Spirick Tuning

Die C++ Klassen- und Template-Bibliothek

far performancekritische Anwendungen

Tutorial

OO

Copyright © Dietmar Deimling 1996. All rights reserved.

Copyright © Dietmar Deimling 1996. All rights reserved.

Kein Teil dieses Werkes darf ohne schriftliche Genehmigung des Autors in irgendeiner Form
(Fotokopie, Mikrofilm oder andere Verfahren), auch nicht fir Zwecke der
Unterrichtsgestaltung, reproduziert oder unter Verwendung elektronischer Systeme
verarbeitet, vervielfaltigt oder verbreitet werden. Bei der Zusammenstellung wurde mit
groRter Sorgfalt vorgegangen. Fehler konnen trotzdem nicht véllig ausgeschlossen werden,
so dald der Autor fur fehlerhafte Angaben und deren Folgen keine juristische Verantwortung
oder irgendeine Haftung tGbernimmt. Die Wiedergabe von Gebrauchsnamen, Handelsnamen,
Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung
nicht zu der Annahme, daf® solche Namen im Sinne der Warenzeichen- und
Markenschutzgesetzgebung als frei betrachtet waren. Fir Verbesserungsvorschlage und
Hinweise auf Fehler ist der Autor stets dankbar.

Zur Benutzung des Tutorials

Das vorliegende Werk beschreibt grundlegende Konzepte und Techniken der Bibliothek
Spirick Tuning. Um die Darstellung moglichst allgemeinverstéandlich zu halten, wurden
gegenlber dem Originalquelltext zahlreiche Vereinfachungen vorgenommen. Es kann daher
vorkommen, daf} Begriffe, Namen von Datentypen, Klassen, Funktionen und Methoden und
Beziehungen zwischen Klassen, die im Tutorial beschrieben werden, vom Originalquelltext
abweichen. Eine umfassende und gultige Beschreibung des Produkts Spirick Tuning befindet
sich ausschlielich im zugehérigen Referenzhandbuch.

Spirick Tuning Tutorial Seite 2

Inhaltsverzeichnis

1 Performance-Analyse eines C+ +-Programms..................ccooeeenas 5
1.1 EINI@IUNG . .coeeee e 5
1.2 Einige Grundlagen..........ccuvuiiiiiiiiiiiiinii e e 7

1.2.1 Zur Notation im BUCh........cooii e 7
1.2.2 UDEIDICK ISt AlES.. .. cieeeeeie ettt et et e et e e e e e e e e e eeeaans 9
1.2.3 Brandschutz statt Feuerwehr..........oooiiiii e 11
1.2.4 Vorsicht, Falle im Unsichtbaren.......cccvviiiiiiiiiiiii i e ieiaaes 12
1.3 Ein Beispielprogramm..........ccccviiieiiiiiiiiiiaeereaera s rsae s s s s e reaneaneas 14
1.3.1 Beschrankung auf das Wesentliche..........c.coooiiiiiiiiiiiiiiicceeas 14
1.3.2 Aufgabenstellung des Programms........ccoviiiiiiiiiiiiiinn e 15
1.4 Fundamentale Klassen von OHelp...........coooiiiiiiiii e 16
1.4.1 Design der fundamentalen Klassen...........ccoiiiiiiiiiiiiiic e 17
1.4.2 Implementierung der ColleCtionsS.........ouiieiiiiiiiiii e 20
1.4.3 Entryld und LANGENaNgabe.........oiieiiii i 23
1.4.4 Implementierung der Stringklasse.......covevviiiiiiiiii e 26
1.5 Anwendungsklassen von OHelp.........ccciiiiiiiiiiiiii e e e aeas 28
1.5.1 Design der Anwendungsklassen.......ccovviiiiiiiiiii i 29
1.5.2 Implementierung der Anwendungsklassen............cccovviiiiiiiiiiiiiie i, 31
1.5.3 Stunde der Wahrheit...... ..o e 35
1.6 Ein Blick hinter die Kulissen des Compilers..........c.ccoieviiiiiiiiiiiiiiiiiiiieenns 37
1.6.71 Virtuelle Methoden........cciiiiiiiii i e 37
1.6.2 InliNe-Methoden.. ... s 39
1.6.3 Dynamische Speicherverwaltung.........ccooviiiiiiiiiiiii e 43
1.7 Performance-Analyse von OHelp.......ccoooiiiiiiiiii e 46
1.7.1 Rechenzeitverhalten...o 46
1.7.2 Speicherbedarf.o.oiiiiii 48
L RS B XU L= 3VY7 =T o (U g [PO PR 52

2 Grundlagen einer besseren Performance.............ccccvviiiviiiiinnnnnn. b4

2.1 Ein Abstecher in die Philosophie..........c.ccoiiiiiiiiiiiiiiiccrc e 54
2.1.1 Modellierung - Wichtiger Bestandteil menschlicher Tatigkeit................. 54
2.1.2 Arten und Eigenschaften von Modellen.........c.c.cooiiiiiiiiiiiiiiee, 56
2.1.3 Modellierung mit ComMPULEINiitii e e 57

2.2 Zugriff auf Objekte. oo e 59
2.2.7 Zeiger IN G4 e as 60
2.2.2 INAIiZES VON AITAY S .uuiieiiii ittt ettt e e e e et e e eaneeeeanneeann 60
2.2.3 LOQISChE ZEIGET ... et e 61

2.3 Speicherverwaltung...........cooiiiiiiiiiiii e e 62
2.3.T Eine runde SacChe.....c.iiuiiiiiiiii i e 63
2.3.2 Rundungstechniken. 65
2.3.3 Feste SpeicherverwaltUng.........oooviiiiiiiiiii e 68

2.4 Objektverwaltung........c.oeviieiiiiiiii e 71
DAt B O] o - [1= PP 72
YA A o] | 1= o3 i T o - J PP 75

2.5 Sicherheitstraining..........ccoeieieiiii e e 76

Spirick Tuning Tutorial Seite 3

2.5.71 RESEIVESPEICNET. ... e e e e 76

2.5.2 Referenzzahler und sichere Zeiger.......ccooiiiiiiiiiiiiiiciiccc e 80
2.5.3 WeEmM gehOrt Was 2. .ot iii it e e 84
2.6 Einige Programmiertechniken.............ccccoiiiiiiiiiii e 87
2.6.1 Operatoren new und delete.......ccoieiiiiiiiiiii i e 87
2.6.2 JUNQGIE Of SCOPES. ...ttt 91
3 C + +-Bausteine fiir High-Performance-Programme..................... 96
3.1 Beginn beim Fundament............coooiiiiiiiiiiiiii 96
3.1.71 DYNamiSChe StOMES. . ittt e 96

B I I € [o) o Y- 1 (ST o] (- 101
3.1.3 Globale C+ +-Speicherverwaltung........ccoviiiiiiiiii e 105
3.1.4 Dynamischer SpeicherbloCK.........oovuiiiiiii e 106
3.1.5 Eine Blockanwendung - String......ccooeeiiiiiiiii e 108
3.2 Speicher nach MaRB..........ccoiiiiiiiiii e r e eaans 112
3.2.71 Fester Store im BlOCK.......oiuiiiiiie e 112
3.2.2 Ein Anwendungsbeispiel........coooviiiiiiiii 115
3.2.3 Store mit Referenzzahlern.......cooviiiiiiiiiiii e 118
3.2.4 Konkrete RefStOresS. ..ottt 121
3.3 Neue Container braucht das Land...........ccccviviiiiiiiiiiiiiricrerree e 122
R TG i I ¢ - 1 PP 122
G TG T 1 1= 125
3.3.3 Block- und Reflisten.....ccuiiiiiiiii i e 129
3.3.4 Test der CoNtainer....ccuiii i e eiee e aneenn 134
3.4 Griff Ins Regal.....o.onieiiiii s 137
3.4.1 Vordefinierte Stores und BlOcke.......ccooiiiiiiiiiiiiiii 137
3.4.2 Vordefinierte Strings und Container.........c.cvoviiiiiiiiiii e 140
34,3 CollECTiONS . ittt 143

R T 5T o =Y [22 147
3.5, 1 IMPIEMENTIEIUNG . .ttt as 147
3.5.2 Performance-ANalySe.....c.ooeiiiiiii i 151

Spirick Tuning Tutorial Seite 4

1 Performance-Analyse eines C + +-
Programms

1.1 Einleitung

In den vergangenen Jahren hat sich die Softwareentwicklung grundlegend gewandelt.
Objektorientierte Techniken und Werkzeuge verlieRen die Labors, in denen sie jahrelang
gereift waren. Die neue Programmiersprache C + + entstand. Sie erweiterte die anerkannte
Sprache C um objektorientierte Konzepte, entwickelte sich bald zu einem De-Facto-
Industriestandard und trug wesentlich zur heutigen Verbreitung der Objektorientierung bei.

