgegebenen Operatoren new und delete neu definieren. Der Store muß den folgenden 
beiden Anforderungen genügen: Der Typ t_Size ist als unsigned int oder unsigned long 
definiert. Eine Adresse behält solange ihre Gültigkeit, bis sie mit Realloc oder Free geändert 
wird. Die Klassen ct_StdStore und ct_RndStore erfüllen diese Bedingungen. Beim Einsatz eines 
Stores für die globalen Operatoren new und delete müssen wird darauf achten, alle mit new 
angeforderten Blöcke mit delete und nicht mit der Standardfunktion free freizugegeben. 
Umgekehrt müssen wir alle mit malloc bereitgestellten Zeiger mit free an die 
Speicherverwaltung der Standardbibliothek zurückgeben.

Der folgende Programmausschnitt enthält die für eine eigene globale Speicherverwaltung 
nötigen Definitionen. Die Umrechnung von logischen Zeigern in Adressen und umgekehrt 
kann bei Standard- und Roundstores entfallen, denn für sie gilt o_ptr == AddrOf (o_ptr). Für 
einen korrekten Programmierstil sollten die Zeiger dennoch umgerechnet werden. Die 
Methoden AddrOf und LogPtrOf sind inline definiert. Sie geben die Zeiger unverändert weiter 
und belasten nicht die Rechenzeit.

#include <stddef.h> // Für globalen Typ size_t

void * operator new (size_t u_size)
  {
  return GetRndStore ()-> AddrOf (GetRndStore ()-> Alloc (u_size));
  }

void * operator new [] (size_t u_size)
  { 
  return GetRndStore ()-> AddrOf (GetRndStore ()-> Alloc (u_size));
  }

void operator delete (void * pv)
  {
  GetRndStore ()-> Free (GetRndStore ()-> LogPtrOf (pv));
  }

void operator delete [] (void * pv)
  {
  GetRndStore ()-> Free (GetRndStore ()-> LogPtrOf (pv));
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  }

int main ()
  {
  char * pc1 = new char [30];
  char * pc2 = new char [25];
  ....
  delete [] pc1; // OK
  free (pc2);    // Crash !!
  }

3.1.4 Dynamischer Speicherblock

In vielen Klassen eines Programms, zum Beispiel Strings und Arraycontainern, wird ein 
Speicherblock dynamischer Länge benötigt. Der Speicher wird von einem Store angefordert. 
Für den späteren Zugriff muß ein Verweis in einem Objekt gehalten werden. Dieses 
Zugriffsobjekt nennen wir im folgenden kurz Block. Es enthält einen Zeiger auf den 
Speicherbereich und dessen Länge (siehe Abbildung 3-5).

Größe

Zeiger Speicherbereich

Block

Abb. 3-5:    Blockkonzept

Der Block stellt keine umfangreiche Funktionalität zur Verfügung, ist aber ein allgemeines, 
wiederverwendbares Konzept. Analog zu den Stores und Containern definieren wir dafür 
keine abstrakte Basisklasse, sonden nur ein Interface. Die Größe des dynamischen 
Speicherbereichs muß abgefragt und neu gesetzt werden können. Für den Zugriff auf die 
darin enthaltenen Daten wird seine Adresse benötigt. Sie kann als void * oder char * 
abgefragt werden. Beide Formen werden häufig verlangt. Der Datentyp für die Größe kann 
sich von Block zu Block unterscheiden. Er ist als geschachtelter Typ in der Blockklasse 
enthalten.

class ct_AnyBlock
  {
public:
  typedef unsigned int t_Size;

  t_Size               GetSize () const;
  void                 SetSize (t_Size o_newSize);
  void *               GetAddr () const;
  char *               GetCharAddr () const;
  };

Häufig werden Blockklassen benötigt, die ihren Speicher von einem gobalen Store anfordern. 
Dafür definieren wir ein Klassentemplate. Es ist eine erste Anwendung der generierten 
Storeklassen. Über das normale Blockinterface hinaus besitzt es weitere Methoden. Zum 
Beispiel erhalten wir mit GetPtr den logischen Zeiger des Speicherbereichs. Die Methoden 
des Blocktemplates sind so einfach, daß alle inline definiert werden können. Im folgenden 
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Programmausschnitt sehen wir die Deklaration des Klassentemplates und die 
Implementierung dreier Methoden.

template <class t_store>
  class gct_Block
    {
  public:
    typedef t_store:: t_Size    t_Size;
    typedef t_store:: t_Pointer t_Pointer;
  protected:
    t_Size               o_Size;
    t_Pointer            o_Ptr;
    static t_store       o_Store;
  public:
    inline               gct_Block ();
    inline               gct_Block (const gct_Block & co_init);
    inline               ~gct_Block ();
    inline gct_Block &   operator = (const gct_Block & co_asgn);
    inline t_Size        GetSize () const;
    inline void          SetSize (t_Size o_newSize);
    inline t_Pointer     GetPtr () const;
    inline void *        GetAddr () const;
    inline char *        GetCharAddr () const;
    inline t_store *     GetStore () const;
    };

template <class t_store>
  inline void gct_Block <t_store>:: SetSize (t_Size o_newSize)
    {
    o_Size = o_newSize;
    o_Ptr = o_Store. Realloc (o_Ptr, o_Size);
    }

template <class t_store>
  inline gct_Block <t_store>:: t_Pointer
  gct_Block <t_store>:: GetPtr () const
    {
    return o_Ptr;
    }

template <class t_store>
  inline void * gct_Block <t_store>:: GetAddr () const
    {
    return o_Store. AddrOf (o_Ptr);
    }

Vom Templateparameter t_store wird das Attribut o_Store gebildet. Es stellt die 
Funktionalität eines globalen Storeobjekts zur Verfügung und ist für alle Instanzen der 
Blockklasse gleich. Da die Größe eines C++-Objekts ungleich Null sein muß, würde o_Store 
das Blockobjekt um ein Dummy-Byte vergrößern. Deshalb deklarieren wir es static. Die 
Verwendung statischer Attribute in inline-Methoden (siehe SetSize und GetAddr) kann in 
dynamisch gelinkten Bibliotheken zu einem Fehlverhalten des Programms führen. Bei einer 
Instanz einer globalen Storeklasse besteht diese Gefahr nicht, denn das Objekt enthält nur 
ein Dummy-Byte und statische Methoden.

Der Konstruktor des Blocks initialisiert die Attribute o_Size und o_Ptr auf Null. Der Destruktor 
gibt den angeforderten Speicher an den Store zurück. Kopier-Konstruktor und Gleich-
Operator übernehmen nur die Größe des zu kopierenden Blocks, nicht den Inhalt des 
Speicherbereichs. Die Kopiersemantik kann sehr unterschiedlich sein und muß vom 
Blockanwender implementiert werden. Ein String kopiert die Zeichenkette binär. In einem 
Arraycontainer müssen die Objekte einzeln kopiert werden.
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template <class t_store>
  inline gct_Block <t_store>:: gct_Block (const gct_Block & co_init)
    {
    o_Size = co_init. o_Size;
    o_Ptr = o_Store. Alloc (co_init. o_Size);
    }

template <class t_store>
  inline gct_Block <t_store> &
  gct_Block <t_store>:: operator = (const gct_Block & co_asgn)
    {
    SetSize (co_asgn. o_Size);
    return * this;
    }

Ein C++-Template besitzt Ähnlichkeit mit einem Präprozessormakro. Ersetzen wir im 
Templatetext die formalen durch die aktuellen Parameter, erhalten wir eine normale Klasse. 
Werden zusätzlich die geschachtelten Typen der Storeklasse aufgelöst, ergibt sich für die 
Blockklasse gct_Block <ct_RndCharStore> die folgende Deklaration.

class gct_Block <ct_RndCharStore>
  {
public:
  typedef unsigned char  t_Size;
  typedef void *         t_Pointer;
protected:
  t_Size                 o_Size; // Ein Byte
  t_Pointer              o_Ptr;  // Vier Bytes
  static ct_RndCharStore o_Store;
public:
  ....
  inline ct_RndCharStore * GetStore () const; // Liefert Adr. von o_Store
  };

Wir können Instanzen dieser Blockklasse bilden, zum Beispiel co_block. Das Objekt umfaßt 
fünf Bytes. Die Größe des Speicherbereichs ist durch den Datentyp unsigned char begrenzt 
und kann maximal 255 Bytes betragen. Im Normalfall greifen wir mit der Funktion 
GetRndStore auf den zugehörigen globalen Store co_RndStore zu. Verwenden wir mehrere 
globale Roundstores, ist nicht immer der Store bekannt, von dem ein Block seinen Speicher 
anfordert. Wir erreichen ihn auch über den Block. Die Blockmethode GetStore liefert die 
Adresse des Attributs o_Store. Mit der Methode GetStore dieses Attributs erhalten wir einen 
Zeiger auf das globale Storeobjekt. Zum Verändern der Minimalgröße des zugehörigen 
Roundstores ist die folgende Anweisung erforderlich.

co_block. GetStore ()-> GetStore ()-> SetMinSize (32);

3.1.5 Eine Blockanwendung - String

Als erste Anwendung des Blockkonzepts lernen wir ein Stringtemplate kennen. Es wird mit 
einer Blockklasse parametrisiert und verwendet nur das normale Blockinterface. Eine Klasse 
mit der erweiterten Funktionalität des Templates gct_Block kann auch als Parameter 
übergeben werden. Die Stringklasse besitzt keine eigenen Attribute. Auf Länge und 
Speicherbereich greift sie über das Blockinterface zu. Ebenso benötigt sie keinen Destruktor. 
Die Basisklasse gibt am Ende den belegten Speicher frei. Die Methodenschnittstelle 
übernehmen wir von der Stringklasse unseres Beispielprogramms OHelp. Für Längenangaben 
wird der lokale Typ t_Size des Blocks verwendet. Der folgende Programmausschnitt enthält 
die Deklaration des Klassentemplates und die Implementierung zweier Methoden.

template <class t_block>
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  class gct_String: private t_block
    {
  protected:
    inline void          SetLen (t_Size o_len);
  public:
    inline               gct_String ();
    inline               gct_String (const char * pc_init);
    inline               gct_String (const gct_String & co_init);
    gct_String &         operator = (const char * pc_asgn);
    gct_String &         operator = (const gct_String & co_asgn);
    inline t_Size        GetLen () const;
    inline const char *  GetStr (t_Size o_pos = 0) const;
    void                 Insert (t_Size o_pos, const char * pc_ins);
    void                 Delete (t_Size o_pos, t_Size o_len);
    inline char &        operator [] (t_Size o_pos) const;
    inline const t_block * GetConstBlock () const;
    };

template <class t_block>
  inline void gct_String <t_block>:: SetLen (t_Size o_len)
    {
    SetSize (o_len + 1);
    }

template <class t_block>
  void gct_String <t_block>:: Insert (t_Size o_pos, const char * pc_ins)
    {
    ASSERT (o_pos <= GetLen ());
    ASSERT (pc_ins != 0);
    t_Size o_inslen = (t_Size) strlen (pc_ins);
    if (o_inslen > 0)
      {
      SetLen (GetLen () + o_inslen);
      memmove (GetCharAddr () + o_pos + o_inslen, GetCharAddr () + o_pos,
        GetLen () - o_pos - o_inslen + 1);
      memcpy  (GetCharAddr () + o_pos, pc_ins, o_inslen);
      }
    }

Solange die Bedingung GetLen () == strlen (GetStr ()) gilt, befindet sich ein Stringobjekt in 
einem konsistenten Zustand. Um die Konsistenz zu gewährleisten, werden verändernde 
Blockmethoden, zum Beispiel SetSize, nur innerhalb der Stringmethoden aufgerufen. Einem 
Stringanwender dürfen sie nicht zugänglich sein. Deshalb erbt die Stringklasse privat von der 
übergebenen Blockklasse. Mit der Methode GetConstBlock werden dem Anwender des Strings 
eventuelle Erweiterungen des Blocks zugänglich gemacht. Sie liefert einen Zeiger auf die 
konstante Basisklasse.

template <class t_block>
  inline const t_block * gct_String <t_block>:: GetConstBlock () const
    {
    return this;
    }

Eine bessere Lösung für dieses Problem wäre eine konstante Vererbung. Dabei könnte ein 
Anwender der abgeleiteten Klasse nur konstante Methoden der Basisklasse aufrufen. Die 
Programmiersprache C++ bietet dafür aber keine Möglichkeit.

template <class t_block>
  class gct_String: const public t_block // Hilfreich, aber kein C++
    { ....

Spirick Tuning    Tutorial    Seite 109



Ebenso zahlreich wie die Blockklassen sind die möglichen Stringklassen. Zum Beispiel fordert 
die Templateklasse gct_String <gct_Block <ct_RndShortStore> > ihren Speicher vom globalen 
Objekt co_RndStore an. Ein Stringobjekt benötigt insgesamt sechs Bytes, vier Bytes für den 
Zeiger (void *) und zwei Bytes für die Länge (unsigned short). Die Zeichenkette kann maximal 
65535 Bytes enthalten. Wir können den Speicher auch aus einem Roundstore anfordern, der 
andere Werte für Minimalgröße und Schritt-Teiler als das vordefinierte Objekt co_RndStore 
besitzt. Das folgende Programmfragment demonstriert die erforderlichen Schritte.

// In einer Headerdatei plazieren
GLOBAL_STORE_DCLS (ct_RndStore, String)
typedef gct_Block <ct_StringIntStore> t_StringBlock;
typedef gct_String <t_StringBlock> t_String;

// In einer Implementierungsdatei plazieren
GLOBAL_STORE_DEFS (ct_RndStore, String)

int main ()
  {
  GetStringStore ()-> SetMinSize (32);
  GetStringStore ()-> SetStepDiv (2);
  t_String o_string;
  ....
  }

Die Makros generieren das globale Objekt co_StringStore und die zugehörigen Storeklassen. 
Mit ct_StringIntStore parametrisieren wir eine Blockklasse und nennen sie t_StringBlock. Sie 
dient als Parameter des Stringtemplates. Zur Abkürzung wird auch die Stringklasse per 
Typdefinition in t_String umbenannt. Am Programmbeginn stellen wir Minimalgröße und 
Schritt-Teiler des globalen Objekts co_StringStore ein. Danach können wir Instanzen der 
Stringklasse bilden, zum Beispiel o_string. In Abbildung 3-6 sehen wir die wichtigsten 
Klassen, von denen t_String abhängt.
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Abb. 3-6:    An t_String beteiligte Klassen

Der dynamische Speicherblock eines Strings umfaßt mindestens ein Zeichen, das 
abschließende Nullzeichen. Es wird bei der Länge nicht mitgerechnet, ist aber im 
zugrundeliegenden Block enthalten. Es wird schon im Konstruktor initialisiert.

template <class t_block>
  inline gct_String <t_block>:: gct_String ()
    {
    SetLen (0);
    * GetCharAddr () = '\0';
    }

In Tabelle 3-1 sehen wird die Methodenaufrufe zum Anfordern dieses einen Bytes. Der 
Konstruktor (Schritt 1) ruft die Methode SetLen auf (Schritt 2). Sie erhöht den übergebenen 
Wert um eins und gibt ihn an die Blockmethode SetSize weiter (Schritt 3). Die Blockklasse 
verwendet ihr statisches Attribut o_Store zum Verändern der Größe (Schritt 4). Die globale 
Storeklasse gibt den Methodenaufruf an das zugehörige Objekt co_StringStore weiter (Schritt 
5). Da der übergebene Zeiger gleich Null ist, ruft Realloc die Methode Alloc auf (Schritt 6). 
Diese rundet die Größe (Schritt 7) und fordert vom statischen Attribut co_Store den Speicher 
an (Schritt 8). Der Standardstore mappt die Anforderung auf die Standardfunktion malloc 
(Schritt 9).
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Schritt Objekt Methode

1 o_string t_String:: t_String ()

2 o_string t_String:: SetLen (0)

3 o_string t_StringBlock:: SetSize (1)

4 t_StringBlock:: o_Store ct_StringIntStore:: Realloc (0, 1)

5 co_StringStore ct_RndStore:: Realloc (0, 1)

6 co_StringStore ct_RndStore:: Alloc (1)

7 co_StringStore ct_RndStore:: Round (1)

8 ct_RndStore:: co_Store ct_StdStore:: Alloc (28)

9 malloc (28)

Tab. 3-1:    Speicheranforderung im Stringkonstruktor

Nachdem der Speicher angefordert wurde, muß das erste Byte mit dem Wert Null initialisiert 
werden. Die für den Zugriff nötigen Schritte sehen wir in Tabelle 3-2. Der Konstruktor ruft 
die Blockmethode GetCharAddr auf. Diese ruft über das statische Attribut o_Store die Methode 
ct_StringIntStore:: AddrOf (o_Ptr) auf. Beide Methoden sind inline definiert und enthalten 
keine Berechnungen. Der Zugriff ist genauso schnell wie über einen C++-Zeiger.