Wahrend des Ubergangs von der strukturierten zur objektorientierten Programmierung wurde
nicht einfach die Programmiersprache C durch C+ + ersetzt. Es fand ein grundlegender
Wandel in allen Phasen der Programmentwicklung statt. Neben der Implementierung wurden
auch Analyse und Design neu gestaltet. Die objektorientierte Vorgehensweise erhéht
wesentlich die Ubersichtlichkeit. Damit verringert sich die Haufigkeit von Fehlern, und der
Aufwand flar Entwicklung und Wartung eines Programms sinkt enorm.

Ein objektorientiertes Programm erhalt schon in der Entstehungsphase ein anderes Gesicht.
Neue Konzepte wie Datenkapselung und Polymorphie finden Einzug in Analyse und Design.
Bei der Implementierung werden mehr und kleinere Objekte eingesetzt. Statt globaler
Funktionen werden Methoden der Objekte aufgerufen. Flrr das Erzeugen und Léschen der
Objekte werden Konstruktoren und Destruktoren verwendet. Sie sorgen fiir die Konsistenz
der verwalteten Daten. Mit virtuellen Methoden wird es moglich, Objekte zu verwenden,
deren genauer Typ nicht bekannt ist.

Die heutigen objektorientierten Programmiersprachen besitzen aber noch Méangel in bezug
auf die Laufzeiteffizienz. Die Umstellung eines Projekts auf objektorientierte Techniken ist
oft mit einem erhéhten Bedarf an Ressourcen verbunden. Dieser Performanceverlust ist
jedoch keine unheilbare Krankheit. Im vorliegenden Buch werden die Schwachstellen eines
C+ +-Programms aufgedeckt und behandelt. Dabei zeigt sich, da3 Objektorientierung und
High Performance keine Gegenséatze sind. Alle vorgeschlagenen Konzepte passen sich
harmonisch in die objektorientierte Sprache C+ + ein.

Einige Leser werden sich fragen, ob sich der Aufwand fiir das Performance-Tuning wirklich
lohnt. SchlieRlich gelangt mit rasantem Tempo neue, leistungsféahigere Hardware auf den
Markt. Auch die Programmierwerkzeuge werden standig verbessert. Dabei wird aber
Ubersehen, dal3 unsere Anspriiche schneller wachsen als die Hardware. Noch vor wenigen
Jahren benétigten wir fir das Verarbeiten groRer Datenmengen einen "groRen"” Computer.
Heute werden statt Mainframes zunehmend Rechnernetze eingesetzt. Damit steigen die
Anspriche an die Rechenleistung unseres personlichen Arbeitsplatzcomputers. Bei der
Auswahl geeigneter Software spielt die Performance eine wichtige Rolle. Beschaftigt sich
ein Programm vorwiegend mit sich selbst, statt unsere Aufgaben zu l6sen, sehen wir uns
nach einem anderen um.

C+ + verfligt Gber bessere Optimierungsmaoglichkeiten als andere objektorientierte
Sprachen. Diese Moglichkeiten sind aber nicht offensichtlich, und sie werden vom Compiler
nicht automatisch eingesetzt. Kennen wir sie nicht, ist die Performance unseres Programms

Spirick Tuning Tutorial Seite 5

nur durchschnittlich. Fir eine bessere Performance missen wir die sprachnahen Werkzeuge
genauer untersuchen. Dazu zahlen:

¢ Die Definition der Programmiersprache C + +.
e Der C/C+ +-Compiler.
*« Die C-Standardbibliothek mit den Modulen string, std1ib usw.

Wir betrachten diese Werkzeuge aus dem Blickwinkel der Performance. Das Buch liefert
deshalb keinen vollstandigen Uberblick der Sprache C+ +. Stattdessen untersuchen wir
diejenigen Teile, die den Ressourcenverbrauch unseres Programms beeinflussen (siehe
Abbildung 1-1). Im Laufe der Untersuchungen werden wir mehrmals das Seziermesser an
Compiler und Standardbibliothek anlegen. Die Ergebnisse sind nicht immer appetitlich. Wir
erlangen aber die Fahigkeit, unser Programm von ungesundem Ballast zu befreien.

Sprache C++

Performance

C/C++-Compiler C-Standardbibliothek

Abb. 1-1: Grau: Der Gegenstand des Buchs

Es existieren viele Wege, ein Programm zu optimieren. Auf die noch nicht bewiesene These,
dal® jedes Programm um mindestens ein Byte verklirzt werden kann, ohne an Funktionalitat
einzublflen, gehen wir hier nicht ein. Stattdessen werden wir uns handfesten Tatsachen
widmen. Das algorithmische Tuning ist seit vielen Jahren erforscht und in zahlreichen
Bichern publiziert. Dazu zahlen angepaldte Sortierverfahren, die Zugriffsbeschleunigung mit
Hashtabellen usw. Je stérker wir ein Programm algorithmisch optimieren, desto héher
werden unsere Anspriche an die Sprachwerkzeuge (siehe Abbildung 1-2). Im Laufe des
Buchs lernen wir zahlreiche Méglichkeiten kennen, auch sie optimal an unsere Bedirfnisse
anzupassen.

Programm Sprachwerkzeuge Normales Programm

Optimiertes Programm OHNE

Programm Sprachwerkzeuge optimierte Sprachwerkzeuge

Optimiertes Programm MIT
optimierten Sprachwerkzeugen

Programm | Sprachw.

D Ressourcen

Abb. 1-2: Anteile des Ressourcenverbrauchs

Beim Optimieren eines Programms dirfen wir die Qualitdt nicht aul3er acht lassen. Wir
werden beim Performance-Tuning weder unlbersichtlichen Spaghetticode noch
Assemblerroutinen einsetzen. Nach einem griindlichen Design finden wir auch fiir schwierige
Probleme eine objektorientierte Lésung in C+ +. Das nachtragliche Andern getesteter
Programmteile ist stets mit Risiken verbunden. Deshalb sollten wir performancekritische

Spirick Tuning Tutorial Seite 6

Stellen frihzeitig erkennen und einkapseln. Nitzliches Zusatzwissen Uber die
Spachwerkzeuge hilft uns dabei.

Optimierungskonzepte sind kein Gegensatz zu bestehenden, sondern eine sinnvolle
Erganzung. Wir kénnen sie auch an nicht performancekritischen Stellen einsetzen. Manchmal
stehen sie jedoch im Widerspruch zu anderen Design- und Programmierregeln. In diesen
Fallen missen wir sorgfaltig abwéagen, was die héhere Prioritét besitzt. Moderne Programme
mit graphischer Benutzeroberflache bestehen aus zahlreichen Komponenten. Normalerweise
sind davon nur zehn bis zwanzig Prozent performancekritisch. Diese beanspruchen siebzig
bis achzig Prozent der Ressourcen. Da die performancekritischen Komponenten nur einen
geringen Anteil am Gesamtprogramm besitzen, kénnen wir dort auch abweichende Regeln
einsetzen.

Das Performance-Tuning ist oftmals wie Goldsuche. Es existieren hunderte oder tausende
Faktoren, die sich auf den Ressourcenverbrauch auswirken. Viele verstecken sich hinter
Compilerschaltern und Standardfunktionen. Sind wir mit der Performance unseres
Programms nicht zufrieden, greifen wir auf der Suche nach dem Flaschenhals oft ins Leere.
Statt eines groRen Klumpen Goldes finden wir meist nur einen kleinen Ressourcenkriimel.
Deshalb Goldsucher und solche, die es werden wollen, aufgepalf3t! Im vorliegenden Buch
werden einige Gebiete gezeigt, in denen mit Sicherheit etwas zu finden ist.

Das Buch ist aus der Praxis entstanden und fir Praktiker geschrieben. Es ist kein Lehrbuch
und enthalt keine Definitionen. Grundkenntnisse in der Programmiersprache C+ + werden
vorausgesetzt. FUr Leser, die mit der objektorientierten Begriffswelt und C+ + noch nicht
vertraut sind, werden wichtige Begriffe in groben Ziigen erlautert. Neue Begriffe werden
nicht in einer Definition sondern im jeweiligen Kontext beschrieben.

Das Buch gliedert sich in drei grof3e Kapitel. Diese Unterteilung entspricht den drei Phasen
der Programmentwicklung: Analyse, Design und Implementierung. Im ersten Teil analysieren
wir ein kleines C+ +-Programm und stellen fest, dal® wir bei seiner Entwicklung in mehrere
Performancefallen getappt sind. Der zweite Teil enthalt Konzepte, mit denen wir die
Performance verbessern kénnen. Im dritten Teil werden sie in C+ + umgesetzt.

1.2 Einige Grundlagen

1.2.1 Zur Notation im Buch

Im Verlauf des Buches werden wir uns zahlreiche Designdiagramme und
Programmfragmente ansehen. Um deren Verstandlichkeit zu erhéhen, sind sie alle nach
einheitlichen Prinzipien erstellt. Fur die objektorientierten Designdiagramme wird die
Methode von Peter Coad verwendet. Abbildung 1-3 zeigt die wichtigsten graphischen
Elemete dieser Designmethode.

Spirick Tuning Tutorial Seite 7

AbstractClass
Attribute
Method 1

ConcreteClass
Attribute2
Method2

>

1,5

@ssociatedClass j

Abb. 1-3: Graphische Elemente in Designdiagrammen

Die Klasse AbstractClass ist eine abstrakte Basisklasse. Sie enthalt rein virtuelle Methoden,
und von ihr kédnnen keine Instanzen (Objekte) gebildet werden. Abstrakte Klassen sind
einfach umrandet. Konkrete Klassen, zum Beispiel ConcreteClass, sind doppelt umrandet. Das
umrandete Viereck einer Klasse besteht aus drei Teilen: Klassenname, Liste der Attribute
und Liste der Methoden. Zwischen Klassen gibt es vier Arten von Verbindungen:

e Vererbung (/nheritance, Generalization and Specialization),
¢ Teil-Ganzes-Beziehung (Whole Part Relation),

¢ Objekt-Verbindung (Object Connection) und

¢ Nachrichten-Verbindung (Message Connection).

In Abbildung 1-3 erbt die Klasse ConcreteClass von AbstractClass. Die Klasse Part ist als Teil
in der Klasse ConcreteClass enthalten. In einer Teil-Ganzes-Beziehung kénnen Kardinalitaten
angegeben werden. In unserem Beispiel bedeuten sie: Ein Objekt der Klasse ConcreteClass
enthalt null bis n Objekte der Klasse Part, und ein Objekt der Klasse Part gehort zu genau
einem Objekt der Klasse ConcreteClass. Zwischen ConcreteClass und AssociatedClass besteht
eine Objekt-Verbindung. Auch diese kann mit Kardinalitdten naher beschrieben werden. Die
Bedeutung im Beispiel ist: Zu einem Objekt der Klasse ConcreteClass gibt es genau ein Objekt
der Klasse AssociatedClass, und zu einem Objekt der Klasse AssociatedClass gibt es ein bis
finf Objekte der Klasse ConcreteClass.

Fir Elemente der Programmiersprache C+ + gelten die folgenden Namenskonventionen: Alle
Namen sind aus englischen Woértern oder deren Abklirzungen zusammengesetzt. Um ein
Kauderwelsch im Programm zu vermeiden, werden keine deutschen Bezeichnungen
verwendet. In C+ + sind alle Schllisselworter englisch, zum Beispiel class, public oder
unsigned. AuRBerdem unterstlitzt die Programmiersprache nicht die deutschen Umlaute. Sehen
wir uns dazu ein Beispiel an.

Wenn (KannOffnen (Datei)) // lesbar, aber kein C++
if (KannOeffnen (Datei)) // C++, aber Kauderwelsch
if (CanOpen (File)) // Tesbar und C++

Bei zusammengesetzten Namen beginnt jedes Teilwort mit einem GroBbuchstaben. Die
Schreibung des ersten Buchstabens eines Namens ist von seinem Glltigkeitsbereich (Scope)
abhangig. Namen, die global oder in einer Klasse gltig sind, beginnen mit einem
GroRRbuchstaben. Lokale Namen, das hei3t Parameter und lokale Variable einer Methode,

Spirick Tuning Tutorial Seite 8

haben einen Kleinbuchstaben am Anfang. Alle Namen von Typen, Variablen und Attributen
besitzen einen Préafix. Darin ist eine Kurzinformation Uber den Typ oder die Kategorie des
Namens enthalten. Dadurch miissen wir nicht jedesmal nach der Definition des Namens
suchen, wenn wir wissen méchten, wie er einzuordnen ist. Methodennamen wird kein Prafix
vorangestellt. Dadurch wirde sich die Lesbarkeit des Programmtextes erheblich
verschlechtern. In Anlehnung an eine verbreitete C-Konvention schreiben wir Makros
durchgangig mit GroBbuchstaben. Einzelne Teilworter werden durch einen Unterstrich
voneinander getrennt. Der Praprozessor ist kein Bestandteil der Programmiersprache im
engeren Sinn. Er analysiert den Text in einem separaten Pal3 vor dem eigentlichen C+ +-
Compiler. Praprozessormakros sollten sich deutlich vom Ubrigen Programmtext abheben. Das
folgende Programmfragment verdeutlicht mit einigen Beispielen die Bildung von Prafixen.

int i_Number; // Int
int * pi_AddrOfNumber; // Pointer to Int
char ¢ _Input; // Character
char * pc_AddrOfInput; // Pointer to Character
char * * ppc_AddrOfPtr; // Pointer to pointer to Character
enum et _Color { // Enumeration Type
ec Blue } // Enumeration Constant
eo_BackgroundColor; // Enumeration Object
typedef int t_Counter; // Type
t Counter o _Counter; // Object
t Counter * po_AddrOfCounter; // Pointer to Object
class ct_TextPos; // Class Type
ct_TextPos co_TextPos: // Class Object
ct_TextPos * pco AddrOfTextPos; // Pointer to Class Object

template <class t> gct ClassTemplate; // Generic Class Type
#define ASSERT(X) if (!(X)) Error (); // Preprocessor Macro

1.2.2 Uberblick ist Alles

In der Designphase eines Programms entstehen wichtige Grundlagen. Klassen werden
erzeugt und mit einem Interface versehen. Zwischen den Klassen werden Beziehungen
hergestellt. Die Klassen mit ihren Vererbungsbeziehungen bilden einen Klassenbaum. Mit
objektorientierten Werkzeugen ist es fir den Designer einfach, einen Baum um weitere
Klassen und Beziehungen zu erweitern. Wie gut verstehen aber spatere Anwender einen
breit gefacherten Klassenbaum? Der Umgang mit einem Klassenbaum ist mit der
Handhabung von standardisierten Kleingeraten, zum Beispiel Taschenrechnern, vergleichbar.
Ahnlich der Methoden-Schnittstellen von Klassen gibt es bei Taschenrechnern verschiedene
Bedienungs-Schnittstellen. Am gebrduchlichsten sind die algebraische Eingabelogik, die
umgekehrte polnische Notation und die Eingabe mit BASIC-Befehlen. Abbildung 1-4 zeigt die
Vererbungshierarchie dieser Schnittstellen.

HandheldCalculator ‘

A
| |

AlgebraicCalculator ‘ ReversePolishCalculator ‘ BasicCalculator ‘

Abb. 1-4: Taschenrechnergruppen nach Eingabelogik

Spirick Tuning Tutorial Seite 9

Lost man mit solchen Taschenrechnern viele Aufgaben und wechselt dabei oft die
Eingabelogik, kommt es zu haufigen Bedienungsfehlern. Weniger kritisch ist hingegen die
Verwendung mehrerer Taschenrechner, die mit derselben Eingabelogik arbeiten und sich nur
im Funktionsumfang unterscheiden (siehe Abbildung 1-5).

HandheldCalculator ‘

P

(SimpleCaIcuIator ‘
4

ScientificCalculator ‘

7

ScientificCalculatorWithGraphicalDisplay ‘

Abb. 1-5: Taschenrechner mit wachsendem Funktionsumfang

Wechselt man haufig zwischen Taschenrechnern dieser Gruppen, wird man kaum
Bedienungsfehler verursachen. Es kann lediglich dazu kommen, dal® man auf einem Rechner
eine Funktion vermiRt, die nur auf einem anderen Gerat verfligbar ist. Ein Bedienungsfehler
bei einem Taschenrechner ist meist offensichtlich und wird schnell bemerkt. Weniger
angenehm ist ein Fehler beim Gebrauch einer Klasse. Dies ist ein Programmierfehler, der zum
fehlerhaften Verhalten oder zum Abbruch des Anwendungsprogramms fiihren kann. Die
Folge ist eine lange Fehlersuche. Damit uns solche Fehler nicht unterlaufen, richten wir uns
im weiteren nach folgender Regel.

Ein Ubersichtliches Design eines Klassenbaums erhalten wir, indem wir die Anzahl der
Interfaces aller Klassen minimieren, nicht die Anzahl der Klassen.