Schritt Objekt Methode

1 o_string t_String:: t_String ()

2 o_string t_StringBlock:: GetCharAddr ()

3 t_StringBlock:: o_Store ct_StringIntStore:: AddrOf (o_Ptr)

Tab. 3-2:    Speicherzugriff im Stringkonstruktor

3.2 Speicher nach Maß

3.2.1 Fester Store im Block

Eine einfache feste Speicherverwaltung wird mit Hilfe eines Blocks realisiert. Wir nennen sie 
kurz Blockstore. Für eine gute Performance definieren wir auch dafür ein Klassentemplate. 
Es wird mit einer Blockklasse parametrisiert. Ein weiterer Parameter ist die Größe der Blöcke, 
die bereitgestellt werden sollen. Eine Speicherung der Größe als Attribut ergibt wenig Sinn, 
denn es ist eine Konstante. Sie müßte mit dem Konstruktor initialisiert werden und würde 
sich später nicht mehr ändern, aber Speicher belegen. Eine bessere Lösung ist die Übergabe 
als Templateparameter. Im folgenden Programmausschnitt sehen wir die Deklaration des 
Klassentemplates für einen Blockstore.

template <class t_block, unsigned u_fixSize>
  class gct_BlockStore: private t_block
    {
  public:
    typedef t_block:: t_Size t_Size;
    typedef t_block:: t_Size t_Pointer;
  private:
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    t_Pointer            o_FirstFree;

    inline t_Pointer *   IdxAddrOf (t_Pointer o_ptr) const;
  public:
    inline               gct_BlockStore ();
    inline unsigned long MaxAlloc () const;
    inline unsigned      StoreInfoSize () const;
    t_Pointer            Alloc (t_Size o_size);
    t_Pointer            Realloc (t_Pointer o_ptr, t_Size o_size);
    void                 Free (t_Pointer o_ptr);
    inline void *        AddrOf (t_Pointer o_ptr) const;
    inline t_Pointer     LogPtrOf (void * pv_adr) const;
    inline t_Pointer     LastIdx () const;
    inline bool          HasFree () const;
    inline const t_block * GetConstBlock () const;
    };

Um dem Anwender eventuelle Erweiterungen des Blocks zugänglich zu machen, enthält 
auch der Blockstore eine Methode GetConstBlock. Der Größentyp t_Size wird vom Block 
übernommen. In einem Blockstore ist der Zeigertyp t_Pointer gleich dem Größentyp. Die 
verwalteten Speicherblöcke werden aufsteigend numeriert. Die fortlaufende Nummer 
innerhalb des umfassenden Blocks ergibt den logischen Zeiger. Die Zählung beginnt mit dem 
Wert Eins, denn der Zeigerwert Null ist per Definition ungültig.

Die Methode MaxAlloc liefert als Resultat den Templateparameter u_fixSize. Größere 
Speicherbereiche kann ein Blockstore nicht zur Verfügung stellen. Die StoreInfoSize beträgt 
null Bytes. Das verdeutlicht die hohe Speicherauslastung. LastIdx berechnet den größten 
gültigen Zeigerwert des Blockstores. HasFree gibt Auskunft darüber, ob Elemente in der 
Freiliste enthalten sind. Die Methode AddrOf liefert die zu einem logischen Zeiger (einem 
Index) gehörende Speicheradresse. Der um eins verminderte Index wird mit u_fixSize 
multipliziert. Wir erhalten die Byteposition innerhalb des umfassenden Blocks. Diese wird zur 
Anfangsadresse addiert. Der logische Nullzeiger wird gesondert behandelt.

template <class t_block, unsigned u_fixSize>
  inline gct_BlockStore <t_block, u_fixSize>:: t_Pointer
  gct_BlockStore <t_block, u_fixSize>:: LastIdx () const
    {
    return GetSize () / u_fixSize;
    }

template <class t_block, unsigned u_fixSize>
  inline void *
  gct_BlockStore <t_block, u_fixSize>:: AddrOf (t_Pointer o_ptr) const
    {
    if (o_ptr == 0)
      return 0;
    else
      {
      ASSERT (o_ptr <= LastIdx ());
      return GetCharAddr () + (unsigned) (o_ptr - 1) * u_fixSize;
      }
    }

In einem Blockstore verursacht die Implementierung der Freiliste den größten Aufwand. Der 
Freispeicher verwaltet sich wie in einem dynamischen Store selbst. Die freien Blöcke bilden 
eine einfach verkettete Liste. Jedes Element enthält den logischen Zeiger des Nachfolgers. 
Deshalb muß für einen Blockstore die Bedingung u_fixSize >= sizeof (t_Pointer) gelten. Eine 
unsortierte Freiliste ist einfach zu handhaben. Dabei ist aber die Wahrscheinlichkeit gering, 
daß am physischen Ende des umfassenden Blocks etwas frei wird und dieser verkleinert 
werden kann.
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Die private Methode IdxAddrOf dient der Verwaltung der Freiliste. Sie wandelt den 
untypisierten C++-Zeiger der Methode AddrOf in einen typisierten um. Enthält der logische 
Zeiger o_ptr den Index eines Elements der Freiliste, erhalten wir mit * IdxAddrOf (o_ptr) den 
Index des Nachfolgers.

Unsere Implementierung des Blockstores verfügt über eine sortierte Freiliste. Das Attribut 
o_FirstFree verweist auf das Freielement mit dem kleinsten Index. Jedes Element der 
Freiliste enthält den Index des nächstgrößeren. Die Methode Alloc versucht, das erste 
Element aus der Freiliste zu entnehmen. Ist die Freiliste leer, wird der Block um u_fixSize 
Bytes vergrößert und der Index des letzten Elements zurückgegeben. Beim Vergrößern kann 
ein Überlauf eintreten. Ist zum Beispiel der Größentyp gleich unsigned char, u_fixSize gleich 
zehn und die Blockgröße gleich 250 Bytes, ergibt (unsigned char) 250 + 10 den Wert Vier.

template <class t_block, unsigned u_fixSize>
  gct_BlockStore <t_block, u_fixSize>:: t_Pointer
  gct_BlockStore <t_block, u_fixSize>:: Alloc (t_Size o_size)
    {
    ASSERT (o_size <= u_fixSize);
    if (o_size == 0)
      return 0;
    else
      if (o_FirstFree != 0)
        {
        t_Pointer o_ptr = o_FirstFree;
        o_FirstFree = * IdxAddrOf (o_FirstFree);
        return o_ptr;
        }
      else
        if (GetSize () + (t_Size) u_fixSize < u_fixSize)
          return 0; // Überlauf
        else
          {
          SetSize (GetSize () + u_fixSize);
          ASSERT (GetAddr () != 0);
          return LastIdx ();
          }
    }

Die Implementierung von Realloc wird auf Alloc und Free zurückgeführt. Die Definition der 
Methode Free ist sehr umfangreich und wird hier nicht abgebildet. Das freizugebende 
Element wird in die Liste einsortiert. Befindet es sich am physischen Ende des umfassenden 
Blocks, wird dieser verkleinert. Dabei muß geprüft werden, ob sich unmittelbar davor 
weitere freie Elemente befinden.

Unser Blockstoretemplate verwendet nur das normale Interface eines Blocks. Es kann mit 
beliebigen Blockklassen parametrisiert werden. Die Klasse gct_BlockStore <10, gct_Block 
<ct_StdCharStore> > fordert ihren Speicher vom globalen Objekt co_StdStore an. Ein Objekt 
dieser Blockstoreklasse umfaßt sechs Bytes. Der dynamische Block kann bis zu 255 Bytes 
enthalten. Das entspricht 25 internen Blöcken der Größe 10 Bytes. Beim Anfordern des 26. 
Elements tritt der Überlauf ein.

Bei der Anwendung eines Blockstores müssen wir beachten, daß die Adresse eines 
bereitgestellten Blocks nur solange gültig bleibt, wie sich am Store nichts ändert. Fordern 
wir mit Alloc einen neuen Block an, und die Freiliste ist leer, muß der umfassende Block 
vergrößert werden. Dabei kann die Schrittweite des darunterliegenden globalen Stores 
überschritten werden. Der umfassende Block wird mit seinem gesamten Inhalt an eine 
andere Stelle im Speicher kopiert. Die Adressen der inneren Blöcke ändern sich, ihre 
logischen Zeiger behalten jedoch ihre Gültigkeit.
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3.2.2 Ein Anwendungsbeispiel

Homogene Container sind typische Anwendungen des Blockstores. Wir werden sie einige 
Abschnitte später kennenlernen. Ein Blockstore kann auch für andere Zwecke eingesetzt 
werden, zum Beispiel eine spezialisierte Stringklasse. Treten in einem Programm viele 
Zeichenketten auf, die nicht länger als acht Zeichen werden (einschließlich Nullzeichen), ist 
eine dynamische Speicherverwaltung ungeeignet. Mit unseren bisherigen Mitteln würden wir 
dafür die Klasse gct_String <gct_Block <ct_StdCharStore> > verwenden. Sie benötigt vier Bytes 
für den Zeiger (void *) und ein Byte für die Länge (unsigned char), also insgesamt fünf Bytes. 
Die Zeichenkette wird vom globalen Objekt co_StdStore angefordert und belegt 16 Bytes. Das 
ist die interne Minimalgröße der dynamischen Speicherverwaltung.

Eine bessere Speicherauslastung erzielen wir mit einem Blockstore. Zum Generieren des 
globalen Storeobjekts und der zugehörigen Klassen können wir die bekannten Makros nicht 
einsetzen. Logische Zeiger eines Blockstores sind Indizes, und es gilt o_ptr != AddrOf (o_ptr). 
Wir verwenden leicht geänderte Makros mit dem Suffix STATIC. Sie unterscheiden sich von 
den bekannten dadurch, daß die Methoden AddrOf und LogPtrOf nicht inline, sondern static 
definiert werden.

typedef gct_Block <ct_RndShortStore> t_RndShortBlock;
typedef gct_BlockStore <t_RndShortBlock, 8> t_Fix8Store;
GLOBAL_STORE_DCLS_STATIC (t_Fix8Store, Fix8)
GLOBAL_STORE_DEFS_STATIC (t_Fix8Store, Fix8)

In diesen Makros wird das globale Objekt co_Fix8Store generiert. Es verwaltet Blöcke der 
festen Größe acht Bytes. Der umfassende Block wird vom globalen Objekt co_RndStore 
angefordert. Die Blockgröße ist durch den Datentyp unsigned short auf 65535 Bytes 
begrenzt. Der globale Blockstore kann also maximal 8191 Acht-Byte-Blöcke bereitstellen. 
Seine logischen Zeiger sind ebenfalls vom Typ unsigned short.

Zum globalen Store werden vier Klassen generiert. Sie unterscheiden sich durch ihren 
geschachtelten Typ t_Size. Sinnvoll ist nur der Größentyp unsigned char, denn es können 
nicht mehr als acht Bytes angefordert werden. Mit dieser globalen Storeklasse können wir 
einen Block und damit einen String parametrisieren.

typedef gct_Block <ct_Fix8CharStore> t_Block8;
typedef gct_String <t_Block8> t_String8;
....
t_String8 o_string8;

Ein Objekt der Klasse t_String8 umfaßt nur drei Bytes. Der Zeiger ist ein Index des globalen 
Blockstores und benötigt zwei Bytes. Die Größenangabe des Strings erfordert ein weiteres 
Byte. Die eigentliche Zeichenkette belegt acht Bytes im Blockstore (siehe Abbildung 3-7). 
Damit haben wir den Gesamtspeicherbedarf gegenüber der oben erwähnten Stringklasse auf 
etwa die Hälfte reduziert. Für ein einzelnes Stringobjekt lohnt sich dieser Aufwand nicht. 
Enthält aber eine Klasse zum Beispiel zehn Stringattribute, belegen sie mit der Stringklasse 
t_String8 nur 30 Bytes.

Spirick Tuning    Tutorial    Seite 115



Objekt vom Typ t_String8 Globales Objekt co_Fix8Store

unsigned short o_Size

void * o_Ptr

Basisklasse t_RndShortBlock

unsigned char o_Size

unsigned short o_Ptr

Basisklasse t_Block8
Acht-Byte-Block

Acht-Byte-Block

. . .

Abb. 3-7:    Speicherlayout der Objekte o_string8 und co_Fix8Store

Die gute Speicherauslastung müssen wir mit einer Verlangsamung des Zugriffs bezahlen. 
Nachdem im Konstruktor des Objekts o_string8 ein neuer Acht-Byte-Block bereitgestellt 
wurde, muß dem ersten Byte der Wert Null zugewiesen werden. In Tabelle 3-3 sehen wir die 
Teilschritte des Speicherzugriffs. Im Konstruktor (Schritt 1) wird die Blockmethode 
GetCharAddr aufgerufen (Schritt 2). Sie verwendet das statische Attribut o_Store (Schritt 3). 
Diesmal ist die Methode AddrOf der globalen Storeklasse nicht inline definiert. Sie gibt den 
Aufruf an das globale Objekt co_Fix8Store weiter (Schritt 4). Der globale Blockstore ruft die 
Methode GetCharAddr seiner Basisklasse t_RndShortBlock auf (Schritt 5). Die letzte Methode in 
dieser Folge ist ct_RndShortStore:: AddrOf (Schritt 6). Sie ist inline definiert und gibt den 
übergebenen Zeiger ohne Änderung zurück. Dieser Speicherzugriff sieht sehr aufwendig aus. 
Die meisten Methoden sind aber inline definiert. In der Summe ist er nicht viel langsamer als 
der Zugriff auf ein C++-Array mit einem Index.

Schritt Objekt Methode

1 o_string8 t_String8:: t_String8 ()

2 o_string8 t_Block8:: GetCharAddr ()

3 t_Block8:: o_Store ct_Fix8CharStore:: AddrOf (o_Ptr)

4 co_Fix8Store t_Fix8Store:: AddrOf (o_ptr)

5 co_Fix8Store t_RndShortBlock:: GetCharAddr ()

6 t_RndShortBlock:: o_Store ct_RndShortStore:: AddrOf (o_Ptr)

Tab. 3-3:    Speicherzugriff im Stringkonstruktor

Einem neuen Objekt der Klasse t_String8 wird im Konstruktor ein Block im globalen 
co_Fix8Store zugeordnet. Da die Größe des dynamischen Blocks nur zwischen ein und acht 
Bytes schwanken kann, behält das Objekt denselben logischen Zeiger bis zu seinem 
Destruktor. Dann wird der belegte Speicher freigegeben. Der globale Blockstore ändert sich 
also, wenn ein String erzeugt oder gelöscht wird. Während der Arbeit mit den Strings 
(Insert, Delete usw.) bleibt sein Aufbau konstant. 

Die Methode GetStr liefert einen C++-Zeiger auf die Zeichenkette. Wir müssen beachten, 
daß dieser bei der Klasse t_String8 nur solange gültig bleibt, wie am Blockstore nichts 
geändert wurde. Nach dem Erzeugen oder Löschen eines Strings sind alle vorher 
abgefragten C++-Zeiger nicht mehr gültig. Zum Beispiel dürfen wir den Konstruktor 
gct_String (const char * pc) nicht mit einem Rückgabewert von GetStr verwenden. Beim 
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Kopierkonstruktor tritt dieses Problem nicht auf, denn die Zeichenkette des zu kopierenden 
Strings wird erst abgefragt, nachdem der Block für das neue Objekt bereitgestellt wurde.

t_String8 o_string81 (o_string8);            // OK
t_String8 o_string82 (o_string8. GetStr ()); // Crash !!