Diese Regel besagt, dal3 die Komplexitat eines Klassenbaumes nicht so sehr von der Anzahl
der Klassen abhangt, sondern von der Anzahl verschiedener Interfaces, die diese Klassen
besitzen. Die beiden Vererbungsbaume fir Taschenrechner enthalten jeweils vier Typen.
Dennoch ist der zweite Vererbungsbaum in der Handhabung einfacher, weil die Interfaces
nicht grundverschieden sind, sondern aufeinander aufbauen. Ein Klassenbaum mit 50
Klassen kann in der Handhabung einfacher als ein Baum mit 20 Klassen sein, wenn in
ersterem nur insgesamt finf verschiedene Interfaces vorkommen, in letzterem aber jede
Klasse ein anderes Interface besitzt. Beim Hinzufligen neuer Klassen zu einem bestehenden
Baum sollten mdglichst vorhandene Interfaces genutzt werden, zum Beispiel durch
Vererbung. Dann erhohen die neuen Klassen die Funktionalitat des Klassenbaumes, also
seine Brauchbarkeit. Die Komplexitat erhéht sich hingegen nur unwesentlich, da keine neuen
Interfaces hinzukommen. Damit bleibt der Klassenbaum in der Handhabung einfach.

Spirick Tuning Tutorial Seite 10

1.2.3 Brandschutz statt Feuerwehr

Ein Bauarbeiter erzahlt: Auf dieser Baustelle hat es schon fiinfmal gebrannt, aber ich arbeite
gern hier. Das Fundament und der Rohbau waren schnell fertig. Es ist ja nicht das erste
Haus, das wir bauen. Am Anfang gefiel mir die Arbeit nicht so gut. Es war alles noch so
sauber, als sollte es ein Krankenhaus werden. Das anderte sich aber schnell, nachdem es
draufRen kalt wurde. Die Heizungsmonteure hatten das oberste Stockwerk Ubersehen.
Wegen der Kélte nutzte ein Maler zum Trocknen der Farbe einen Fén und ging in die
Baracke. Eine halbe Stunde spater mulRten wir zum ersten Mal die Feuerwehr rufen. Es war
aber nicht so schlimm, wie es auf den ersten Blick aussah. Der zweite Brand brach einige
Tage spater im Erdgeschol? aus und war etwas schwieriger. Das Mauerwerk wurde in einem
Zimmer stark beschadigt. Unser Chef, der als Student ein guter Baustatiker war, anderte
daraufhin die Bauplane und liel3 eine zusatzliche Wand einziehen...

Wir wiinschen unserem Freund, daf} er nicht eines Tages eine Verletzung erleidet. Seinem
Chef winschen wir, dal er fir den fertigen Bau einen Hausherrn findet und nicht selbst
darin wohnen muf3. Beim Programmieren mochten wir jedoch ohne Feuerléscher
auskommen. Die Anwender sollen sich in unserem Software-Geb&ude wohl fiihlen. Deshalb
betreiben wir auf unserer digitalen Baustelle rechtzeitig Brandschutz.

Informationsverarbeitende Prozesse im Menschen und Computer unterscheiden sich unter
anderem dadurch, dal’ sie beim Menschen auch unter extremen Bedingungen selten aul3er
Kontrolle geraten. Geben wir zum Beispiel dem Schaffner in der Eisenbahn aus lauter
Verwirrung statt der Fahrkarte eine Diskette, wirft es diesen nicht gleich aus den Schuhen.
Er priift das ihm Gbergebene Objekt, stellt fest, dald es sich um einen verkehrten Objekttyp
handelt, und gibt es mit einer Fehlermeldung an uns zuriick. Anders ist das Ubergeben eines
falschen Objekts an eine Methode. Selten werden die Parameter geprift. Dementsprechend
haufig ist das unkontrollierte Verhalten eines Programms bei einem fehlerhaften
Methodenaufruf. Solche Fehler kann man nach dem Feuerwehr-Prinzip beseitigen. Man
startet einen Debugger und tastet sich schrittweise durch das Programm. Hat man die
fehlerhafte Stelle entdeckt, berichtigt man das Programm. Kann man aber nach dieser
Korrektur mit ruhigem Gewissen weiterarbeiten? Kann es nicht sein, dal3 eine Woche spater
dieselbe Methode wieder mit verkehrten Parametern aufgerufen wird? Ware es nicht besser,
man wirde in die Methode zuséatzliche Priifungen einbauen?

Innerhalb eines Programms gibt es zahlreiche Stellen, an denen der weitere Verlauf von der
Korrektheit bisheriger Ergebnisse abhangt. Manchmal ist die Richtigkeit der
Zwischenergebnisse durch den KontrollfluR gewahrleistet. In solchen Féllen benbtigen wir
keine zusatzlichen Prifungen. Oft liegt jedoch ein Fehlverhalten im Bereich des Mdoglichen
oder Wahrscheinlichen. Dann sollten wir die Korrektheit der Daten sicherstellen, bevor wir
mit ihnen weiterarbeiten. Diese Tests erfolgen meist mit dem Makro ASSERT. Es erhalt als
Parameter die zu priifende Bedingung. Ist die Bedingung nicht erflllt, wird eine detaillierte
Fehlermeldung ausgegeben. Typische Stellen flr das Priifen zuséatzlicher Bedingungen sind
die Ein- und Austrittspunkte von Methoden. Am Anfang werden die Gbergebenen Parameter
getestet. Am Ende mul sichergestellt werden, dal® die Resultate die gewlinschten
Eigenschaften besitzen. Neben diesen Vor- und Nachbedingungen missen auch
Zwischenergebnisse geprift werden. Sehen wir uns als Beispiel eine Methode an, die in
einer Zeichenkette ein bestimmtes Zeichen durch ein anderes ersetzen soll.

void Replace (char * pc_string, char c_old, char c_new)
{
ASSERT (pc_string != 0); // Vorbedingungen
ASSERT (c_old != "\0");
ASSERT (c_new != "\0");
char * pc_found = strchr (pc_string, c_old);
while (pc_found != 0)

{
ASSERT (pc_found >= pc_string); // Zwischenbedingungen

Spirick Tuning Tutorial Seite 11

ASSERT (pc_found < pc_string + strlen (pc_string));
* pc_found = c_new;
pc_found = strchr (pc_string, c_old):

}
ASSERT (strchr (pc_string, c_old) == 0); // Nachbedingung
}

In dieser kleinen Methode wurde das ASSERT-Makro etwas Ubertrieben eingesetzt.
Normalerweise sind Zusatzbedingungen nur nétig, wenn ein begriindeter Verdacht auf ein
Fehlverhalten vorliegt. ASSERT-Makros kénnen auch bei méRiger Verwendung einen
Geschwindigkeitsverlust verursachen. Deshalb sollten sie nur in der Testphase des
Programms wirksam sein. Bevor wir das getestete Programm dem Anwender tGbergeben,
definieren wir beim Ubersetzen das Makro NDEBUG. Dann expandieren alle ASSERT-Makros zu
einer leeren Zeichenkette und belasten nicht mehr die Rechenzeit. Die Definition des ASSERT-
Makros kann zum Beispiel so aussehen:

#ifdef NDEBUG
#define ASSERT(condition)

felse
#define ASSERT(condition) \
if (! (condition)) InternalError (#condition, FILE ., LINE)
#endif

Das ASSERT-Makro fihrt nicht nur zu einem robusteren Programm, es hat auch weitere
Vorteile. Formulieren wir zusatzliche Bedingungen, durchdenken wir den Kontext besser, auf
den sie sich beziehen. Bei Vor- und Nachbedingungen ist es der Kontext, in dem die
Methode verwendet werden kann. Bei Zwischenbedingungen ist es der Kontext, in dem
andere Methoden aufgerufen werden. Dieses tiefere Durchdenken macht uns auf
Fehlersituationen aufmerksam, noch bevor das Programm zum ersten Mal gestartet wurde.
Fir den Anwender der Methode sind besonders die Vorbedingungen wichtig. Sie zeigen ihm
knapp und korrekt, wie die Methode aufzurufen ist. Zusatzbedingungen im Quelltext sind
eine Art Dokumentation und erleichtern auch die Pflege des Programms. Die folgende Regel
fal3t diese Erkenntnisse zusammen.

Durch Zusatzbedingungen erhalten wir ein robusteres und besser durchdachtes Programm.
Gleichzeitig wird der Programmtext dokumentiert.

1.2.4 Vorsicht, Falle im Unsichtbaren

Die Programmiersprache C+ + weist gegentliber C zahlreiche Erweiterungen auf. Die
wichtigsten Neuerungen unterstiitzen objektorientierte Konzepte. Dazu zéhlen Vererbung,
virtuelle Methoden und die Vergabe von Zugriffsrechten fir die Elemente einer Klasse.
Andere Erweiterungen sind programmtechnischer Natur, zum Beispiel Inline-Methoden, das
Uberladen von Methoden und das Definieren eigener Operatoren. Die neue Funktionalitét
erhoht in vielen Fallen den Programmierkomfort. Einige Eigenschaften der Sprache C + +
mussen wir jedoch beim Programmieren besonders beachten.

Ein C-Programm kann fast linear in die Maschinensprache des Computers lGibersetzt werden.
Der Compiler fiigt beim Ubersetzen nur wenige Anweisungen hinzu. Wir sehen nahezu alles,
was zur Laufzeit im Computer ablauft, auch in unserem Programmtext. Diese Transparenz
ist besonders wichtig, wenn im Programm ein Fehler gesucht werden muf3, und erleichtert
das Optimieren. In einem C+ +-Programm laufen hingegen viele Prozesse im Unsichtbaren
ab. Der Compiler liest zwischen den Programmzeilen Dinge heraus, die ihm der
Sprachstandard vorschreibt. Ein Programmierer, der mit der Sprache C+ + noch wenig
vertraut ist, kann dabei Wichtiges Ubersehen. Die unsichtbaren Anweisungen, die der

Spirick Tuning Tutorial Seite 12

Compiler hinzuftigt, beeinflussen manchmal die Performance. Damit werden wir uns spater
ausfuhrlich beschéaftigen. Manchmal dndern diese Zusatze das Verhalten des Programms.
Diese Falle missen wir jetzt schon behandeln, um das nachfolgende Beispielprogramm
fehlerfrei zu implementieren.

Jede C+ +-Klasse enthalt mindestens einen Konstruktor, mindestens einen Gleich-Operator
und genau einen Destruktor. Definieren wir diese Methoden nicht selbst, werden sie vom
Compiler erzeugt. Die Regeln, nach denen sie automatisch generiert werden, sind nicht
gerade einfach und veranlassen auch den Profi, immer wieder in der Sprachdefinition
nachzuschauen. Ein Standard-Konstruktor ist ein Konstruktor, der keine Parameter oder nur
Parameter mit Vorgabewerten besitzt. Ein Kopier-Konstruktor ist ein Konstruktor, der mit
einem einzelnen Objekt derselben Klasse aufgerufen werden kann. Ist Gberhaupt kein
Konstruktor definiert, generiert der Compiler einen Standard-Konstruktor ohne Parameter.
Der Kopier-Konstruktor wird automatisch erzeugt, wenn kein anderer Kopier-Konstruktor
definiert ist. Analog verhalt sich der Gleich-Operator. Einen Destruktor gibt es nur einmal.
Definieren wir ihn nicht selbst, wird er generiert.

Der Compiler erzeugt nicht nur Methoden-Definitionen sondern auch implizite Methoden-
Aufrufe. Zum Beispiel werden in einem Konstruktor die Konstruktoren der Basisklassen und
der Attribute automatisch aufgerufen. Jedes temporare Objekt wird implizit mit einem
Konstruktor erzeugt und mit dem Destruktor zerstort. Sehen wir uns ein Beispiel an, aus
dem der Compiler wesentlich mehr macht, als auf dem Papier steht. Es ist ein
Prinzipbeispiel, nicht eine besonders elegante Berechnung der Fakultat.

class ct_Number

{

long 1 Value;
public:
ct_Number Factorial ();

1%
ct_Number ct Number:: Factorial ()

{

ct_Number co_result = * this;
if (1 Value > 1)
{

co_result. 1 Value --;
co_result = co_result. Factorial ():
co_result. 1 Value *= 1 Value;

}

return co_result;

}

In der Klasse ct_Number erzeugt der Compiler automatisch den Standard-Konstruktor ct Number
(), den Kopier-Konstruktor ct_Number (const ct Number &), den Destruktor ~ct Number () und den
Gleich-Operator ct_Number & operator = (const ct _Number &). Dal® wir diese Methoden nicht
selbst definiert haben, ist bei einer so einfachen Klasse nicht relevant. Interessant ist jedoch,
dal® der Compiler die generierten Methoden auch implizit aufruft. Die Methode Factorial
liefert ein Objekt der Klasse ct_Number. Da keine Adresse (Zeiger oder Referenz)
zuriickgegeben wird, erzeugt der Compiler in der return-Anweisung durch den Kopier-
Konstruktor ein temporéres Objekt. In der Definition der lokalen Variablen ct _Number co_result
= * this wird ebenfalls der Kopier-Konstruktor aufgerufen. Die Schreibweise mit
Gleichheitszeichen ist irrefiihrend und identisch mit ct_Number co_result (* this). In der
Anweisung co_result = co _result. Factorial () wird das temporare Objekt, das ein anderer
Aufruf der Methode Factorial liefert, mit dem Gleich-Operator der lokalen Variablen
zugewiesen und anschlieend mit dem Destruktor zerstort.

An diesem Beispiel sehen wir, dal3 die genannten Methoden in einem Programm haufig
verwendet werden kénnen, auch wenn sie an keiner Stelle explizit aufgerufen werden.

Spirick Tuning Tutorial Seite 13

Haben wir vergessen, diese Methoden fir eine Klasse zu definieren, kann es bei der
Anwendung dieser Klasse zu Fehlern kommen. Deshalb miissen wir jede Klasse daraufhin
prifen, ob die generierten Methoden den gewlinschten Effekt haben. Zum Beispiel ruft der
generierte Kopier-Konstruktor die Kopier-Konstruktoren der Basisklassen und der Attribute
auf. Primitive Datentypen (int, char usw., auch Zeiger) werden binar kopiert. Entspricht
dieses Verhalten nicht unseren Erwartungen, missen wir den Kopier-Konstruktor selbst
definieren. Die folgende Regel verdeutlicht noch einmal das so eben Behandelte.

Wir priifen bei der Implementierung jeder Klasse, ob die automatisch generierten Methoden
Standard-Konstruktor, Kopier-Konstruktor, Destruktor und Gleich-Operator den gewiinschten
Effekt haben. Ist das nicht der Fall, miissen wir diese Methoden selbst definieren.

1.3 Ein Beispielprogramm

1.3.1 Beschrankung auf das Wesentliche

Moderne, interaktive Programme bestehen aus zahlreichen Komponenten. Mit der
Benutzeroberfldche kénnen wir Informationen ansehen und Aktionen auslésen. Sie greift
dabei auf interne Daten zu. Die prinzipielle Architektur interaktiver Programme wird am
besten durch das Model-View-Controller-Konzept beschrieben (siehe Abbildung 1-6).

Controller r Steuerung T

View Ansicht Ansicht

Model |—|> Informationsmodell QJ

Abb. 1-6: MVC-Architektur eines interaktiven Programms

Das MVC-Konzept entstand in der Smalltalk-Gemeinschaft. Es ist heute allgemein anerkannt
und wird von vielen objektorientierten Software-Entwicklern eingesetzt. Die Grundidee
besteht in der Trennung des Informationsmodells von Sichten darauf und von der
Benutzerschnittstelle. Das Informationsmodell (Model) enthéalt das fachliche Wissen und die
eigentlichen Daten des Programms. Ist es unabhangig von seinen Darstellungen, kann es in
beliebige Softwareumgebungen integriert werden. Zum Beispiel ist es dann mdglich,
dieselben Daten interaktiv oder in einem Batchlauf zu bearbeiten. Auf die internen Daten
konnen verschiedene Ansichten (Views) gebildet werden. Diese sollten mdglichst
unabhéngig voneinander sein, damit die Anderung oder Hinzunahme einer Sicht die anderen
nicht beeinfluBt. Der interaktive Teil eines Programms wird in der Benutzerschnittstelle
(Controller) zusammengefaldt. Ist er unabhangig von den anderen Teilen, kann er leicht an
neue Erfordernisse oder ein anderes Betriebssystem angepal3t werden.

Die Performance datenintensiver Programme wird im wesentlichen durch das
zugrundeliegende Informationsmodell bestimmt. Dort werden die meisten Ressourcen
verbraucht (Speicherplatz und Rechenzeit). Deshalb werden wir uns im folgenden auf die
internen Daten konzentrieren. Die Betrachtung des Informationsmodells ist allgemeingiiltig

Spirick Tuning Tutorial Seite 14

und auf alle C+ +-Programme anwendbar. Wir benétigen dazu lediglich Kenntnisse der
Programmiersprache und ein wenig Wissen Uber den Compiler. Die Anbindungen an
Datenbanken, Betriebssystem und Benutzeroberflache bleiben auRer Betracht. Diese
Komponenten sind aus dem Blickwinkel des reinen C+ +-Programms externe Schnittstellen.
Ihre Performance kénnen wir durch intensives Studium der zugehoérigen Handbicher
beeinflussen, aber kaum durch die Programmiersprache.

1.3.2 Aufgabenstellung des Programms

Programmtechnische Konzepte, wie man sie zum Beispiel flr die Erhohung der Performance
einsetzt, sind meist sehr abstrakt. Um diese Abstraktionen besser verstehen zu kdnnen,
sehen wir sie uns anhand eines praktischen Beispiels an. Bei der Auswahl eines geeigneten
Programmbeispiels stehen wir vor einem schwierigen Problem. Die Verbesserung der
Performance ist oft nur bei grolRen Programmen mit komplex strukturierten Daten sinnvoll.
Solche Dinosaurier-Programme sind ein willkommenes Fressen fiir einen Programm-
Optimierer. Sie kdnnen aber im Rahmen eines Buches nicht ausflhrlich behandelt werden,
denn die meisten Leser haben keinen Appetit auf Dinosaurier. Wir sehen uns also nach
einem kleineren Beispiel um. Dabei reicht uns ein Prinzip-Beispiel, denn die Prinzipien zur
Optimierung eines C + +-Programms sind der eigentliche Gegenstand dieses Buches.