Eine Stringklasse mit fester Obergrenze der Länge ist keine typische Anwendung des 
Blockstores. Es ist ein Prinzipbeispiel, an dem wir die Funktionsweise eines Blockstores 
studieren können. Für das Stringproblem existiert eine noch effizientere Lösung. Der 
Speicherbereich fester Größe kann als Attribut direkt im Block untergebracht werden. Dafür 
definieren wir das folgende Klassentemplate.

template <class t_size, unsigned u_fixSize>
  class gct_FixBlock
    {
  public:
    typedef t_size        t_Size;
  protected:
    t_Size                o_Size;
    char                  ac_Block [u_fixSize];
  public:
    inline                gct_FixBlock ();
    inline                gct_FixBlock (const gct_FixBlock & co_init);
    inline gct_FixBlock & operator = (const gct_FixBlock & co_asgn);
    inline t_Size         GetSize () const;
    inline void           SetSize (t_Size o_newSize);
    inline void *         GetAddr () const;
    inline char *         GetCharAddr () const;
    };

template <class t_size, unsigned u_fixSize>
  inline void gct_FixBlock <t_size, u_fixSize>::
  SetSize (t_Size o_newSize)
    {
    ASSERT (o_newSize <= u_fixSize);
    o_Size = o_newSize;
    }

template <class t_size, unsigned u_fixSize>
  inline void * gct_FixBlock <t_size, u_fixSize>:: GetAddr () const
    {
    if (o_Size == 0)
      return 0;
    else
      return (void *) ac_Block;
    }

Dieses Template wird mit dem Größentyp und der maximalen Blockgröße parametrisiert. 
Eine Storeklasse muß nicht angegeben werden, denn der Speicherblock ist als Attribut im 
Blockobjekt enthalten und wird mit diesem erzeugt und gelöscht. Das Template gct_FixBlock 
stellt das normale Blockinterface zur Verfügung und kann als Parameter anderer Templates, 
die eine Blockklasse erwarten, dienen. Im folgenden Programmfragment wird mit den 
Parametern unsigned char und 8 die Blockklasse t_FixBlock8 und damit die Stringklasse 
t_FixString8 definiert. Ein Stringobjekt (zum Beispiel o_fixString8) umfaßt 9 Bytes.

typedef gct_FixBlock <unsigned char, 8> t_FixBlock8;
typedef gct_String <t_FixBlock8> t_FixString8;
....
t_FixString8 o_fixString8;
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3.2.3 Store mit Referenzzählern

Ein Refstore realisiert eine Speicherverwaltung, die jedem Block einen Referenzzähler 
zuordnet. Dafür wird die Klasse ct_RefCount verwendet. Sie enthält neben dem 
Referenzzähler o_RefCount den Wahrheitswert b_Alloc. Die maximale Größe des 
Referenzzählers ist durch den Datentyp t_RefCount bestimmt. Wir definieren ihn fest auf 
unsigned short. Werden in einem Programm Referenzzähler unterschiedlicher Größe benötigt, 
muß die Klasse ct_RefCount als Template definiert werden, das den primitiven Datentyp für 
den Referenzzähler als Parameter erwartet. Das boolesche Attribut b_Alloc gibt Auskunft 
darüber, ob der Block im Refstore belegt oder frei ist. Erreicht der Referenzzähler den Wert 
Null und ist b_Alloc false, wird die Bedingung IsNull erfüllt.

Für eine optimale Speicherauslastung definieren wir beide Attribute der Klasse ct_RefCount 
als Bitfeld. Der eigentliche Referenzzähler o_RefCount umfaßt 15 Bit und kann Werte bis 
32767 annehmen. Das ist für die meisten Anwendungen ausreichend. Im folgenden 
Programmausschnitt sehen wir die Deklaration der Klasse ct_RefCount und die Definition der 
Methoden DecRef und IsNull. Die Methoden enthalten nur ein oder zwei Anweisungen und 
sind inline definiert.

typedef unsigned short t_RefCount;

class ct_RefCount
  {
  t_RefCount           o_RefCount: sizeof (t_RefCount) * 8 - 1;
  bool                 b_Alloc: 1;
public:
  inline               ct_RefCount ();
  inline void          Init ();
  inline void          IncRef ();
  inline void          DecRef ();
  inline t_RefCount    GetRef () const;
  inline bool          IsAlloc () const;
  inline void          SetAlloc ();
  inline bool          IsFree () const;
  inline void          SetFree ();
  inline bool          IsNull ()const;
  };

inline void ct_RefCount:: DecRef ()
  {
  ASSERT (o_RefCount > 0);
  o_RefCount --;
  }

inline bool ct_RefCount:: IsNull ()const
  {
  return (o_RefCount == 0) && (! b_Alloc);
  }

Für eine hohe Flexibilität und Performance definieren wir den Refstore als ein 
Klassentemplate. Einziger Parameter ist der zugrunde gelegte Store. Von ihm werden die 
geschachtelten Typen t_Size und t_Pointer übernommen. Der Refstore nutzt die 
Funktionalität der übergebenen Storeklasse, erweitert sie aber nicht im Sinne einer Is-A-
Relation. Deshalb erbt er nicht, sondern enthält sie als Attribut o_Store. Mit der Methode 
GetStore können wir darauf zugreifen. Im folgenden Programmfragment sehen wir die 
Deklaration des Klassentemplates. Die Methoden sind sehr einfach und können fast alle 
inline definiert werden, zum Beispiel MaxAlloc und StoreInfoSize.

template <class t_store>
  class gct_RefStore
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    {
  public:
    typedef t_store:: t_Size    t_Size;
    typedef t_store:: t_Pointer t_Pointer;
  protected:
    t_store              o_Store;

    inline ct_RefCount * RefPtr (t_Pointer o_ptr) const;
  public:
    inline unsigned long MaxAlloc () const;
    inline unsigned      StoreInfoSize () const;
    t_Pointer            Alloc (t_Size o_size);
    t_Pointer            Realloc (t_Pointer o_ptr, t_Size o_size);
    inline void          Free (t_Pointer o_ptr);
    inline void *        AddrOf (t_Pointer o_ptr) const;
    inline t_Pointer     LogPtrOf (void * pv_adr) const;
    inline void          IncRef (t_Pointer o_ptr);
    inline void          DecRef (t_Pointer o_ptr);
    inline t_RefCount    GetRef (t_Pointer o_ptr) const;
    inline bool          IsAlloc (t_Pointer o_ptr) const;
    inline bool          IsFree (t_Pointer o_ptr) const;
    inline t_store *     GetStore ();
    };

template <class t_store>
  inline unsigned long gct_RefStore <t_store>:: MaxAlloc () const
    {
    return o_Store. MaxAlloc () - sizeof (ct_RefCount);
    }

template <class t_store>
  inline unsigned gct_RefStore <t_store>:: StoreInfoSize () const
    {
    return o_Store. StoreInfoSize () + sizeof (ct_RefCount);
    }

Die private Methode RefPtr wandelt die untypisierte Anfangsadresse des Blocks in einen 
typisierten Zeiger um. Damit können wir auf das ct_RefCount-Objekt zugreifen. Zum Beispiel 
wird in der Refstoremethode DecRef die Methode ct_RefCount:: DecRef aufgerufen. Liefert 
anschließend die Methode IsNull den Wert true, gibt der Refstore den Block an den 
darunterliegenden Store zurück. Addieren wir zum Rückgabewert von RefPtr mit der C++-
Zeigerarithmetik den Wert Eins, erhalten wir die Adresse des nutzbaren Bereichs des Blocks. 
Sie wird in der Methode AddrOf ermittelt.

Die Adreßrechnung kann nicht wie beim Roundstore (siehe Abschnitt 3.1.1) in der Methode 
Alloc erfolgen, denn ein Zeiger des Refstores ist nicht unbedingt eine Speicheradresse. Die 
Refstoremethode Alloc muß den logischen Zeiger unverändert weitergeben. Im folgenden 
Abschnitt lernen wir einen Block-Refstore kennen. Seine Zeiger gehören zu einem 
vorzeichenlosen Zahlentyp, zum Beispiel unsigned short. Die Blöcke werden wie in einem 
Blockstore mit eins beginnend aufsteigend numeriert (siehe Abbildung im folgenden 
Abschnitt). Addieren wir zum logischen Zeiger Eins die Größe des ct_RefCount-Objekts, 
erhalten wir nicht die Position des nutzbaren Bereichs im Block Eins, sondern den logischen 
Zeiger Drei.

template <class t_store>
  inline ct_RefCount *
  gct_RefStore <t_store>:: RefPtr (t_Pointer o_ptr) const
    {
    ASSERT (o_ptr != 0);
    return (ct_RefCount *) o_Store. AddrOf (o_ptr);
    }
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template <class t_store>
  inline void gct_RefStore <t_store>:: DecRef (t_Pointer o_ptr)
    {
    RefPtr (o_ptr)-> DecRef ();
    if (RefPtr (o_ptr)-> IsNull ())
      o_Store. Free (o_ptr);
    }

template <class t_store>
  inline void * gct_RefStore <t_store>:: AddrOf (t_Pointer o_ptr) const
    {
    if (o_ptr == 0)
      return 0;
    else
      {
      ASSERT (IsAlloc (o_ptr));
      return RefPtr (o_ptr) + 1;
      }
    }

Wird von einem Refstore Speicher angefordert, erhöht er die Größe um sizeof (ct_RefCount) 
Bytes und gibt die Anforderung an den darunterliegenden Store weiter. Kann dieser den 
Speicher bereitstellen, initialisiert der Refstore das ct_RefCount-Objekt und liefert den 
logischen Zeiger zurück. Beim Freigeben eines Blocks wird mit der Methode ct_RefCount:: 
SetFree das Attribut b_Alloc auf false gesetzt. Danach erfolgt wie bei DecRef die Prüfung der 
Bedingung IsNull. Ist sie erfüllt, wird der Block im darunterliegenden Store freigegeben.

template <class t_store>
  gct_RefStore <t_store>:: t_Pointer
  gct_RefStore <t_store>:: Alloc (t_Size o_size)
    {
    if (o_size == 0)
      return 0;
    else
      {
      t_Pointer o_ptr = o_Store. Alloc (o_size + sizeof (ct_RefCount));
      if (o_ptr == 0)
        return 0;
      else
        {
        RefPtr (o_ptr)-> Init ();
        return o_ptr;
        }
      }
    }

template <class t_store>
  inline void gct_RefStore <t_store>:: Free (t_Pointer o_ptr)
    {
    if (o_ptr != 0)
      {
      RefPtr (o_ptr)-> SetFree ();
      if (RefPtr (o_ptr)-> IsNull ())
        o_Store. Free (o_ptr);
      }
    }
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3.2.4 Konkrete Refstores

Parametrisieren wir das Refstoretemplate mit einer Storeklasse, erhalten wir einen konkreten 
Refstore. Zum Beispiel ist gct_RefStore <ct_StdStore> ein Refstore, der auf dem Standardstore 
aufbaut. Mehr Flexibilität erreichen wir mit den globalen Stores, die im Makro 
GLOBAL_STORE_DCLS deklariert werden. Sie nutzen ein globales Storeobjekt und existieren in vier 
Versionen, die sich durch den geschachtelten Typ t_Size unterscheiden. Die globalen 
Storeklassen enthalten keine eigenen Attribute und besitzen die Größe ein Byte. Übergeben 
wir sie als Parameter an das Refstoretemplate, umfaßt auch der erzeugte Refstore ein Byte.

Die Klasse gct_RefStore <ct_RndIntStore> erweitert die Funktionalität einer globalen 
Roundstoreklasse um die Referenzzähler. Wir müssen beachten, daß für sie o_ptr != AddrOf 
(o_ptr) gilt. Setzen wir sie für die globale C++-Speicherverwaltung ein, müssen wir in den 
Operatoren new und delete logische Zeiger und Speicheradressen ineinander umrechnen. 
Diese Umrechnung kann bei einem Standard- oder Roundstore entfallen. Wollen wir auf den 
Referenzzähler eines Blocks zugreifen, müssen wir die Speicheradresse umwandeln, denn 
die Refstoremethoden erwarten als Parameter einen logischen Zeiger.

#include <stddef.h> // Für globalen Typ size_t

gct_RefStore <ct_RndIntStore> co_GlobalStore;

void * operator new (size_t u_size)
  {
  return co_GlobalStore. AddrOf (co_GlobalStore. Alloc (u_size));
  }

void operator delete (void * pv)
  {
  co_GlobalStore. Free (co_GlobalStore. LogPtrOf (pv));
  }

// operator new [] und operator delete [] analog

int main ()
  {
  char * pc = new char [20];
  co_GlobalStore. IncRef (co_GlobalStore. LogPtrOf (pc));
  ....
  }

Ein Round-Refstore rundet die Größe und ordnet jedem Block einen Referenzzähler zu. 
Diesen Komfort müssen wir mit einem erhöhten Speicherbedarf bezahlen. Am Beginn jedes 
Blocks speichert der Roundstore die gerundete Größe. Daran schließen sich das ct_RefCount-
Objekt und der nutzbare Bereich des Blocks an (siehe Abbildung 3-8).

o_RoundedSize Nutzbarer Speicher

ct_RndStore:: AddrOf (o_ptr)ct_StdStore:: AddrOf (o_ptr) gct_RefStore:: AddrOf (o_ptr)

ct_RefCount

Abb. 3-8:    Ein Block im Round-Refstore

Eine andere Art Refstores erhalten wir, wenn wir eine Blockstoreklasse als Parameter 
übergeben. Beim Festlegen der Blockgröße müssen wir den Referenzzähler berücksichtigen. 
Benötigen wir zum Beispiel einen Block-Refstore mit acht Bytes nutzbarem Speicher pro 
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Block, übergeben wir dem Blockstoretemplate 8 + sizeof (ct_RefCount) als feste Blockgröße. 
Im folgenden Programmfragment sehen wir die dazu nötigen Definitionen. Abbildung 3-9 
veranschaulicht den Aufbau eines Block-Refstores.

typedef gct_Block <ct_RndShortStore> t_RndShortBlock;
typedef gct_BlockStore <t_RndShortBlock, 8 + sizeof (ct_RefCount)>
  t_Fix8PlusStore;
typedef gct_RefStore <t_Fix8PlusStore> t_Fix8RefStore;

RefCount Nutzbar RefCount Nutzbar RefCount Nutzbar. . .

Block-Refstore-Objekt

Logischer Zeiger: 1 2 n

82 82 82

Abb. 3-9:    Aufbau eines Block-Refstores

3.3 Neue Container braucht das Land

3.3.1 Array

Für die Implementierung der Container haben wir im Abschnitt 2.4.1 drei Vorgaben 
erarbeitet:

• Containerklassen erben nicht von einer abstrakten Basisklasse.
• Container werden mit Templates implementiert.
• Container enthalten die verwalteten Objekte physisch.

Die erste Bedingung ermöglicht es uns, Containerklassen ohne virtuelle Methoden zu 
implementieren. Damit beschleunigen sich das Iterieren und der Zugriff auf die Objekte. 
Container enthalten viele kleine Methoden, die inline definiert werden können. Bei 
nichtvirtuellen Inline-Methoden ist die Wahrscheinlichkeit groß, daß sie an der 
Verwendungsstelle vom Compiler inline expandiert werden. Die zweite Vorgabe sorgt für 
eine hohe Flexibilität. Die verwalteten Objekte müssen nicht von einer gemeinsamen 
Basisklasse erben. Container können somit auch für primitive Datentypen eingesetzt werden. 
Die dritte Bedingung ermöglicht eine optimale Speicherauslastung.

Jeder Container wird als ein Template implementiert und erwartet als ersten Parameter den 
Typ der Objekte, die er verwalten soll. Ein Arraycontainer kann nicht direkt auf einem Store 
aufbauen, denn zwischen Arrays und Stores gibt es einen wesentlichen Unterschied. In 
einem Store muß ein logischer Zeiger so lange seine Gültigkeit behalten, bis er mit Realloc 
oder Free geändert wird. Ein Array ist auf einen minimalen Speicherbedarf ausgelegt. Wird 
an einer bestimmten Stelle ein Objekt eingefügt oder gelöscht, werden alle nachfolgenden 
Objekte verschoben. Damit ändern sich deren logische Zeiger. Statt eines Stores nutzen wir 
einen Block als Basis für die Implementierung. Die Blockklasse wird als zweiter Parameter an 
das Arraytemplate übergeben.

Ein Listencontainer benötigt für jeden Eintrag ein Node. Darin befinden sich neben dem 
Objekt die Verweise auf Vorgänger und Nachfolger. In einem Array stehen die Objekte direkt 
hintereinander. Zum Verbinden der Einträge ist kein Node erforderlich. Wir benötigen jedoch 
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eine Hilfsklasse für das Erzeugen und Löschen der Objekte. Wir nennen das Hilfstemplate 
gct_ArrayNode und übergeben ihm dieselben Parameter wie dem Array. Es ist nur für den 
internen Gebrauch bestimmt. Alle Deklarationen sind privat, und die Arrayklasse wird als 
friend deklariert.

Ein Objekt wird in einem Container mit seinem Standard- oder Kopier-Konstruktor erzeugt. 
Für beide Fälle besitzt das Template gct_ArrayNode einen Konstruktor. Der Operator new 
erwartet als zweiten Parameter die Adresse des außerhalb bereitgestellten Speichers und 
gibt diese unverändert weiter. Er wird zum Beispiel in der Methode AddObjAfter aufgerufen 
(siehe unten). Der Operator delete besitzt eine leere Definition. Ein Aufruf in 
Operatorschreibweise führt nur zum Zerstören des Objekts mit seinem Desktruktor (siehe 
Methode DelObj). Die Methodenkörper sind mit Ausnahme von operator new leer. Deshalb 
stehen sie ausnahmsweise in der Klassendeklaration.

template <class t_obj, class t_block>
  class gct_ArrayNode
    {
    friend class gct_Array <t_obj, t_block>;

    t_obj                o_Obj;

    inline               gct_ArrayNode () { }
    inline               gct_ArrayNode (const t_obj & o_obj):
                           o_Obj (o_obj) { }
    static inline void * operator new (size_t, void * pv) { return pv; }
    static inline void   operator delete (void *) { }
    };

Neben den Implementierungsvorgaben haben wir im Abschnitt 2.4.1 auch das Interface für 
Container erarbeitet. Wir erweitern den Arraycontainer um die drei privaten Methoden Node, 
CopyFrom und DelObjects. Die Methode Node ermittelt die Adresse des Arraynodes zu einem 
logischen Zeiger. Sie prüft den übergebenen Zeigerwert mit zwei ASSERT-Makros und erspart 
uns diese Prüfungen an anderen Stellen, zum Beispiel in AddObjAfter und DelObj. CopyFrom und 
DelObjects enthalten die Anweisungen, die im Kopier-Konstruktor, Destruktor und Gleich-
Operator gemeinsam genutzt werden. CopyFrom übernimmt die Objekte des übergebenen 
Arrays mit dem Kopier-Konstruktor. DelObjects ruft die Destruktoren aller enthaltenen 
Objekte auf. Unser Arraytemplate erbt ähnlich wie String und Blockstore privat von der 
übergebenen Blockklasse. Mit der Methode GetConstBlock können wir auf konstante 
Methoden der Basisklasse zugreifen.

Das Arraytemplate benötigt keine eigenen Attribute. Auf den dynamischen Speicherblock 
und dessen Größe greift es über das Blockinterface zu. Die geschachtelten Typen t_Length 
und t_Pointer richten sich nach dem Größentyp der Basisklasse. Wie in der Arraycollection 
von OHelp werden auch im Arraycontainer die Elemente mit eins beginnend aufsteigend 
numeriert. Im folgenden Programmausschnitt sehen wir die Deklaration des Arraytemplates 
und die Definition der Methoden Node und operator =.

template <class t_obj, class t_block>
  class gct_Array: private t_block
    {
  public:
    typedef t_block:: t_Size t_Length;
    typedef t_block:: t_Size t_Pointer;
    typedef t_obj            t_Object;
  private:
    inline gct_ArrayNode <t_obj, t_block> * Node (t_Pointer o_ptr) const;
    void                 CopyFrom (const gct_Array & co_copy);
    void                 DelObjects ();
  public:
    inline               gct_Array ();
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    inline               gct_Array (const gct_Array & co_init);
    inline               ~gct_Array ();
    inline gct_Array &   operator = (const gct_Array & co_asgn);
    inline t_Length      GetLen () const;
    inline t_Pointer     First () const;
    inline t_Pointer     Next (t_Pointer o_ptr) const;
    inline t_Object *    GetObj (t_Pointer o_ptr) const;
    inline t_Pointer     AddObj (const t_Object * po_obj = 0);
    t_Pointer            AddObjCond (const t_Object * po_obj);
    t_Pointer            AddObjAfter (t_Pointer o_ptr,
                           const t_Object * po_obj = 0);
    t_Pointer            DelObj (t_Pointer o_ptr);
    inline const t_block * GetConstBlock () const;
    };

template <class t_obj, class t_block>
  inline gct_ArrayNode <t_obj, t_block> *
  gct_Array <t_obj, t_block>:: Node (t_Pointer o_ptr) const
    {
    ASSERT (o_ptr != 0);
    ASSERT (o_ptr <= GetLen ());
    return (gct_ArrayNode <t_obj, t_block> *) GetAddr () +
           (unsigned) (o_ptr - 1);
    }

template <class t_obj, class t_block>
  inline gct_Array <t_obj, t_block> &
  gct_Array <t_obj, t_block>:: operator = (const gct_Array & co_asgn)
    {
    if (& co_asgn != this)
      {
      DelObjects ();
      CopyFrom (co_asgn);
      }
    return * this;
    }

Mit der Methode AddObjAfter können wir ein neues Objekt in den Arraycontainer einfügen. 
Nach dem Vergrößern des Blocks wird mit der Methode Node die Adresse des freien 
Blockbereichs ermittelt. Befinden sich dahinter weitere Objekte, werden sie mit der 
Standardfunktion memmove verschoben. Dann kann das neue Objekt erzeugt werden. Dem 
Operator new unseres Hilfstemplates gct_ArrayNode wird die freie Adresse übergeben. 
Verweist der zweite Parameter der Methode AddObjAfter auf ein zu kopierendes Objekt, wird 
der Konstruktor gct_ArrayNode (const t_obj & o_obj) aufgerufen. Andernfalls wird das Objekt 
mit seinem Standard-Konstruktor initialisiert. Am Ende wird der um eins vergrößerte logische 
Zeiger zurückgegeben.

template <class t_obj, class t_block>
  gct_Array <t_obj, t_block>:: t_Pointer
  gct_Array <t_obj, t_block>:: AddObjAfter
   (t_Pointer o_ptr, const t_Object * po_obj)
    {
    SetSize (GetSize () + sizeof (gct_ArrayNode <t_obj, t_block>));
    gct_ArrayNode <t_obj, t_block> * pco_node = Node (o_ptr + 1);
    if (o_ptr < GetLen () - 1)
      memmove (pco_node + 1, pco_node, (unsigned) (GetSize () -
        (o_ptr + 1) * sizeof (gct_ArrayNode <t_obj, t_block>)));
    if (po_obj != 0)
      new (pco_node) gct_ArrayNode <t_obj, t_block> (* po_obj);
    else
      new (pco_node) gct_ArrayNode <t_obj, t_block>;
    return o_ptr + 1;
    }
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Die Methode DelObj löscht ein Objekt aus dem Arraycontainer. Mit der Methode Node wird die 
Adresse des zu löschenden Nodes ermittelt. Darauf wird der delete-Operator des 
Hilfstemplates gct_ArrayNode angewendet. Befinden sich dahinter weitere Objekte, werden sie 
um eine Position verschoben. Anschließend wird der Block verkleinert und der logische 
Zeiger des Nachfolgers zurückgegeben.

template <class t_obj, class t_block>
  gct_Array <t_obj, t_block>:: t_Pointer
  gct_Array <t_obj, t_block>:: DelObj (t_Pointer o_ptr)
    {
    gct_ArrayNode <t_obj, t_block> * pco_node = Node (o_ptr);
    delete pco_node;
    if (o_ptr < GetLen ())
      memmove (pco_node, pco_node + 1, (unsigned) (GetSize () -
        o_ptr * sizeof (gct_ArrayNode <t_obj, t_block>)));
    SetSize (GetSize () - sizeof (gct_ArrayNode <t_obj, t_block>));
    return Next (o_ptr - 1);
    }

Das Speicherlayout eines Arraycontainers hängt vor allem vom Templateparameter t_block 
ab. Im einfachsten Fall nutzen wir eine Blockklasse, die ihren Speicher von einem globalen 
Store anfordert. In Abbildung 3-10 sehen wir das Layout einer Instanz des Typs gct_Array 
<ct_AnyClass, gct_Block <ct_StdShortStore> >.

unsigned short o_Size

void * o_Ptr

ct_AnyClass

ct_AnyClass

. . .

Objekt vom Typ gct_Array Speicher-Block

Basisklasse gct_Block

Abb. 3-10:    Speicherlayout eines Arraycontainers

3.3.2 DList

Unser Listencontainer stellt die Funktionalität einer doppelt verketteten Liste zur Verfügung. 
Für jeden Eintrag benötigt er ein Node. Dieses übt eine doppelte Funktion aus. Zum einen 
enthält es die Verweise auf Vorgänger und Nachfolger. Zum anderen besitzt es eigene 
Operatoren new und delete, mit deren Hilfe das Objekt erzeugt und gelöscht wird. Als 
Parameter werden dem Template gct_DListNode der Objekt- und der Zeigertyp übergeben. In 
einer Blockliste (siehe folgenden Abschnitt) wird das Node zum Parametrisieren des 
Storetemplates benötigt. Die Storeklasse ist dem Node nicht bekannt und somit auch nicht 
der genaue Listentyp, zu dem es gehört. Die Liste kann nicht als friend deklariert werden. 
Folglich müssen alle Deklarationen public sein.

template <class t_obj, class t_ptr>
  class gct_DListNode
    {
  public:
    t_ptr                o_Prev;
    t_ptr                o_Next;
    t_obj                o_Obj;
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    inline               gct_DListNode () { }
    inline               gct_DListNode (const t_obj & o_obj):
                           o_Obj (o_obj) { }
    static inline void * operator new (size_t, void * pv) { return pv; }
    static inline void   operator delete (void *) { }
    };

Der Listencontainer gct_DList baut direkt auf einem Store auf. Die Storeklasse wird als 
zweiter Templateparameter übergeben. Von ihr werden Längen- und Zeigertyp übernommen, 
und sie ist als Attribut im Listenobjekt enthalten. Auf das Attribut o_Store können wir mit der 
Methode GetStore zugreifen. Neben dem allgemeinen Containerinterface enthält das 
Listentemplate einige private Methoden. Node liefert zu einem logischen Zeiger die Adresse 
des Nodes. Die Methode NewNode erzeugt ein neues Node und aktualisiert die Verweise der 
benachbarten Nodes. CopyFrom kopiert alle Nodes einer anderen Liste und ClearList löscht alle 
Nodes. Im folgenden Programmausschnitt sehen wir die Deklaration des Listentemplates und 
die Definition der Methoden Node und operator =.

template <class t_obj, class t_store>
  class gct_DList
    {
  public:
    typedef t_store:: t_Size    t_Length;
    typedef t_store:: t_Pointer t_Pointer;
    typedef t_obj               t_Object;
  protected:
    t_Length             o_Length;
    t_Pointer            o_First;
    t_store              o_Store;

    inline gct_DListNode <t_Object, t_Pointer> *
                         Node (t_Pointer o_ptr) const;
    t_Pointer            NewNode (t_Pointer, t_Pointer, const t_obj *);
    void                 CopyFrom (const gct_DList & co_copy);
    void                 ClearList ();
  public:
    inline               gct_DList ();
    inline               gct_DList (const gct_DList & co_init);
    inline               ~gct_DList ();
    inline gct_DList &   operator = (const gct_DList & co_asgn);
    inline t_Length      GetLen () const;
    inline t_Pointer     First () const;
    inline t_Pointer     Next (t_Pointer o_ptr) const;
    inline t_Object *    GetObj (t_Pointer o_ptr) const;
    inline t_Pointer     AddObj (const t_Object * po_obj = 0);
    t_Pointer            AddObjCond (const t_Object * po_obj);
    t_Pointer            AddObjAfter (t_Pointer o_ptr,
                           const t_Object * po_obj = 0);
    t_Pointer            DelObj (t_Pointer o_ptr);
    inline t_store *     GetStore ();
    };

template <class t_obj, class t_store>
  inline gct_DListNode <t_obj, gct_DList <t_obj, t_store>:: t_Pointer> *
  gct_DList <t_obj, t_store>:: Node (t_Pointer o_ptr) const
    {
    ASSERT (o_ptr != 0);
    return (gct_DListNode <t_obj, t_Pointer> *) o_Store. AddrOf (o_ptr);
    }

template <class t_obj, class t_store>
  inline gct_DList <t_obj, t_store> &
  gct_DList <t_obj, t_store>:: operator = (const gct_DList & co_asgn)
    {
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    if (& co_asgn != this)
      {
      ClearList ();
      CopyFrom (co_asgn);
      }
    return * this;
    }

Der Methode NewNode werden drei Parameter übergeben: Die logischen Zeiger des Vorgängers 
und Nachfolgers und ein C++-Zeiger auf das zu kopierende Objekt. Am Anfang wird vom 
Store der Speicher für ein neues Node angefordert. Der logische Zeiger wird in eine Adresse 
umgewandelt und dem Operator new der Nodeklasse übergeben. In Abhängigkeit vom Wert 
des Parameters po_obj wird das neue Objekt im Node mit seinem Kopier- oder Standard-
Konstruktor erzeugt. Danach wird das neue Node mit seinem Vorgänger und Nachfolger 
verbunden. Ist die Liste leer, sind Vorgänger- und Nachfolgerzeiger gleich Null. In diesem Fall 
muß es mit sich selbst verbunden werden. Der logische Zeiger des neuen Nodes ist zugleich 
der Rückgabewert der Methode NewNode.

template <class t_obj, class t_store>
  gct_DList <t_obj, t_store>:: t_Pointer
  gct_DList <t_obj, t_store>:: NewNode
   (t_Pointer o_prev, t_Pointer o_next, const t_obj * po_obj)
    {
    gct_DListNode <t_Object, t_Pointer> * pco_node;
    t_Pointer o_new =
      o_Store. Alloc (sizeof (gct_DListNode <t_Object, t_Pointer>));
    ASSERT (o_new != 0);
    void * pv = o_Store. AddrOf (o_new);
    if (po_obj != 0)
      pco_node = new (pv) gct_DListNode <t_Object, t_Pointer> (* po_obj);
    else
      pco_node = new (pv) gct_DListNode <t_Object, t_Pointer>;
    if (o_prev != 0)
      {
      pco_node-> o_Prev = o_prev;
      pco_node-> o_Next = o_next;
      Node (o_prev)-> o_Next = o_new;
      Node (o_next)-> o_Prev = o_new;
      }
    else
      pco_node-> o_Prev = pco_node-> o_Next = o_new;
    return o_new;
    }

Die Methode AddObjAfter eines Containers muß für beide Parameter den Wert Null 
akzeptieren. Ist der logische Zeiger des Objekts, hinter dem eingefügt werden soll, gleich 
Null, wird das neue Objekt an den Anfang des Containers gestellt. Der Algorithmus in 
gct_Array:: AddObjAfter arbeitet auch für den Zeigerwert Null korrekt. Im Listencontainer muß 
dieser Fall gesondert behandelt werden. Eine weitere Fallunterscheidung ist für eine leere 
Liste nötig.

template <class t_obj, class t_store>
  gct_DList <t_obj, t_store>:: t_Pointer
  gct_DList <t_obj, t_store>:: AddObjAfter
   (t_Pointer o_ptr, const t_Object * po_obj)
    {
    o_Length ++;
    if (o_ptr != 0)
      return NewNode (o_ptr, Node (o_ptr)-> o_Next, po_obj);
    else
      if (o_First != 0)
        return 
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          o_First = NewNode (Node (o_First)-> o_Prev, o_First, po_obj);
      else
        return o_First = NewNode (0, 0, po_obj);
    }

Die Methode DelObj aktualisiert die Attribute o_Length und o_First. Danach wird der Zeiger 
auf das zu löschende Node ermittelt. Es wird aus der Verweiskette der Liste herausgelöst, 
indem Vorgänger und Nachfolger miteinander verbunden werden. Anschließend wird mit 
dem Operator delete der Destruktor des Nodes aufgerufen und mit der Storemethode Free 
der belegte Speicher freigegeben.

template <class t_obj, class t_store>
  gct_DList <t_obj, t_store>:: t_Pointer
  gct_DList <t_obj, t_store>:: DelObj (t_Pointer o_ptr)
    {
    ASSERT (o_ptr != 0);
    ASSERT (o_Length != 0);
    o_Length --;
    t_Pointer o_next = Next (o_ptr);
    if (o_ptr == o_First)
      o_First = o_next;
    gct_DListNode <t_Object, t_Pointer> * po_node = Node (o_ptr);
    Node (po_node-> o_Prev)-> o_Next = po_node-> o_Next;
    Node (po_node-> o_Next)-> o_Prev = po_node-> o_Prev;
    delete po_node;
    o_Store. Free (o_ptr);
    return o_next;
    }

Das Speicherlayout eines Listencontainers hängt vor allem von der übergebenen Storeklasse 
ab. Im einfachsten Fall nutzen wir für den Templateparameter t_store eine globale 
Storeklasse. In Abbildung 3-11 sehen wir das Layout einer Instanz des Typs gct_DList 
<ct_AnyClass, ct_StdShortStore>. Das Listenobjekt umfaßt sieben Bytes. Die Storeklasse ist 
mit einem Dummybyte an der Größe des Objekts beteiligt.

ct_StdShortStore o_Store

unsigned short o_Length

void * o_First

void * o_Prev

ct_AnyClass o_Obj

void * o_Next

Objekt vom Typ gct_DList Objekte vom Typ gct_DListNode

. . .

void * o_Prev

ct_AnyClass o_Obj

void * o_Next

Abb. 3-11:    Speicherlayout eines Listencontainers

Ein Listencontainer stellt sicher, daß die logischen Zeiger der enthaltenen Objekte ihre 
Gültigkeit behalten. Im allgemeinen bleibt jedoch die Adresse eines Objekts nicht konstant. 
Der Container kann es an eine andere Stelle im Speicher verschieben. Die Gültigkeitsdauer 
der Adressen in einem Listencontainer hängt von der übergebenen Storeklasse ab. Nutzen 
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wir eine globale Storeklasse (wie oben), bleiben auch die Adressen der Objekte konstant. 
Die Speicherauslastung ist dabei nicht so gut, denn jedes Node beansprucht einen eigenen 
Block der dynamischen Speicherverwaltung.