Fast jeder kennt die Hilfesysteme moderner Programme und Betriebssysteme mit graphischer
Benutzeroberflache. In einem solchen Hilfesystem ist eine Reihe von Themen untergebracht.
Zu jedem Thema gibt es einen Text. Dieser ist kein normaler, flieBender Text, wie wir ihn
von gedruckten Medien kennen, sondern ein Hypertext, ein Text mit Hyperlinks. Diese
Hyperlinks erleichtern uns wesentlich den Umgang mit dem Hilfesystem. Durch sie gelangen
wir mit wenigen Tasten zu verwandten Themen, die das urspriingliche Thema weiter
vertiefen. AuBerdem sind einige Stellen im Text hervorgehoben, zum Beispiel durch
Fettschrift, Kursivschrift oder Unterstreichung. In Abbildung 1-7 sehen wir ein Beispiel mit
drei Themen, wobei das eine Thema Verweise auf die anderen Themen enthélt. Die
umrandeten Worte stellen Hyperlinks dar.

Titel: Menis

In einem Menii kann man eine von mehreren

Aktivititen auswahlen. Die Auswahl erfolgt

mit Hilfe der| Pfeiltasten | und <ENTER> oder

durch einen hervorgehobenen Buchstaben.

Siehe auch:

Titel: Dialoge

Titel: Pfeiltasten

Die Pfeiltasten befinden sich rechts auf der
Tastatur und dienen der Navigation innerhalb 4—

eines Textes, eines Dialoges oder eines Menus.

Spirick Tuning Tutorial Seite 15

Abb. 1-7: Beispiel fiir einen Hypertext

Moderne Hilfesysteme verfligen Uber vielfaltige Moglichkeiten zur Darstellung von
Informationen und zum Navigieren. Dementsprechend komplex sind die darunter liegenden
Datenstrukturen. In unserem Beispiel beschranken wir uns auf das Wesentliche. Unser
Hilfesystem soll nur einfachste Funktionen beherrschen, und wir betrachten nur sein
Informationsmodell. Das Programmbeispiel, das wir im folgenden behandeln werden, ist also
der objektorientierte Kern eines einfachen Hilfesystems, deshalb nennen wir es OHelp. Die
wichtigste Aufgabe eines Programmkerns ist die Verwaltung des Informationsmodells. OHelp
soll einen Hypertext verwalten. Daran stellen wir die folgenden Anforderungen:

e Ein Hypertext hat einen Namen, besteht aus mehreren Themen und hat einen Verweis
auf ein Wurzelthema, das den Einstieg in das Hilfesystem ermdglicht.

e Zu einem Thema gehoren ein Name und ein Text.

¢ Beliebige Textstellen kdnnen mit einer Formatierung versehen werden (siehe "Meni" und
"Aktivitaten" im Beispiel).

¢ Ein Thema kann Verweise auf andere Themen haben (Hyperlinks). Ein Hyperlink hat
optional eine Textposition.

¢ Ein Hyperlink mit Textposition dient der Anzeige im flieRenden Text (siehe "Pfeiltasten”
im Beispiel).

¢ Hyperlinks ohne Textposition kdnnen am Ende des Textes aufgelistet werden (siehe
"Dialoge" im Beispiel).

1.4 Fundamentale Klassen von OHelp

Ein Programm besteht aus mehreren Schichten, die aufeinander aufbauen. Die unterste
Schicht jedes C + +-Programms ist die Programmiersprache. Diese ist vorgegeben und kann
von uns nicht beeinflul3t werden. Die ndchste Schicht ist die C-Standardbibliothek, die mit
geringen Anderungen von den C + +-Compilern tibernommen wurde. Auch diese ist als
langjahriger Standard vorgegeben. Es lohnt sich nicht, in dieser Programmierebene
Anderungen vorzunehmen, denn die C-Standardbibliothek ist auf vielen Plattformen
verfliigbar und macht das Programm weitestgehend portabel. Allerdings sind die Module
dieser Bibliothek in C geschrieben und keine befriedigende Grundlage fir die Erstellung
objektorientierter Programme. Es fehlen einige grundlegende Module, die wir fir die
Entwicklung jedes Programms benétigen, zum Beispiel die Mengen (Collections). Es ist also
sinnvoll, auf das C-Laufzeitsystem eine eigene Schicht zu bauen. In dieser Schicht sind
allgemeinglltige fundamentale Klassen enthalten, die von mehreren Programmen genutzt
werden kénnen.

Wie bei der Auswahl eines geeigneten Beispielprogramms beschranken wir uns auch beim
Entwurf der fundamentalen Klassen auf das Wesentliche. Moderne, objektorientierte
Klassenbibliotheken enthalten meist 50, 100 oder noch mehr Klassen und neigen zur
Unubersichtlichkeit. Im Rahmen dieses Buches soll keine vollsténdige Klassenbibliothek
behandelt werden. Wir begnligen uns mit den fundamentalen Klassen, die in unserem
Beispielprogramm benétigt werden. Beim Durchsehen der oben aufgelisteten Anforderungen
an OHelp stellen wir fest, dal an einigen Stellen Mengen und Zeichenketten (Strings)
bendtigt werden. So enthélt ein Hypertext eine Menge Themen, ein Thema enthalt eine
Menge Formatierungen und Hyperlinks. Hypertext und Thema haben einen Namen, und das
Thema enthélt den Text.

Spirick Tuning Tutorial Seite 16

1.4.1 Design der fundamentalen Klassen

In einem Anwendungsprogramm gibt es viele verschiedene Anforderungen an Collections.
Diese Anforderungen lassen sich grob in zwei Bereiche gliedern, die Schnittstelle (/nterface)
und die Implementierung. In diesem Abschnitt wollen wir uns mit dem Interface der
fundamentalen Klassen, also auch der Collections, beschéaftigen. Dieses Interface stellt eine
bestimmte Funktionalitat zur Verfligung.

In bezug auf die Reihenfolge unterscheiden wir geordnete und ungeordnete Collections. In
einer geordneten Collection haben die Elemente eine bestimmte Reihenfolge, wahrend in
einer ungeordneten Collection die Reihenfolge der Elemente zufallig sein kann. Innerhalb der
Gruppe der ungeordneten Collections gibt es Sets und Bags. In einem Set kann ein Element
nur einmal vorkommen, in einem Bag kann hingegen dasselbe Element mehrmals enthalten
sein. Diese Collections entsprechen dem Klassenbaum in Abbildung 1-8.

ct_Collection

Add

ct_UnorderedCollection ct_OrderedCollection
Add Add
AddAfter
ct_Set ct Bag
Add Add

Abb. 1-8: Verbreitete Collections-Hierarchie

Im Abschnitt 1.2.2 "Uberblick ist Alles" haben wir uns tiberlegt, wie wir die
Ubersichtlichkeit eines Klassenbaums erhdhen. Sehen wir uns unter diesem Blickwinkel die
obige Collections-Hierarchie einmal ndher an. Die Klassen ct_Set und ct _Bag unterscheiden
sich nur durch die Methode fiir das Einfiigen eines neuen Elements. Bei der Klasse ct_Set
wird das Element nur hinzugefligt, wenn es noch nicht in der Collection enthalten ist. Bei
der Klasse ct_Bag unterbleibt diese Priifung. Lohnt es sich, wegen dieses geringen
Unterschieds zwei verschiedene Klassen mit einem semantisch verschiedenen Interface zu
deklarieren? Oder ist es nicht einfacher, dafir zwei Methoden in dieselbe Klasse
aufzunehmen, zum Beispiel Add (Hinzufligen) und AddCond (Bedingtes Hinzufligen)? Im
letzteren Fall haben wir gleich zwei Interfaces eingespart.