3.3.3 Block- und Reflisten

Eine bessere Speicherauslastung erzielen wir mit einem Listencontainer, der auf einem 
Blockstore aufbaut. Eine Blockliste speichert alle Nodes in einem einzigen Block. Dadurch 
wird die dynamische Speicherverwaltung entlastet. Den Speicherbedarf können wir mit 
geeigneten Zeigertypen reduzieren. Jedes Node enthält zwei Zeiger. Verwenden wir statt 
unsigned long den Zeigertyp unsigned short, beanspruchen die Zeiger nur noch halb so viel 
Speicher (siehe Abbildung 3-12). Bei der Arbeit mit Blocklisten müssen wir beachten, daß 
sich die Adressen der Objekte ändern können, sobald ein Objekt eingefügt oder gelöscht 
wird.

unsigned short o_Size

void * o_Ptr
. . .

Speicher-Block

Basisklasse gct_Block

unsigned short o_Length

unsigned short o_First

unsigned short o_Prev

ct_AnyClass o_Obj

unsigned short o_Next

Objekt vom Typ gct_DList

gct_BlockStore o_Store

unsigned short o_FirstFree

gct_DListNode

unsigned short o_Prev

ct_AnyClass o_Obj

unsigned short o_Next

gct_DListNode

Abb. 3-12:    Speicherlayout einer Blockliste

Zum Definieren einer Blockliste sind mehrere Schritte erforderlich. Als Grundlage benötigen 
wir eine Blockklasse. Mit der Objektklasse und dem Größentyp der Blockklasse können wir 
das Listennode parametrisieren und seine Größe berechnen. Diese wird als zweiter 
Parameter an das Blockstoretemplate übergeben. Mit der Objektklasse und der Storeklasse 
können wir nun die Containerklasse erzeugen. Das Speicherlayout der Blockliste, die im 
folgenden Programmfragment definiert wird, stimmt mit Abbildung 3-12 überein.

typedef gct_Block <ct_StdShortStore> t_StdShortBlock;
const int i_FixSize =
  sizeof (gct_DListNode <ct_AnyClass, t_StdShortBlock:: t_Size>);
typedef gct_BlockStore <t_StdShortBlock, i_FixSize> t_StdShortBlockStore;
typedef gct_DList <ct_AnyClass, t_StdShortBlockStore> t_StdShortBlockList;

Parametrisieren wir das Listentemplate mit einem Refstore, wird jedem Node ein 
Referenzzähler zugeordnet. Eine Refliste kann überall dort eingesetzt werden, wo Einträge 
der Liste von außerhalb referenziert werden. Diese Referenzen werden bei Veränderungen 
der Liste keine Dangling Pointers. Vor einem Zugriff kann die Liste mit der Methode IsAlloc 
gefragt werden, ob sie den Eintrag noch besitzt. Wurde er inzwischen gelöscht, sollte die 
externe Referenz den Referenzzähler verkleinern, damit der Speicher des Listeneintrags 
freigegeben werden kann.
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Der Zugriff auf die Referenzzähler erfolgt über das Storeobjekt der Liste. Dazu müßte 
jedesmal die Methode GetStore aufgerufen werden. Zur Vereinfachung definieren wir das 
Template gct_RefDList. Es erweitert das Listeninterface um die Zugriffsmethoden auf den 
Referenzzähler. Der Templateparameter t_store muß eine Refstoreklasse sein.

template <class t_obj, class t_store>
  class gct_RefDList: public gct_DList <t_obj, t_store>
    {
  public:
    inline void          IncRef (t_Pointer o_ptr);
    inline void          DecRef (t_Pointer o_ptr);
    inline t_RefCount    GetRef (t_Pointer o_ptr) const;
    inline bool          IsAlloc (t_Pointer o_ptr) const;
    inline bool          IsFree (t_Pointer o_ptr) const;
    };

template <class t_obj, class t_store>
  inline bool 
  gct_RefDList <t_obj, t_store>:: IsAlloc (t_Pointer o_ptr) const
  {
  return o_Store. IsAlloc (o_ptr);
  }

Im folgenden Programmfragment wird eine Refliste definiert und in einem Prinzipbeispiel 
angewendet. Sie fordert den Speicher ihrer Nodes vom globalen Standardstore an. Ihr 
Längentyp ist unsigned short und ihr Zeigertyp void *. Jedes Node belegt einen eigenen 
Speicherblock. Folglich bleiben die Adressen der enthaltenen Objekte konstant. Das 
Speicherlayout dieser Liste ist in Abbildung 3-13 zu sehen.

typedef gct_RefDList <ct_AnyClass, gct_RefStore <ct_StdShortStore> >
  t_StdShortRefList;
t_StdShortRefList co_list;
t_StdShortRefList:: t_Pointer o_ptr = co_list. AddObj ();
co_list. IncRef (o_ptr);
if (co_list. IsAlloc (o_ptr))
  co_list. GetObj (o_ptr)-> ....;  // Wird ausgeführt
co_list. DelObj (o_ptr);
if (co_list. IsAlloc (o_ptr))
  co_list. GetObj (o_ptr)-> ....;  // Wird nicht ausgeführt
else
  {
  co_list. DecRef (o_ptr);  // Wird ausgeführt
  o_ptr = 0;
  }
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gct_RefStore o_Store

unsigned short o_Length

void * o_First void * o_Prev
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void * o_Next
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gct_DListNode
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gct_DListNode

Basisklasse gct_DList

Abb. 3-13:    Speicherlayout einer Refliste

Eine Block-Refliste verbindet die Sicherheit einer Refliste mit der guten Speicherauslastung 
einer Blockliste. Der Listentyp wird ähnlich wie eine Blockliste definiert. Bei der festen 
Blockgröße muß das ct_RefCount-Objekt berücksichtigt werden, das jedem Block zugeordnet 
wird. Abbildung 3-14 zeigt das Speicherlayout der Block-Refliste, die im folgenden 
Programmfragment definiert wird.

typedef gct_Block <ct_StdShortStore> t_StdShortBlock;
const int i_FixSize = sizeof (ct_RefCount) +
  sizeof (gct_DListNode <ct_AnyClass, t_StdShortBlock:: t_Size>);
typedef gct_BlockStore <t_StdShortBlock, i_FixSize> t_StdShortBlockStore;
typedef gct_RefDList <ct_AnyClass, gct_RefStore <t_StdShortBlockStore> >
  t_StdShortBlockRefList;

Spirick Tuning    Tutorial    Seite 131



unsigned short o_Size

void * o_Ptr
. . .

Speicher-Block

Basisklasse gct_Block

unsigned short o_Length

unsigned short o_First unsigned short o_Prev

ct_AnyClass o_Obj

unsigned short o_Next

Objekt vom Typ gct_RefDList

gct_BlockStore o_Store

unsigned short o_FirstFree

gct_DListNode
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ct_AnyClass o_Obj

unsigned short o_Next

gct_DListNode

ct_RefCount

ct_RefCount
Basisklasse gct_DList

gct_RefStore o_Store

Abb. 3-14:    Speicherlayout einer Block-Refliste

Diese Block-Refliste ist die komplizierteste Klasse, die wir bisher kennengelernt haben. 
Würden wir keine zusätzlichen Typdefinitionen verwenden, müßten wir schreiben: 
gct_RefDList <ct_AnyClass, gct_RefStore <gct_BlockStore <gct_Block <ct_StdShortStore>, sizeof 
(ct_RefCount) + sizeof (gct_DListNode <ct_AnyClass, gct_Block <ct_StdShortStore>:: t_Size>)> > >. 
Abbildung 3-15 bringt Übersicht in diesen Dschungel geschachtelter Templates. Das 
Designdiagramm enthält alle beteiligten Klassen mit ihren wichtigsten Verbindungen. Um die 
Namen der Templateklassen nicht zu lang werden zu lassen, werden gegenüber dem 
Programmfragment die folgenden Abkürzungen verwendet.

• i_Size statt i_FixSize
• ct_Cls statt ct_AnyClass
• t_ShBlk statt t_StdShortBlock
• t_ShBlkSize statt t_StdShortBlock:: t_Size
• t_ShBlkSt statt t_StdShortBlockStore
• t_ShBlkRefSt statt gct_RefStore <t_StdShortBlockStore>
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Abb. 3-15:    Verwendete Klassen der Block-Refliste

Im Designdiagramm erscheinen nichtstatische Attribute als Teil-Ganzes-Beziehung (Dreieck). 
Andere Abhängigkeiten zwischen Objekten werden als Objekt-Verbindung dargestellt 
(durchgehende Linie). Das Fundament bildet die Klasse ct_StdStore. Von ihr werden in den 
GLOBAL_STORE-Makros eine globale Instanz und vier globale Klassen generiert, darunter 
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ct_StdShortStore. Alle Instanzen dieser Storeklasse greifen auf denselben globalen 
Standardstore zu. ct_StdShortStore ist als statisches Attribut in t_StdShortBlock enthalten. Der 
Blockstore erbt von der Blockklasse und ist Teil des Refstores. Der Refstore verwaltet null 
bis n ct_RefCount-Objekte und ist als Attribut o_Store in der Liste enthalten. Diese verwaltet 
null bis n Nodes, in denen sich je ein ct_AnyClass-Objekt befindet. Als letzte Klasse in dieser 
Reihe erbt die Refliste von der normalen Liste.

Am Ende des Abschnitts 2.4.1 haben wir verschiedene Containerarten in bezug auf die 
Gültigkeitsdauer ihrer logischen Zeiger und der Adressen ihrer Objekte miteinander 
verglichen. Inzwischen hat sich das Spektrum der Container erweitert. In Tabelle 3-4 sind 
die wichtigsten Arten zusammengefaßt. Reflisten und Block-Reflisten betrachten wir in 
diesem Zusammenhang nicht. Sie verhalten sich bezüglich der Gültigkeitsdauer wie die 
Basislisten, von denen sie erben.

Containerart Beispiel

Objekt-Array gct_Array <float, gct_Block <ct_StdShortStore> >

Zeiger-Array gct_Array <float *, gct_Block <ct_StdShortStore> >

Objekt-Liste gct_DList <float, ct_StdShortStore>

Zeiger-Liste gct_DList <float *, ct_StdShortStore>

Objekt-Blockliste gct_DList <float, t_StdShortBlockStore>

Zeiger-Blockliste gct_DList <float *, t_StdShortBlockStore>

Tab. 3-4:    Containerarten

In Tabelle 3-5 sind diese Containerarten nach der Gültigkeitsdauer der logischen Zeiger und 
Adressen geordnet. Die erste Spalte enthält Container, deren logische Zeiger nach einer 
Änderung (Einfügen oder Löschen von Elementen) ungültig werden können. Dazu zählen nur 
Arraycontainer. In der zweiten Spalte finden wir ausschließlich Listencontainer. Die obere 
Zeile der Tabelle enthält Container, die ihre Objekte im Speicher verschieben. Dabei ändern 
sich zwar die Adressen der Objekte, der belegte Speicher wird jedoch optimal ausgelastet. In 
der unteren Zeile befinden sich Container, deren Objekte stets an derselben Stelle bleiben. 
Diese Container benötigen mehr Speicher.

Logischer Zeiger ungültig Logischer Zeiger gültig

Adresse ungültig Objekt-Array Objekt-Blockliste

Adresse gültig Zeiger-Array Objekt-L., Zeiger-L., Zeiger-Blockl.

Tab. 3-5:    Logische Zeiger und Adressen in Containern

3.3.4 Test der Container

Container und Collections müssen wir sorgfältig testen. Sie werden an zahlreichen Stellen 
eingesetzt. Tritt in einem Programm ein Fehler auf, vermuten wir ihn zunächst in den 
eigenen Klassen. Von den fundamentalen Klassen erwarten wir Korrektheit und Robustheit. 
Bei Containern ist der Testaufwand höher als bei Collections. Neben den Methoden zum 
Einfügen, Löschen und Iterieren müssen wir auch prüfen, ob die Konstruktoren und 
Destruktoren der enthaltenen Objekte korrekt aufgerufen werden. Zu diesem Zweck 
verwenden wir die folgende Testklasse. Sie enthält alle Methoden, die in einem Container 
direkt oder indirekt aufgerufen werden. Jede Methode protokolliert eine entsprechende 
Meldung auf die Standardausgabe.
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class ct_Int: public ct_Object
  {
  int                    i_Value;
public:
                         ct_Int ();
                         ct_Int (int i);
                         ct_Int (const ct_Int & co_int);
  virtual                ~ct_Int ();
  ct_Int &               operator = (int i);
  ct_Int &               operator = (const ct_Int & co_int);
  virtual const char *   GetTypeName () const;
  bool                   operator == (const ct_Int & co_int);
  int                    GetValue () const { return i_Value; }
  };

ct_Int:: ct_Int (const ct_Int & co_int)
  {
  i_Value = co_int. i_Value;
  printf ("ct_Int (const ct_Int & co_int = %d)\n", i_Value);
  }

ct_Int & ct_Int:: operator = (int i)
  {
  i_Value = i;
  printf ("operator = (int i = %d)\n", i_Value);
  return * this;
  }

Container erben nicht von einer gemeinsamen Basisklasse. Zum Protokollieren ihres Inhalts 
können wir keine normale Funktion verwenden. Stattdessen definieren wir das folgende 
Funktionstemplate. Es erwartet als Funktionsparameter einen Zeiger auf einen unbekannten 
Container, der ct_Int-Objekte enthält. Von jedem Eintrag wird der logische Zeiger und der 
Wert ausgegeben.

template <class t_container>
  void PrintContainer (t_container * po_cont)
    {
    printf ("Container:");
    for (t_container:: t_Pointer o_ptr = po_cont-> First ();
         o_ptr != 0;
         o_ptr = po_cont-> Next (o_ptr))
      {
      printf (" Entry[%ld]=%d",
        (long) o_ptr, po_cont-> GetObj (o_ptr)-> GetValue ());
      }
    printf ("\n");
    }

Das folgende Programmfragment enthält einige wichtige Tests für Container. Es erhebt 
keinen Anspruch auf Vollständigkeit, ist aber eine gute Grundlage für ein umfangreicheres 
Testprogramm. Am Anfang wird die Methode AddObjCond geprüft. Beim zweiten Aufruf mit 
demselben Objekt darf sie es nicht noch einmal einfügen. Danach wird die Methode 
AddObjAfter mit logischen Zeigern ungleich und gleich Null aufgerufen. Als Ergebnis müssen 
sich drei Objekte mit den Werten 0, 1 und 2 (in dieser Reihenfolge) im Container befinden. 
Der nächste Abschnitt prüft den Kopier-Konstruktor, Gleich-Operator und Destruktor eines 
kompletten Containers. Ein zweiter Container wird erzeugt. Nach dem Zuweisen eines neuen 
Inhalts wird er wieder zerstört. Am Ende werden aus dem ursprünglichen Container zwei 
Objekte gelöscht, und auch dieser wird zerstört.

typedef .... <ct_Int> t_container;
ct_Int co_int (1);
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t_container * po_cont = new t_container;
PrintContainer (po_cont);
t_container:: t_Pointer o_1 = po_cont-> AddObjCond (& co_int);
po_cont-> AddObjCond (& co_int);
PrintContainer (po_cont);

co_int = 2;
o_1 = po_cont-> AddObjAfter (o_1, & co_int);
PrintContainer (po_cont);
co_int = 0;
po_cont-> AddObjAfter (0, & co_int);
PrintContainer (po_cont);

printf ("Beginn zweiter Container\n");
t_container * po_cont2 = new t_container (* po_cont);
PrintContainer (po_cont2);
* po_cont = * po_cont2;
PrintContainer (po_cont);
delete po_cont2;
printf ("Ende zweiter Container\n");

po_cont-> DelObj (o_1);
PrintContainer (po_cont);
po_cont-> DelObj (po_cont-> First ());
PrintContainer (po_cont);
delete po_cont;

Das Protokoll des Testprogramms muß für alle Container gleich sein. Nur die logischen 
Zeiger dürfen sich unterscheiden. Bei der Analyse des folgenden Textes müssen wir 
beachten, daß die Variable co_int am Anfang erzeugt und am Ende zerstört wird. Die 
Zusätze in C++-Kommentarform stammen vom Autor.

ct_Int (int i = 1)                    // co_int (1)
Container:
ct_Int (const ct_Int & co_int = 1)    // AddObjCond
Container: Entry[1]=1
operator = (int i = 2)                // co_int = 2
ct_Int (const ct_Int & co_int = 2)    // AddObjAfter
Container: Entry[1]=1 Entry[2]=2
operator = (int i = 0)                // co_int = 0
ct_Int (const ct_Int & co_int = 0)    // AddObjAfter
Container: Entry[3]=0 Entry[1]=1 Entry[2]=2
Beginn zweiter Container
ct_Int (const ct_Int & co_int = 0)    \
ct_Int (const ct_Int & co_int = 1)     >  // Kopier-Konstruktor
ct_Int (const ct_Int & co_int = 2)    /
Container: Entry[1]=0 Entry[2]=1 Entry[3]=2
~ct_Int (0)                           \
~ct_Int (1)                            \
~ct_Int (2)                             \  // Gleich-Operator
ct_Int (const ct_Int & co_int = 0)      /  // des Containers
ct_Int (const ct_Int & co_int = 1)     /
ct_Int (const ct_Int & co_int = 2)    /
Container: Entry[1]=0 Entry[2]=1 Entry[3]=2
~ct_Int (0)                           \
~ct_Int (1)                            >  // Destruktor
~ct_Int (2)                           /
Ende zweiter Container
~ct_Int (1)                           // DelObj
Container: Entry[1]=0 Entry[3]=2
~ct_Int (0)                           // DelObj
Container: Entry[3]=2
~ct_Int (2)                           // Destruktor
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~ct_Int (0)                           // co_int

Wer das Buch aufmerksam gelesen hat, sieht auf den ersten Blick, daß eine Blockliste 
getestet wurde. Die logischen Zeiger besitzen die Werte 1, 2 und 3. Dafür kommen nur 
Arrays und Blocklisten infrage. Beim Durchlaufen des Containers nach AddObjAfter erscheinen 
sie in der Reihenfolge 3, 1 und 2. Damit ist ein Array ausgeschlossen. Im folgenden Text 
sehen wir dieselbe Zeile aus dem Protokoll eines Arrays und einer normalen Liste.

// Array
Container: Entry[1]=0 Entry[2]=1 Entry[3]=2
// Normale Liste
Container: Entry[898367494]=0 Entry[898105350]=1 Entry[898236422]=2

3.4 Griff ins Regal

Die Implementierung der Container mit Hilfe von Templates führt nicht nur zu einer guten 
Performance, sondern auch zu einer hohen Flexibilität. Containertemplates lassen sich an ein 
breites Spektrum von Rahmenbedingungen anpassen. Wir lernten bisher vier konkrete 
Listencontainer kennen, die ein unterschiedliches Speicher- und Rechenzeitverhalten 
aufweisen. Sie wurden aus einem einzigen Listentemplate generiert und besitzen dasselbe 
Interface. Damit ist ihre Handhabung einfach. Ein Container läßt sich leicht durch einen 
anderen ersetzen.

Zum Definieren einer Containerklasse sind jedoch mehrere Schritte erforderlich. Diese 
Teilschritte, zum Beispiel das Berechnen der Größe eines Listennodes, sind für den 
Anwender beschwerlich und fehleranfällig. Um die Handhabung zu vereinfachen, werden im 
folgenden einige Instanzen vordefiniert. Diese ersparen umständliche Typdefinitionen und 
ermöglichen es, mit einem einzigen Griff ins Regal den passenden Container zu finden.

3.4.1 Vordefinierte Stores und Blöcke

Container werden auf der Grundlage von Stores und Blöcken gebildet. Bevor wir mit den 
Containern beginnen, generieren wir Instanzen der Speicherverwaltungsklassen. Dabei 
orientieren wir uns an den globalen Stores (siehe Abschnitt 3.1.2). Diese werden in 
Präprozessormakros deklariert und besitzen generierte Namen. Das Makro GLOBAL_STORE_DCL 
deklariert eine Storeklasse für einen bestimmten Größentyp. Im Makro GLOBAL_STORE_DCLS 
werden Storeklassen für vier Größentypen gebildet.

GLOBAL_STORE_DCL besitzt vier Parameter. t_store bezeichnet die Storeklasse, von der eine 
globale Instanz gebildet werden soll, zum Beispiel ct_StdStore oder ct_RndStore. Der 
Parameter Obj enthält eine Identität für das globale Objekt. Vordefiniert sind die 
Objektidentitäten Std und Rnd. Daraus werden die globalen Storeobjekte co_StdStore und 
co_RndStore generiert. Der dritte Parameter Size enthält eine Kurzbezeichnung des 
geschachtelten Größentyps t_Size. Sie wird für die Namensbildung benötigt. Es steht Int für 
unsigned int, Char für unsigned char usw. Der letzte Parameter t_size enthält den zugehörigen 
C++-Typ. Zum Beispiel wird in GLOBAL_STORE_DCL (ct_StdStore, Std, Long, unsigned long) die 
globale Storeklasse ct_StdLongStore mit dem geschachtelten Größentyp unsigned long 
deklariert.

Für vordefinierte Instanzen des Blocktemplates benötigen wir nur die Parameter Obj und Size. 
Zur Vereinfachung erwartet das Makro BLOCK_DCL beide Angaben als einen 
zusammenhängenden Bezeichner mit dem Präfix ct_. Zum Beispiel wird in BLOCK_DCL 
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(ct_StdLong) die Blockklasse ct_StdLongBlock deklariert. Sie enthält den Größentyp unsigned 
long und fordert ihren Speicher vom globalen Storeobjekt co_StdStore an.

#define BLOCK_DCL(StoreSpec)                    \
  class StoreSpec ## Block:                     \
    public gct_Block <StoreSpec ## Store> { };

// Beispiel: BLOCK_DCL (ct_StdLong) expandiert zu
class ct_StdLongBlock:
  public gct_Block <ct_StdLongStore> { };

Das Blockstoretemplate besitzt zwei Parameter, die Blockklasse t_block und die feste Größe 
der Blöcke u_fixSize. Der zweite Parameter bleibt auch bei vordefinierten Instanzen variabel. 
Diese sind also keine Klassen, sondern wieder Templates. Sie besitzen aber nur noch den 
Parameter u_fixSize. Für jeden Größentyp werden zwei Blockstoretemplates gebildet. Das 
zweite ist ein Block-Refstore. Die Größe des ct_RefCount-Objekts wird im Makro 
berücksichtigt.

Das Makro BLOCK_STORE_DCL erwartet einen Parameter in derselben Form wie BLOCK_DCL. Das 
darin erzeugte Blockstoretemplate verwendet eine generierte Blockklasse. Zum Beispiel wird 
in BLOCK_STORE_DCL (ct_RndShort) das Template gct_RndShortBlockStore generiert. Es verwendet 
die Klasse ct_RndShortBlock. Das Block-Refstoretemplate baut auf dem im selben Makro 
erzeugten Blockstoretemplate auf.

#define BLOCK_STORE_DCL(StoreSpec)                               \
  template <unsigned u_fixSize>                                  \
    class g ## StoreSpec ## BlockStore:                          \
      public gct_BlockStore <StoreSpec ## Block, u_fixSize> { }; \
  template <unsigned u_fixSize>                                  \
    class g ## StoreSpec ## BlockRefStore:                       \
      public gct_RefStore <g ## StoreSpec ## BlockStore          \
        <u_fixSize + sizeof (ct_RefCount)> > { };

// Beispiel: BLOCK_STORE_DCL (ct_RndShort) expandiert zu
template <unsigned u_fixSize>
  class gct_RndShortBlockStore:
    public gct_BlockStore <ct_RndShortBlock, u_fixSize> { };
template <unsigned u_fixSize>
  class gct_RndShortBlockRefStore:
    public gct_RefStore <ct_RndShortBlockStore
      <u_fixSize + sizeof (ct_RefCount)> > { };

Das allgemeine Refstoretemplate gct_RefStore erwartet ähnlich wie das Blocktemplate als 
Parameter eine Storeklasse. Das Makro REF_STORE_DCL erzeugt einen vordefinierten Refstore 
und ähnelt dem Makro BLOCK_DCL. In REF_STORE_DCL (ct_StdChar) wird die Klasse 
ct_StdCharRefStore deklariert. Sie erweitert den globalen Store ct_StdCharStore um die 
Referenzzähler.

#define REF_STORE_DCL(StoreSpec)                   \
  class StoreSpec ## RefStore:                     \
    public gct_RefStore <StoreSpec ## Store> { };

// Beispiel: REF_STORE_DCL (ct_StdChar) expandiert zu
class ct_StdCharRefStore:
  public gct_RefStore <ct_StdCharStore> { };

Blöcke, Blockstores und Refstores werden etwa genauso häufig verwendet wie die globalen 
Stores. Deshalb generieren wir sie gemeinsam. Wir ergänzen das Makro GLOBAL_STORE_DCL um 
die drei Makroverwendungen BLOCK_DCL, BLOCK_STORE_DCL und REF_STORE_DCL. In diesem 
erweiterten Makro werden die folgenden Klassen und Templates generiert:
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• eine globale Storeklasse,
• eine Blockklasse,
• ein Blockstoretemplate,
• ein Block-Refstoretemplate und
• eine globale Refstoreklasse.

#define GLOBAL_STORE_DCL(t_store, Obj, Size, t_size)                \
  class ct_ ## Obj ## Size ## Store                                 \
    {                                                               \
    ....
    };                                                              \
  BLOCK_DCL (ct_ ## Obj ## Size)                                    \
  BLOCK_STORE_DCL (ct_ ## Obj ## Size)                              \
  REF_STORE_DCL (ct_ ## Obj ## Size)

// Beispiel: GLOBAL_STORE_DCL (ct_RndStore, Rnd, Int, unsigned int)
// expandiert zu
class ct_RndIntStore { ... };
class ct_RndIntBlock: public ....;
template <unsigned u_fixSize> gct_RndIntBlockStore: public ....;
template <unsigned u_fixSize> gct_RndIntBlockRefStore: public ....;
class ct_RndIntRefStore: public ....;

Unter der Deklaration der dynamischen Storeklasse ct_StdStore werden im Makro 
GLOBAL_STORE_DCLS (ct_StdStore, Std) die vordefinierten Instanzen der vier Größentypen 
unsigned int, u. char, u. short und u. long erzeugt. Abbildung 3-16 zeigt das Regal für Stores 
und Blöcke, die vom Standardstore gebildet werden. Ein ähnliches Regal existiert noch 
einmal für den Roundstore. Jede Box außer der ersten enthält vier Klassen oder Templates, 
von denen in der Abbildung die obersten beiden zu sehen sind. Sie unterscheiden sich 
jeweils durch ihren Größentyp.

class ct_StdStore
  {
  ....
  };

GLOBAL_STORE_DCLS (ct_StdStore, Std)
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Abb. 3-16:    Regal für Stores und Blöcke

3.4.2 Vordefinierte Strings und Container

Beim Generieren der Stringinstanzen stehen wir vor einem technischen Problem. Das 
Stringtemplate besitzt überladene Konstruktoren und Gleich-Operatoren. Diese werden nicht 
vererbt und stehen in einer abgeleiteten Klasse nicht zur Verfügung. Die im folgenden 
Programmfragment deklarierte Klasse verfügt über die vom Compiler generierten Methoden 
Standard-Konstruktor, Kopier-Konstruktor, Destruktor und Gleich-Operator. Der überladene 
Konstruktor und der Gleich-Operator mit dem Parametertyp const char * fehlen jedoch.

class ct_StdShortString: public gct_String <ct_StdShortBlock> { };

Eine Ausweichlösung wäre die Verwendung einer Typdefinition statt einer Klasse. 
Typdefinitionen werden aber vom Compiler an jeder Verwendungsstelle aufgelöst. Ist im Typ 
ein Template enthalten, verlangsamt sich das Übersetzen des Programms spürbar.

typedef gct_String <ct_StdShortBlock> t_StdShortString;

Eine befriedigende Lösung erhalten wir nur durch eine Klasse, in der die nicht vererbten 
Methoden neu definiert werden. Diese Methoden mappen die Funktionalität der Basisklasse. 
Sie können inline definiert werden und belasten nicht die Rechenzeit. Die Definition des 
Konstruktors und des Gleich-Operators mit dem Parametertyp const char * reicht nicht aus. 
Wurde ein eigener Konstruktor definiert, generiert der Compiler keine anderen Konstruktoren 
mehr. Wir müssen also sämtliche Konstruktoren und Gleich-Operatoren in die abgeleitete 
Klasse aufnehmen.

#define STRING_DCL(StoreSpec)                                          \
  class StoreSpec ## String:                                           \
    public gct_String <StoreSpec ## Block>                             \
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    {                                                                  \
  public:                                                              \
    inline StoreSpec ## String ();                                     \
    inline StoreSpec ## String (const char * pc_init);                 \
    inline StoreSpec ## String (const StoreSpec ## String & co_init);  \
    inline StoreSpec ## String & operator = (const char * pc_asgn);    \
    inline StoreSpec ## String & operator =                            \
      (const StoreSpec ## String & co_asgn);                           \
    };                                                                 \
  inline StoreSpec ## String:: StoreSpec ## String () { }              \
  inline StoreSpec ## String:: StoreSpec ## String                     \
    (const char * pc_init):                                            \
    gct_String <StoreSpec ## Block> (pc_init) { }                      \
  ....
  inline StoreSpec ## String & StoreSpec ## String::                   \
    operator = (const StoreSpec ## String & co_asgn)                   \
    {                                                                  \
    gct_String <StoreSpec ## Block>:: operator = (co_asgn);            \
    return * this;                                                     \
    }

// Beispiel: STRING_DCL (ct_StdShort) expandiert zu
class ct_StdShortString:
  public gct_String <ct_StdShortBlock>
  {
public:
  inline ct_StdShortString ();
  ....
  };
....
inline ct_StdShortString & ct_StdShortString::
  operator = (const ct_StdShortString & co_asgn)
  {
  gct_String <ct_StdShortBlock>:: operator = (co_asgn);
  return * this;
  }

Im Makro STRING_DCL wird eine einzelne Stringklasse generiert. Zum Erzeugen der Klassen 
aller vier Größentypen nutzen wir das Makro STRING_DCLS. Es verwendet ähnlich wie 
GLOBAL_STORE_DCLS viermal das Makro für einen einzelnen Größentyp. Analoge Makros mit den 
Namen ARRAY_DCLS und DLIST_DCLS werden auch für die Container definiert.