Betrachten wir nun die geordneten und die ungeordneten Collections. Der Unterschied
besteht im Grunde nur darin, daf eine geordnete Collection etwas mehr Funktionalitat
aufweist. In einer ungeordneten Collection gibt es zum Einfligen eines neuen Elements nur
die Methode Add ohne Positionsangabe. Bei einer geordneten Collection kénnen wir die Stelle
genau angeben, an der das neue Element hinzugefiigt werden soll. Weiter kénnen wir
voraussetzen, dald bei jedem Durchlaufen der geordneten Collection die Reihenfolge der
Elemente dieselbe ist. Auch in diesem Falle lohnt es sich nicht, zwei verschiedene Interfaces
zu deklarieren. Einfacher ist es, nur eine Klasse zu verwenden, und in diese Klasse die
Methoden Add und AddAfter aufzunehmen. Die abstrakte Basisklasse fur die Collections in
unserer kleinen Bibliothek hat also das Interface einer geordneten Collection mit

Spirick Tuning Tutorial Seite 17

Erweiterungen. Alle konkreten Implementierungen von Collections werden dasselbe Interface
haben.

ct_Collection

Add
AddCond
AddAfter

Abb. 1-9: Abstrakte Basisklasse fiir Collections

Die Klasse in Abbildung 1-9 enthalt die gesamte Funktionalitat der weiter oben dargestellten
Vererbungshierarchie fir Collections. Sie umfalRt sowohl das Interface einer ungeordneten
als auch das einer geordneten Collection (Add und AddAfter). Sie kann neue Elemente wie eine
Bagcollection (Add) oder eine Setcollection (AddCond) aufnehmen. Wir haben im Klassenbaum
fanf Interfaces auf eines reduziert und damit dessen Handhabung vereinfacht.

Eine polymorphe Collection enthélt normalerweise Zeiger (Pointer) auf ihre Elemente. In der
strukturierten Programmierung war es Ublich, daflr untypisierte Zeiger zu verwenden. Es lag
in der Verantwortung des Programmierers, diese richtig einzusetzen. In C+ + gebraucht man
dazu meist eine abstrakte Basisklasse, nennen wir sie ct Object. Die Collection speichert
Zeiger auf diese Basisklasse. Alle Klassen, deren Objekte in eine Collection gelangen sollen,
mUissen von der abstrakten Basisklasse erben. Jedesmal, wenn auf ein Element einer
Collection zugegriffen werden soll, mu3 ein Zeiger auf die Basisklasse ct _Object in einen
Zeiger auf die abgeleitete Klasse umgewandelt werden. Deshalb mul3 die Basisklasse einen
geeigneten Downcast-Mechanismus bereitstellen (Cast = Typumwandlung, Downcast =
Cast zu einer abgeleiteten Klasse). Im neuesten C+ +-Standard sind daflr die Laufzeit-
Typinformationen vorgesehen (Runtime Type Informations, kurz RTTI). Da die RTTI aber
noch nicht von jedem Compiler unterstlitzt werden, benutzen wir einen eigenen
Mechanismus.

Wir definieren in der Klasse ct _0Object eine virtuelle Methode GetTypeName. Diese Methode mufR3
in jeder abgeleiteten Klasse redefiniert werden und liefert einen Zeiger auf eine Zeichenkette,
die den Namen dieser Klasse enthalt. Weiterhin ist in der Klasse ct _Object eine nicht-virtuelle
Methode IsOfType enthalten. Diese Methode erwartet als Parameter einen Zeiger auf einen
Klassennamen und vergleicht diesen mit dem Resultat von GetTypeName. Sind beide
Zeichenketten gleich, so ist das Objekt vom angegebenen Typ, und Is0fType liefert den
Wahrheitswert true. Danach kann ohne Bedenken der Downcast vorgenommen werden.

Im neuesten C+ +-Standard existieren fir Wahrheitswerte der Datentyp bool und die
Konstanten false und true. Auch diese Erweiterungen werden noch nicht von jedem
Compiler unterstltzt. Wir nehmen sie explizit in unser Programm auf. Betrachten wir nun die
Deklaration und eine Anwendung der Klasse ct_Object.

typedef int bool;

const bool false = 0;
const bool true = 1;
class ct_Object
{
pubTlic:
virtual ~ct Object () { }
virtual const char * GetTypeName () const = 0;
bool IsOfType (const char * pc_typeName) const;

b

Spirick Tuning Tutorial Seite 18

bool ct _Object:: IsOfType (const char * pc_typeName) const

{
return strcmp (pc_typeName, GetTypeName ()) == 0;

}

const char * ObjectToString (ct _Object * pco_obj)

{

ASSERT (pco_obj-> IsOfType ("ct _String"));
ct_String * pco_string = (ct_String *) pco_obj:
return pco_string-> GetStr ();

}

Es gibt sicher noch leistungsféahigere Downcast-Mechanismen; fiir unser Beispielprogramm
OHelp ist der geschilderte aber ausreichend. Wir missen nur darauf achten, dal® die
Methode 1sOfType einen Zeichenketten-Vergleich enthalt und somit den Downcast
verlangsamt. Sie ist eine BrandschutzmalRnahme und sollte nur innerhalb von ASSERT-Makros
aufgerufen werden.

Fir Einflgen, Léschen und Iterieren der Elemente einer Collection existieren verschiedene
Techniken, die zum Teil erhebliche Laufzeitunterschiede aufweisen. Nutzen wir zum Beispiel
zum Entfernen eines Objekts aus einer Collection einen Zeiger auf dieses Objekt, muld der
Zeiger erst in der Collection gesucht werden. Beim einmaligen Entfernen mag dies unkritisch
sein. Wird mit der Collection aber haufig gearbeitet, kann dadurch eine merkliche
Verlangsamung eintreten. Die Collections, die wir gerade entwerfen, werden spater einem
kritischen Performancetest unterworfen. Es ist leicht, Méngel in solchen Klassen zu finden,
die schon im Design unzureichend sind. Deshalb achten wir von vornherein auf eine gute
Performance und statten unsere Collections mit einer effizienten Technik aus.

Zum Beschleunigen des Zugriffs auf die Objekte erhalt jeder neue Eintrag eine eindeutige
Identitédt, eine Entryld. Diese ist mit dem Index in einem Array vergleichbar. Den zugehdrigen
Datentyp nennen wir t EntryId. An ihn stellen wir nur die eine Forderung, dal ein Element
vom Typ t_Entryld mit dem numerischen Wert Null verglichen werden kann. Jede
Implementierung einer Collection mul3 sicherstellen, da3 der Wert Null nicht als eine glltige
Entryld verwendet wird. Die Methode zum Einfligen eines Objekts liefert als Resultat einen
neuen Wert vom Typ t Entryld. Diese Entryld kénnen wir zum schnelleren Zugriff auf das
Objekt speichern. Einen Zeiger auf das eigentliche Objekt erhalten wir mit der Methode
GetObj, die als Parameter eine Entryld erwartet. Zum lterieren der Collection verwenden wir
die Methoden First und Next. Auch diese Methoden liefern einen Wert des Typs t_Entryld.
Am Ende der Collection erhalten wir den Wert Null. Mit der Methode Delete kdnnen wir einen
Eintrag aus der Collection entfernen. Diese Methode erhélt als Parameter eine Entryld, so
dal das zu Iéschende Objekt nicht erst gesucht werden muf3.

Ein haufiges Problem bei der Arbeit mit Collections ist das Andern der Collection, wahrend
sie durchlaufen wird. In einigen Klassenbibliotheken wird dieses Problem ignoriert. In
anderen gibt es aufwendige Iterator-Objekte, die zwar das gewlinschte Verhalten zeigen,
aber nur mit einem unangemessen hohen Aufwand, der sich in der Performance
niederschlagt. Durch eine kleine Anderung in dem oben beschriebenen Konzept I6sen wir
dieses Problem auf sehr einfache Weise. Wir fordern nur, dal3 die Methode Delete eine
Entryld zurickgibt, und zwar die Entryld des nachsten Objekts. Nun kénnen wir eine
Collection iterieren und dabei beliebige Anderungen vornehmen. Das folgende
Programmfragment verdeutlicht diese Vorgehensweise.

ct _Collection * pco coll =;

// Abfrage der Entryld vom ersten Element:

t Entryld o _currld = pco_coll-> First ();

// Der Wert Null bedeutet das Ende der Collection:
while (o _currld != 0)

if (pco_coll-> GetObj (o_currld)->)
// Ubergang zum nichsten Element:

Spirick Tuning Tutorial Seite 19

o_currld = pco_coll-> Next (o_currld);

else
// Entfernen des aktuellen und Ubergang zum ndchsten Element:
o _currld = pco _coll-> Delete (o_currld);

}

Auf der Wunschliste fir eine leistungsfahige Collection stehen natirlich noch weitere
Methoden. Zum Beispiel konnten wir mit Last und Prev die Collection riickwarts durchlaufen.
Wir wollen aber in die fundamentalen Klassen nur die Funktionalitdt aufnehmen, die wir im
Beispielprogramm OHelp bendtigen. Deshalb statten wir auch unsere Stringklasse nur mit
den wichtigsten Methoden aus. Dazu zéhlen die Abfrage der Zeichenkette und ihrer Lédnge
(GetStr und GetlLen), jeweils eine Methode zum Einfligen und Léschen (Insert und Delete) und
eine Methode, mit der wir auf ein einzelnes Zeichen zugreifen kdnnen (operator []).
Abbildung 1-10 zeigt die wesentlichen Resultate unseres Designs.