#define STRING_DCLS(Obj)               \
  STRING_DCL (ct_ ## Obj ## Int)       \
  STRING_DCL (ct_ ## Obj ## Char)      \
  STRING_DCL (ct_ ## Obj ## Short)     \
  STRING_DCL (ct_ ## Obj ## Long)

// Beispiel: STRING_DCLS (Rnd) expandiert zu
class ct_RndIntString: public ....;
class ct_RndCharString: public ....;
class ct_RndShortString: public ....;
class ct_RndLongString: public ....;

Das Arraytemplate besitzt zwei Parameter, die Objektklasse t_obj und die Blockklasse 
t_block. Der erste Parameter bleibt auch bei vordefinierten Instanzen erhalten. In ARRAY_DCL 
(ct_RndLong) wird das Template gct_RndLongArray deklariert. Es baut auf der generierten 
Blockklasse ct_RndLongBlock auf.

#define ARRAY_DCL(StoreSpec)                             \
  template <class t_obj>                                 \
    class g ## StoreSpec ## Array:                       \
      public gct_Array <t_obj, StoreSpec ## Block> { };
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// Beispiel: ARRAY_DCL (ct_RndLong) expandiert zu
template <class t_obj>
  class gct_RndLongArray:
    public gct_Array <t_obj, ct_RndLongBlock> { };

Das Template gct_DList erwartet als zweiten Parameter eine Storeklasse. Dabei ist die 
Auswahl größer als bei Blockklassen (siehe Abbildung 3-16). Für einen einzelnen Größentyp 
generieren wir vier Listentemplates: Eine normale Liste, eine Blockliste, eine Refliste und 
eine Block-Refliste. Im Makro DLIST_DCL werden vordefinierte Stores verwendet. Zum Beispiel 
nutzt der Listencontainer gct_RndIntBlockDList das Storetemplate gct_RndIntBlockStore.

#define DLIST_DCL(StoreSpec)                                            \
  template <class t_obj>                                                \
    class g ## StoreSpec ## DList:                                      \
      public gct_DList <t_obj, StoreSpec ## Store> { };                 \
  template <class t_obj>                                                \
    class g ## StoreSpec ## BlockDList:                                 \
      public gct_DList <t_obj, g ## StoreSpec ## BlockStore             \
      <sizeof (gct_DListNode <t_obj, StoreSpec ## Store:: t_Size>)> >{};\
  template <class t_obj>                                                \
    class g ## StoreSpec ## RefDList:                                   \
      public gct_RefDList <t_obj, StoreSpec ## RefStore> { };           \
  template <class t_obj>                                                \
    class g ## StoreSpec ## BlockRefDList:                              \
      public gct_RefDList <t_obj, g ## StoreSpec ## BlockRefStore       \
      <sizeof (gct_DListNode <t_obj, StoreSpec ## Store:: t_Size>)> >{};

// Beispiel: DLIST_DCL (ct_RndInt) expandiert zu
template <class t_obj>
  class gct_RndIntDList:
    public gct_DList <t_obj, ct_RndIntStore> { };
template <class t_obj>
  class gct_RndIntBlockDList:
    public gct_DList <t_obj, gct_RndIntBlockStore
      <sizeof (gct_DListNode <t_obj, ct_RndIntStore:: t_Size>)> > { };
template <class t_obj>
  class gct_RndIntRefDList:
    public gct_RefDList <t_obj, ct_RndIntRefStore> { };
template <class t_obj>
  class gct_RndIntBlockRefDList:
    public gct_RefDList <t_obj, gct_RndIntBlockRefStore
      <sizeof (gct_DListNode <t_obj, ct_RndIntStore:: t_Size>)> > { };

In Abbildung 3-17 sehen wir das Regal für Strings und Container, die vom Roundstore 
gebildet werden. Zu ihrer Erzeugung sind die drei Makros STRING_DCLS (Rnd), ARRAY_DCLS (Rnd) 
und DLIST_DCLS (Rnd) erforderlich. In jeder Box des Regals befinden sich vier Klassen oder 
Templates, von denen die obersten beiden zu sehen sind. Ein ähnliches Regal existiert auch 
für den Standardstore.
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Abb. 3-17:    Regal für Strings und Container

3.4.3 Collections

Mit großen Regalen voller Arrays und Listen fällt es uns nicht schwer, einige Collections zu 
implementieren. Wir benötigen dazu ein Template, das die Funktionalität eines Containers 
auf das Collectioninterface (siehe Abschnitt 2.4.2) mappt. Das Template gct_Collection 
erwartet eine Containerklasse der Form gct_AnyContainer <ct_Object *>, also einen Container, 
der C++-Zeiger auf die abstrakte Basisklasse ct_Object enthält. Beim Zugriff auf ein Objekt 
ist ein Dereferenzieren erforderlich. Die Containermethode GetObj liefert einen Zeiger auf 
einen Zeiger (ct_Object * *). Die Collectionmethode GetObj muß aber einen Zeiger auf ein 
ct_Object zurückgeben. Umgekehrt muß beim Einfügen eines Zeigers mit der 
Collectionmethode AddPtrAfter die Adresse des Zeigers an die Containermethode AddObjAfter 
gegeben werden.

template <class t_cont>
  class gct_Collection: public ct_Collection
    {
    t_cont                      o_Container;
  public:
    virtual inline const char * GetTypeName () const;
    virtual inline t_CollLen    GetLen () const;
    virtual inline t_CollPtr    First () const;
    virtual inline t_CollPtr    Next (t_CollPtr o_ptr) const;
    virtual inline ct_Object *  GetObj (t_CollPtr o_ptr) const;
    virtual inline t_CollPtr    AddPtr (ct_Object * pco_obj);
    virtual inline t_CollPtr    AddPtrCond (ct_Object * pco_obj);
    virtual inline t_CollPtr    AddPtrAfter (t_CollPtr o_ptr, 
                                  ct_Object * pco_obj);
    virtual inline t_CollPtr    DelPtr (t_CollPtr o_ptr);
    };
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template <class t_cont>
  inline ct_Object *
  gct_Collection <t_cont>:: GetObj (t_CollPtr o_ptr) const
    {
    return * o_Container. GetObj ((t_cont:: t_Pointer) o_ptr);
    }

template <class t_cont>
  inline t_CollPtr gct_Collection <t_cont>:: AddPtrAfter
  (t_CollPtr o_ptr, ct_Object * pco_obj)
    {
    return (t_CollPtr) 
      o_Container. AddObjAfter ((t_cont:: t_Pointer) o_ptr, & pco_obj);
    }

Erzeugen wir mit diesem Template eine konkrete Collection, müssen wir nur noch die 
Methode GetTypeName definieren. Bei der Auswahl eines geeigneten Containers bevorzugen 
wir die vordefinierten Instanzen des Roundstores. Diese arbeiten auf der Grundlage einer 
effektiveren Speicherverwaltung. Der globale Größentyp für Collections t_CollLen ist auf 
unsigned long definiert. Für eine optimale Typverträglichkeit der Collection mit ihrer 
Basisklasse verwenden wir Container mit dem geschachtelten Größentyp unsigned long, zum 
Beispiel gct_RndLongArray.

class ct_Array: public gct_Collection <gct_RndLongArray <ct_Object *> >
  {
public:
  virtual inline const char * GetTypeName () const;
  };

inline const char * ct_Array:: GetTypeName () const
  {
  return "ct_Array";
  }

Die große Auswahl an Listencontainern ermöglicht es uns, mehrere Listencollections zu 
implementieren. Die neue Klasse ct_DList baut auf einem normalen Listencontainer auf und 
besitzt dasselbe Verhalten wie die gleichnamige Klasse unseres Beispielprogramms OHelp 
(siehe Abschnitt 1.4.2). Eine bessere Speicherauslastung besitzt die Klasse ct_BlockDList. 
Sie wird mit Hilfe des Containertemplates gct_RndLongBlockDList implementiert.

class ct_DList: public gct_Collection <gct_RndLongDList <ct_Object *> >
  {
public:
  virtual inline const char * GetTypeName () const;
  };

class ct_BlockDList: 
  public gct_Collection <gct_RndLongBlockDList <ct_Object *> >
  {
public:
  virtual inline const char * GetTypeName () const;
  };

Wollen wir die Funktionalität der Reflisten auf die Collections übertragen, benötigen wir eine 
abstrakte Basisklasse. Diese erweitert das allgemeine Collectioninterface um die 
Zugriffsmethoden auf den Referenzzähler, der jedem Element zugeordnet wird. Die abstrakte 
Klasse ct_RefCollection dient der Verarbeitung von Collections mit Referenzzählern in einem 
polymorphen Kontext. Zum Mappen der Funktionalität eines Refcontainers auf eine 
Refcollection nutzten wir das Template gct_RefCollection.

class ct_RefCollection: public ct_Collection
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  {
public:
  virtual void         IncRef (t_CollPtr o_ptr) = 0;
  virtual void         DecRef (t_CollPtr o_ptr) = 0;
  virtual t_RefCount   GetRef (t_CollPtr o_ptr) = 0;
  virtual bool         IsAlloc (t_CollPtr o_ptr) = 0;
  virtual bool         IsFree (t_CollPtr o_ptr) = 0;
  };

template <class t_cont>
  class gct_RefCollection: public ct_RefCollection
    {
    t_cont                      o_Container;
  public:
    virtual inline const char * GetTypeName () const;
    virtual inline t_CollLen    GetLen () const;
    .... // Weitere Collectionmethoden
    virtual inline void         IncRef (t_CollPtr o_ptr);
    .... // Weitere Zugriffsmethoden auf den Referenzzähler
    };

template <class t_cont>
  inline bool gct_RefCollection <t_cont>:: IsAlloc (t_CollPtr o_ptr)
    {
    return o_Container. IsAlloc ((t_cont:: t_Pointer) o_ptr);
    }

Mit diesem Template können wir konkrete Refcollections implementieren. Als Grundlage 
nutzen wir zwei Refcontainer, eine normale Refliste und eine Block-Refliste. Die beiden 
neuen Collections nennen wir ct_RefDList und ct_BlockRefDList. In Abbildung 3-18 sehen wir 
die verwendeten Klassen der Collection ct_RefDList. Der zugrundegelegte Refcontainer und 
seine Abhängigkeiten sind in der Abbildung nicht enthalten.

class ct_RefDList: 
  public gct_RefCollection <gct_RndLongRefDList <ct_Object *> >
  {
public:
  virtual inline const char * GetTypeName () const;
  };

class ct_BlockRefDList: 
  public gct_RefCollection <gct_RndLongBlockRefDList <ct_Object *> >
  {
public:
  virtual inline const char * GetTypeName () const;
  };
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Abb. 3-18:    Verwendete Klassen einer Refcollection

Die vordefinierten Collections bieten elementare Möglichkeiten zur Anpassung an konkrete 
Bedingungen. Zur Auswahl stehen eine Array- und vier Listencollections. Es können jedoch 
auch weitergehende Wünsche auftreten. Zum Beispiel kann beim vordefinierten Roundstore 
der Schritt-Teiler Vier eingestellt sein. Wir möchten aber für eine Blockcollection die binäre 
Rundung (Schritt-Teiler Eins) verwenden. Dazu müssen wir einen eigenen Roundstore und 
eine eigene Collection definieren. Die Makros GLOBAL_STORE_DCLS und DLIST_DCLS nehmen uns 
den größten Teil der Arbeit ab. Im folgenden Programmfragment wird das globale 
Roundstoreobjekt co_MyCollStore erzeugt. Am Programmbeginn wird die binäre Rundung 
eingestellt. Die Collection ct_MyBlockDList fordert ihren Speicher von diesem globalen Store 
an.

// In einer Headerdatei plazieren
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GLOBAL_STORE_DCLS (ct_RndStore, MyColl)
DLIST_DCLS (MyColl)

class ct_MyBlockDList:
  public gct_Collection <gct_MyCollLongBlockDList <ct_Object *> >
  {
public:
  virtual inline const char * GetTypeName () const;
  };

inline const char * ct_MyBlockDList:: GetTypeName () const
  {
  return "ct_MyBlockDList";
  }

// In einer Implementierungsdatei plazieren
GLOBAL_STORE_DEFS (ct_RndStore, MyColl)

int main ()
  {
  GetMyCollStore ()-> SetMinSize (16);
  GetMyCollStore ()-> SetStepDiv (1);
  ct_MyBlockDList co_myList;
  ....
  }

3.5 OHelp2

3.5.1 Implementierung

Am Ende des dritten Teils des Buches werden wir die neuen Konzepte anhand unseres 
Beispiels OHelp überprüfen. Das Design übernehmen wir aus dem ersten Teil (siehe 
Abschnitt 1.5.1). Bei der Implementierung setzen wir jedoch die neuen Programmbausteine 
ein und nennen das neue Beispiel OHelp2.

Als Grundlage der Speicherverwaltung verwenden wir den globalen Roundstore. Er 
vergrößert zwar jeden dynamischen Speicherblock zum Unterbringen der gerundeten Größe. 
Durch die Rundung bleibt aber die Freikette kleiner, und die Speicherverwaltung wird 
insgesamt schneller. Das globale Objekt co_RndStore taucht in unserem Programm nirgendwo 
direkt auf. In den vordefinierten Instanzen (zum Beispiel gct_RndShortRefDList) ist aber sein 
Name enthalten.

In den Anwendungsklassen von OHelp2 können wir überall den geschachtelten Größen- 
bzw. Längentyp unsigned short einsetzen. Zum Beispiel ist es sinnvoll, Zeichenketten auf eine 
Größe von 64 KB  zu beschränken. Die Klasse ct_RndShortString umfaßt nur sechs Bytes, 
während die Klasse ct_RndIntString acht Bytes benötigt. Zum Speichern der Hyperlinks und 
Formate in einem Thema verwenden wir den Arraycontainer gct_RndShortArray. Der 
dynamische Block dieses Arrays kann bis zu 64 KB groß werden. Auch diese Beschränkung 
ist in unserer Anwendung sinnvoll. Das Arrayobjekt selbst umfaßt nur sechs Bytes.

Datentypen, die wir häufig verwenden, kürzen wir mit einer Typdefinition ab. Zum Speichern 
des Texts in einem Thema nutzen wir die Klasse ct_RndShortString. Positionen, die sich auf 
diesen Text beziehen, sind in Hyperlinks und Formatangaben enthalten. Der Datentyp für 
Textpositionen ist gleich dem geschachtelten Größentyp der Stringklasse. Beide Datentypen 
sollten im Programmtext hintereinander stehen. Ändern wir später die Stringklasse, muß 
auch der Datentyp für Textpositionen überprüft werden.
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typedef ct_RndShortString t_TextString;
typedef t_TextString:: t_Size t_TextSize; // unsigned short

Analog verfahren wir bei Containern. Ein Hyperlink enthält einen Verweis auf ein Thema. 
Dazu verwenden wir keinen C++-Zeiger, sondern den logischen Zeiger aus der Liste aller 
Themen. Den Containertyp für Themen können wir an dieser Stelle nicht definieren. Die 
Klasse ct_Topic ist dem Compiler noch unbekannt. Eine Vorwärtsdeklaration reicht in diesem 
Fall nicht aus, denn der Container enthält Objekte vom Typ ct_Topic (keine Zeiger). Damit 
beide Datentypen textuell beisammen stehen, definieren wir den Containertyp als ein 
Präprozessormakro.

In OHelp1 besaß jedes Thema einen Referenzzähler. Ein Hyperlink, das auf dieses Thema 
verwies, erhöhte ihn um eins. Ein Thema durfte erst gelöscht werden, wenn keine Verweise 
mehr darauf existierten. Nun verwenden wir zum Sammeln der Themen eine Refliste, also 
eine Liste, die jedem Eintrag einen Referenzzähler zuweist. Wir können fragen, ob ein 
Hyperlink noch gültig ist. Ein Thema kann unabhängig vom zugeordneten Referenzzähler 
gelöscht werden.

#define TOPIC_LIST gct_RndShortRefDList <ct_Topic>
typedef void * t_TopicPtr;

Die Klassen ct_HyperLink und ct_Format müssen nicht mehr von der abstrakten Basisklasse 
ct_Object erben. Aber sie müssen einige neue Anforderungen erfüllen. Das Einfügen in einen 
Container erfolgt mit dem Standard- oder Kopier-Konstruktor. Andere Konstruktoren können 
nicht verwendet werden. Die Konstruktoren aus dem Beispiel OHelp1 werden deshalb in 
normale Methoden umgewandelt. Ein Objekt wird nun mit seinem Standard-Konstruktor 
erzeugt und mit einer Init-Methode initialisiert. Für die Containermethode AddObjCond muß die 
Klasse einen Gleichheits-Operator enthalten.

class ct_HyperLink
  {
  t_TextSize           o_Pos;
  t_TopicPtr           o_TopicPtr;
  bool                 b_InText: 1;
public:
  inline void          Init (t_TopicPtr o_ptr);
  inline void          Init (t_TextSize o_pos, t_TopicPtr o_ptr);
  inline bool          operator == (const ct_HyperLink & co_comp) const;
  inline t_TextSize    GetPos () const;
  inline void          MovePos (int i_delta);
  inline t_TopicPtr    GetTopicPtr () const;
  inline bool          IsInText () const;
  };

typedef unsigned char t_FormatId;

const t_FormatId co_Bold      = 0x01;
const t_FormatId co_Italic    = 0x02;
const t_FormatId co_Underline = 0x04;
const t_FormatId co_Example   = 0x08;

class ct_Format
  {
  t_TextSize           o_Pos;
  t_TextSize           o_Len;
  t_FormatId           o_Format;
public:
  inline void          Init (t_TextSize o_pos, t_TextSize o_len,
                         t_FormatId o_format);
  inline bool          operator == (const ct_Format & co_comp) const;

Spirick Tuning    Tutorial    Seite 148



  inline t_TextSize    GetPos () const;
  inline void          MovePos (int i_delta);
  inline t_TextSize    GetLen () const;
  inline void          ChangeLen (int i_delta);
  inline t_FormatId    GetFormat () const;
  inline void          AddFormat (t_FormatId o_format);
  inline void          DelFormat (t_FormatId o_format);
  };

Zum Speichern der Hyperlinks und Formate verwenden wir das Template gct_RndShortArray. 
Die konkreten Containerklassen werden nicht mit einer Typdefinition erzeugt. Zum 
Beschleunigen des Compilierens definieren wir dafür zwei Klassen. Die zugeordneten 
Zeigertypen sind primitive Datentypen und können als Typdefinition notiert werden. In 
OHelp1 war für den Zugriff auf ein Hyperlink-Objekt die Methode ct_Topic:: GetHyperLink 
nötig. Sie ermittelte aus der Collection einen Zeiger des Typs ct_Object * und wandelte ihn in 
ct_HyperLink * um. Diese Typumwandlung ist nun nicht mehr erforderlich. Beim Durchlaufen 
des Containers erhalten wir bereits die richtigen Zeiger.

class ct_HyperLinks: public gct_RndShortArray <ct_HyperLink> { };
typedef ct_HyperLinks:: t_Pointer t_HyperLinkPtr; // unsigned short

class ct_Formats: public gct_RndShortArray <ct_Format> { };
typedef ct_Formats:: t_Pointer t_FormatPtr; // unsigned short

In der Klasse ct_Topic sind nur geringe Änderungen nötig. Das Attribut u_RefCount entfällt, 
denn in der Liste aller Themen ist jedem Eintrag ein Referenzzähler zugeordnet. Stattdessen 
benötigen wir den logischen Zeiger des Themas innerhalb der Themenliste. Er gelangt als 
Attribut o_LogPtr neu in die Klasse. Der logische Zeiger wird zusammen mit dem Zeiger auf 
den Hypertext und dem Namen in der Init-Methode initialisiert und kann später nicht mehr 
geändert werden. Er wird in der Methode GetRefCount verwendet (siehe unten).

Ein einzelnes Hyperlink-Objekt kann keine Auskunft geben, ob es noch gültig ist, denn es 
besitzt keinen Zugriff auf die Liste aller Themen. Die Methode IsHyperLinkValid wird also in 
der Klasse ct_Topic deklariert. Am Ende des folgenden Programmausschnitts sehen wir ihre 
Definition. Sie erwartet als Parameter den logischen Zeiger des Hyperlinks. Aus dem 
Hyperlink-Container co_HyperLinks ermittelt sie den logischen Zeiger des referenzierten 
Themas. Damit wird auf die Themenliste zugegriffen. Die Reflisten-Methode IsAlloc liefert 
schließlich die gewünschte Information.

class ct_HyperText;

class ct_Topic
  {
  ct_HyperText *       pco_HyperText;
  t_TopicPtr           o_LogPtr;
  ct_RndShortString    co_Title;
  t_TextString         o_Text;
  ct_HyperLinks        co_HyperLinks;
  ct_Formats           co_Formats;

  void                 Clear ();
  void                 Copy (const ct_Topic & co_copy);
public:
                       ct_Topic ();
                       ct_Topic (const ct_Topic & co_init);
                       ~ct_Topic ();
  void                 Init (ct_HyperText * pco_hyperText,
                         t_TopicPtr o_ptr, const char * pc_title);
  ct_Topic &           operator = (const ct_Topic & co_asgn);
  bool                 operator == (const ct_Topic & co_comp) const;
  inline ct_HyperText * GetHyperText () const;
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  inline t_TopicPtr    GetLogPtr () const;
  unsigned             GetRefCount () const;
  inline const char *  GetTitle () const;
  inline void          SetTitle (const char * pc_title);
  inline const char *  GetText () const;
  void                 InsertText (t_TextSize o_pos, const char * pc_tx);
  void                 DeleteText (t_TextSize o_pos, t_TextSize o_len);
  inline const ct_HyperLinks * GetHyperLinks () const;
  bool                 IsHyperLinkValid (t_HyperLinkPtr o_ptr) const;
  t_HyperLinkPtr       AddHyperLink (t_TopicPtr o_ptr);
  t_HyperLinkPtr       AddHyperLink (t_TextSize o_pos, t_TopicPtr o_ptr);
  t_HyperLinkPtr       DelHyperLink (t_HyperLinkPtr o_ptr);
  inline const ct_Formats * GetFormats () const;
  t_FormatPtr          AddFormat (t_TextSize o_pos, t_TextSize o_len,
                         t_FormatId o_format);
  t_FormatPtr          DelFormat (t_FormatPtr o_ptr);
  };

unsigned ct_Topic:: GetRefCount () const
  {
  return pco_HyperText-> GetTopics ()-> GetRef (o_LogPtr);
  }

bool ct_Topic:: IsHyperLinkValid (t_HyperLinkPtr o_ptr) const
  {
  return pco_HyperText-> GetTopics ()->
    IsAlloc (co_HyperLinks. GetObj (o_ptr)-> GetTopicPtr ());
  }

Die Klasse ct_HyperText können wir im wesentlichen von OHelp1 übernehmen. Wir ändern 
nur die Typen der Attribute und Methodenparameter. Die Methode GetTopic für den Zugriff 
auf ein einzelnes Thema entfällt. Der Listentyp für die Themen wird mit Hilfe des weiter 
oben definierten Makros erzeugt. Wir können keine platzsparende Blockliste einsetzen, denn 
ein Hypertext soll bis zu 10 000 Themen aufnehmen können. Damit ist eine Blockliste 
überfordert.

class ct_Topics: public TOPIC_LIST { };

class ct_HyperText
  {
  ct_RndShortString    co_Name;
  t_TopicPtr           o_RootTopicPtr;
  ct_Topics            co_Topics;
public:
                       ct_HyperText ();
                       ~ct_HyperText ();
  inline const char *  GetName () const;
  inline void          SetName (const char * pc_name);
  inline t_TopicPtr    GetRootTopicPtr () const;
  inline void          SetRootTopicPtr (t_TopicPtr o_rootPtr);
  inline const ct_Topics * GetTopics () const;
  t_TopicPtr           AddTopic (const char * pc_title);
  t_TopicPtr           CopyTopic (t_TopicPtr o_source,
                         const char * pc_newTitle);
  void                 ReplaceTopic (t_TopicPtr o_repl, t_TopicPtr o_src,
                         const char * pc_newTitle);
  void                 DelTopicUsages (t_TopicPtr o_ptr);
  t_TopicPtr           DelTopic (t_TopicPtr o_ptr);
  };

Der Verzicht auf abstrakte Basisklassen und virtuelle Methoden bei der Implementierung von 
OHelp2 ist keine allgemeine Empfehlung. Unsere Programmierregel aus dem Abschnitt 1.6.1 
lautet: An performancekritischen Stellen suchen wir eine Lösung ohne virtuelle Methoden. 
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Existiert diese Lösung nicht, setzen wir weiterhin virtuelle Methoden ein. In unserem Beispiel 
OHelp2 existieren jedoch solche Lösungen.

3.5.2 Performance-Analyse

Die neue Implementierung von OHelp unterziehen wir demselben kritischen Test wir OHelp1. 
Zunächst starten wir ein Testprogramm. Dann ermitteln wir rechnerisch den 
Ressourcenverbrauch von OHelp2. Wir nutzen dazu dieselben Daten wie beim ersten 
Performancetest. Zur Erinnerung seien diese Zahlen noch einmal wiederholt.

• 10 000 Themen,
• Titel des Themas mit 15 Zeichen,
• pro Thema 10 Zeilen,
• pro Zeile 30 Zeichen Text und
• pro Zeile je eine Formatangabe und ein Hyperlink.

Im Testprogramm wird zuerst die algorithmische Richtigkeit anhand kleiner Beipiele 
überprüft. Dann erfolgt der Performancetest. Wir bauen eine größere Datenmenge auf und 
nehmen daran umfangreiche Änderungen vor. Der Test verläuft diesmal ohne Probleme. 
Unser Programm ist merklich schneller geworden und benötigt weniger Speicher. Auch nach 
längerer Arbeit mit großen Datenmengen wird das Programm nicht langsamer. Die höhere 
Rechengeschwindigkeit ist auf folgende Faktoren zurückzuführen:

• Kleine Methoden sind inline definiert und können an jeder Verwendungsstelle inline 
expandiert werden.

• An rechenzeitkritischen Stellen werden keine virtuellen Methoden eingesetzt.
• Die Speicherverwaltung wird durch Rundung und minimierte Blockanzahl entlastet.

Zur Berechnung der absoluten Größe von Objekten setzen wir wieder einen 32-Bit-Compiler 
voraus. Die primitiven Datentypen umfassen: char ein Byte, short zwei Bytes, int vier Bytes, 
long vier Bytes und Zeiger vier Bytes. Einzelne Objekte der Typen ct_HyperLink, ct_Format und 
ct_Topic beanspruchen keine eigenen Speicherblöcke, denn sie werden in Containern 
untergebracht. In Abbildung 3-19 sehen wir das Speicherlayout eines einzelnen Themas. 
Tabelle 3-6 enthält die Analyseergebnisse.
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. . .

ct_HyperLink 1

ct_HyperLink 10

Objekt vom Typ ct_Topic Abhängige Objekte

300 + 1 Zeichen Text

ct_Format 1

ct_Format 10

15 + 1 Zeichen Titel

ct_HyperText * pco_HyperText

ct_RndShortString co_Title

ct_HyperLinks co_HyperLinks

unsigned short o_Size

void * o_Ptr

Basisklasse ct_RndShortBlock

unsigned short o_Size

void * o_Ptr

Basisklasse ct_RndShortBlock

ct_RndShortString co_Text

unsigned short o_Size

void * o_Ptr

Basisklasse ct_RndShortBlock

Basisklasse gct_RndShortArray

. . .

ct_Formats co_Formats

unsigned short o_Size

void * o_Ptr

Basisklasse ct_RndShortBlock

Basisklasse gct_RndShortArray

t_TopicPtr o_LogPtr

Abb. 3-19:    Speicherlayout einer Instanz der Klasse ct_Topic

Objekttyp Absolute Größe Virt. Tab.-Zeiger Anzahl Blöcke

Hyperlink 7 Bytes 0 Bytes 0

Formatangabe 5 Bytes 0 Bytes 0

Thema ohne Inhalt 32 Bytes 0 Bytes 0

Titel mit 15 Zeichen 15 + 1 Bytes 0 Bytes 1

Text mit 300 Zeichen 300 + 1 Bytes 0 Bytes 1

10 Hyperlinks 70 Bytes 0 Bytes 1

10 Formatangaben 50 Bytes 0 Bytes 1

Themen-Inhalt 437 Bytes 0 Bytes 4

Thema mit Inhalt (OHelp2) 469 Bytes 0 Bytes 4

Thema mit Inhalt (OHelp1) 777 Bytes 100 Bytes 25

Tab. 3-6:    Speicheranalyse der Klasse ct_Topic

Bei der Auswertung der Tabelle müssen wir beachten, daß in einem Thema 317 Bytes reine 
Zeichenketten enthalten sind, die sich nicht optimieren lassen. Dennoch konnte der 
Speicherbedarf deutlich verringert werden. Durch den Einsatz von Containern wurde auch 
die Anzahl der Blöcke stark reduziert. Damit sinkt der unsichtbare Verwaltungsaufwand der 
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dynamischen Speicherverwaltung. Abbildung 3-20 zeigt das Speicherlayout eines 
Hypertexts. In Tabelle 3-7 befinden sich die Ergebnisse der Speicheranalyse.

gct_RefStore o_Store

unsigned short o_Length

void * o_First

void * o_Prev

void * o_Next

. . .

ct_RefCount

gct_DListNode

void * o_Prev

void * o_Next

ct_RefCount

gct_DListNode

Basisklasse gct_DList

ct_Topic 1

Objekt vom Typ ct_HyperText

ct_Topic 10000

Abhängige Objekte

t_TopicPtr o_RootTopicPtr

15 + 1 Zeichen Name

ct_RndShortString co_Name

unsigned short o_Size

void * o_Ptr

Basisklasse ct_RndShortBlock

Basisklasse gct_RndShortRefDList

ct_Topics co_Topics

Abb. 3-20:    Speicherlayout einer Instanz der Klasse ct_HyperText

Objekttyp Absolute Größe Virt. Tab.-Zeiger Anzahl Blöcke

Hypertext ohne Inhalt 17 Bytes 0 Bytes 1

Titel mit 15 Zeichen 15 + 1 Bytes 0 Bytes 1

DList-Eintrag mit Th. o. I. 42 Bytes 0 Bytes 1

10 000 DList-Einträge 42 000 Bytes 0 Bytes 10 000

Hypertext mit Th. o. I. 42 033 Bytes 0 Bytes 10 002

10 000 Themen-Inhalte 4 370 000 Bytes 0 Bytes 40 000

Hypertext mit Inhalt (OHelp2) 4 412 033 Bytes 0 Bytes 50 002

Hypertext mit Inhalt (OHelp1) 7 890 048 Bytes 1 000 012 Bytes 260 002

Tab. 3-7:    Speicheranalyse der Klasse ct_HyperText

Ein Vergleich mit den Analyseergebnissen von OHelp1 ergibt, daß wir den Speicherbedarf 
auf 56 und die Anzahl der Blöcke auf 19 Prozent reduziert haben. Die wichtigsten Faktoren 
unserer Speicheroptimierung sind:
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• Wir setzen angepaßte primitive Datentypen ein, zum Beispiel unsigned short statt unsigned 
int.

• Unsere Daten enthalten keine überflüssigen virtuellen Tabellenzeiger.
• Container enthalten keine Zeiger zum Verwalten der Objekte.

Bei der Neuimplementierung von OHelp blieb das Interface der Klassen weitgehend stabil. 
Die Benutzeroberfläche passen wir in kürzester Zeit an den neuen Programmkern an. Das 
einst so schwerfällige Programm wirkt nun flott und elegant. Die gestreßten Anwender 
unseres Hilfesystems werden umgehend telefonisch benachrichtigt. Schon nächste Woche 
erhalten sie eine neue Version, die doppelt so schnell ist und nur noch halb so viel Speicher 
verbraucht.
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