ct_Object

~ct_Object
GetTypeName
IsOfType

ct_Collection ct_String
GetLen GetTypeName
First GetlLen

Next GetStr

GetObj Insert

Add Delete
AddCond operator []
AddAfter —
Delete

Abb. 1-10: Design der fundamentalen Klassen

1.4.2 Implementierung der Collections

Bei der Implementierung der fundamentalen Klassen beginnen wir wieder mit den
Collections, denn diese beanspruchen wesentlich mehr Aufmerksamkeit als die Stringklasse.
Im Design haben wir eine abstrakte Basisklasse fir Collections entworfen. Nun missen wir
deren Methodennamen um Rlickgabewert und Parameterliste ergadnzen und sie in C+ +
aufschreiben. Zu dem schon bekannten Typ t_Entryld kommt ein weiterer hinzu, t_Length.
Den Langentyp bendtigen wir fir die Anzahl der Elemente in einer Collection. Die beiden
Typen t _Entryld und t Length definieren wir erst, wenn die konkreten Collections
implementiert sind, denn diese Typen missen auf alle Collections passen.

class ct_Collection: public ct_Object
{
public:
virtual t_Length GetLen () const = 0;
virtual t_Entryld First () const = 0;
virtual t_Entryld Next (t_EntryId o _id) const

= 0;
virtual ct_Object * GetObj (t_Entryld o id) const =

0;
t Entryld Add (ct_Object * pco_obj);
t Entryld AddCond (ct_Object * pco _obj);

Spirick Tuning Tutorial Seite 20

virtual t_Entryld AddAfter (t_Entryld o id. ct _Object * pco_obj) = 0;
virtual t_Entryld Delete (t_Entryld o id) = 0;
¥

Die beiden Methoden Add und AddCond sind nicht virtuell. Wir kénnen sie bereits in der
Basisklasse ct_Collection definieren, denn sie sind von einer konkreten Implementierung
unabhéngig. Alle anderen Methoden sind rein virtuell und missen in den abgeleiteten
Klassen definiert werden. Fir die Definition der Methode Add fordern wir, dal3 die Methode
AddAfter die Position O akzeptiert.

t Entryld ct Collection:: Add (ct Object * pco_obj)

{
return AddAfter (0, pco obj);
}

t Entryld ct Collection:: AddCond (ct Object * pco_obj)

{
for (t_EntryId o_id = First (); o_id != 0; o_id = Next (o_id))
if (GetObj (o_id) == pco_obj)
return o_id;
return Add (pco_obj);

}

Die abstrakte Basisklasse ct Collection gibt das Interface, die Methodenschnittstelle, vor.
Nun gilt es, konkrete Collections zu schaffen. Es gibt zahlreiche Konzepte fir die
Implementierung von Collections. Dazu zahlen Feld (Array), einfach und doppelt verkettete
Liste (Single, Double Linked List), binarer Baum (Binary Tree) und Hash-Tabelle (Hash Table).
Im Rahmen unserer kleinen Bibliothek fundamentaler Klassen werden wir uns wieder auf das
Wesentliche beschranken und wahlen diejenigen Collections aus, die in der Praxis am
haufigsten verwendet werden. Das sind Array und DList (Double Linked List). Das Array-
Konzept steht flr optimale Speicherauslastung, das DList-Konzept fir héheren
Programmierkomfort.

Zunéchst implementieren wir eine Arrayklasse mit dem Namen ct_Array. Statische Arrays
sind bereits in der Programmiersprache C + + enthalten. Sie werden definiert, indem hinter
dem Namen des Objekts die GroRe angegeben wird, zum Beispiel ct_Object aco Array [20].
Dieses Array besitzt eine feste Lange. Fir die Konkretisierung unserer Collection-Basisklasse
bendtigen wird jedoch ein dynamisches Array, das heil3t ein Array, dessen Lange variieren
kann. Daflr definieren wir in der Klasse ct_Array einen Zeiger auf einen Speicherblock
variabler Léange. In diesem Block werden Zeiger auf die Klasse ct _Object untergebracht. Das
neue Attribut hat also die Definition ct _Object * * ppco_Array. Weiterhin bendtigen wir ein
Attribut o_Length, das die Anzahl der Eintrage des Arrays enthélt. Die GroRRe des
dynamischen Speicherblocks erhalten wir durch o _Length * sizeof (ct _Object *). In diesem
Speicherblock sind die Zeiger auf die Objekte kompakt untergebracht. Unsere
Arraycollection ist also speicherplatzoptimal.

Fir Einfigen und Entfernen der Elemente eines dynamischen Arrays gibt es mehrere
Konzepte. Wird ein Element entfernt, so kann die Stelle mit einem Nullzeiger belegt werden.
Beim Iterieren des Arrays werden solche Stellen Gbergangen. Sollen neue Elemente
hinzugefligt werden, so werden zuerst die Nullzeiger ersetzt, dann wird angefiigt. Diese
Vorgehensweise hat zwei wesentliche Nachteile. Zum einen kann die Reihenfolge der
Elemente nicht beeinflulRt werden, das heildt, es ist eine ungeordnete Collection. Zum
anderen kdénnen im dynamischen Speicherblock Liicken entstehen, und der Vorteil der
Speicherplatzoptimierung geht verloren. Deshalb entscheiden wir uns fiir das folgende
Konzept. Beim Einfligen oder Léschen von Elementen kann die Position angegeben werden,
und alle dahinter stehenden Eintrdge werden im Speicher verschoben. Das
Speicherverschieben kostet zwar Zeit, aber wir verfigen nun (ber eine geordnete Collection
mit einer optimalen Speicherauslastung. Ein Geschwindigkeitsverlust macht sich erst bei

Spirick Tuning Tutorial Seite 21

sehr groRen Arrays bemerkbar, denn moderne Computer besitzen schnelle Prozessorbefehle
zum Speicherverschieben.

Die Grofe eines Arrays ist durch den dynamischen Speicherblock begrenzt. Arbeiten wir mit
einem 16-Bit-Compiler, kann ein Block maximal 64 KB umfassen. Darin kénnen wir 16384
Zeiger unterbringen. Auch bei 32-Bit-Compilern existieren praktische Beschrankungen. Einige
Betriebssysteme kénnen nicht mehr als 1 MB zusammenhangenden Speicher bereitstellen.
Die Klasse ct_Array ist eine konkrete Klasse. Wir vergessen also nicht, die folgenden
wichtigen Methoden aufzunehmen: Konstruktor, Kopier-Konstruktor, Destruktor und Gleich-
Operator. Zur Veranschaulichung der Methodenimplementierung ist im Programmausschnitt
die Definition von AddAfter enthalten.

class ct_Array: public ct_Collection

{
t Length 0_Length;
ct Object * * ppco_Array;
public:
ct_Array ();
ct_Array (const ct Array & co_init);
virtual ~ct Array ();
ct Array & operator = (const ct Array & co_asgn);

virtual const char * GetTypeName () const;

virtual t_Length GetLen () const:

virtual t_Entryld First () const;

virtual t_Entryld Next (t_EntrylId o _id) const;

virtual ct Object * GetObj (t_Entryld o id) const;

virtual t_Entryld AddAfter (t Entryld o id, ct Object * pco_obj):
virtual t_Entryld Delete (t Entryld o id);

1%
t Entryld ct_Array:: AddAfter (t_EntryId o id, ct_Object * pco obj)
{
ASSERT (o_id <= o_Length);
0_Length ++;

ppco_Array = (ct _Object * *)
realloc (ppco_Array, (unsigned) o_Length * sizeof (ct_Object *));
ASSERT (ppco_Array != 0);
if (o_id < o _Length - 1)
memmove (ppco_Array + (unsigned) o_id + 1,
ppco_Array + (unsigned) o id,
((unsigned) (o _Length - o id) - 1) * sizeof (ct _Object *));
ppco_Array [(unsigned) o_id] = pco_obj;
return o_id + 1;

}

Widmen wir uns nun der doppelt verketteten Liste. Wir nennen die Collectionklasse ct DList.
Die Eintréage einer DList sind durch Vorwarts- und Riickwartsverweise miteinander
verbunden. Wir kénnen in der Liste sehr schnell Elemente einfligen und I6schen. Die GrélRe
der Liste ist nur durch den verfiigbaren Hauptspeicher begrenzt. Die Klasse ct DListNode
dient der Speicherung eines einzelnen Eintrags. In einem Knoten (Node) befinden sich je ein
Zeiger auf das Vorganger- und Nachfolger-Node und natirlich ein Zeiger auf das Objekt, das
Element der Liste ist. Da die Klasse ct _DListNode nur fir den internen Gebrauch bestimmt ist,
erbt sie nicht von ct_Object, besitzt nur private Member und deklariert die Klasse ct DList als
friend.

In der Klasse ct DList bendtigen wir ein Attribut o _Length, das die Anzahl der Eintrége
enthalt, und ein Attribut o_FirstNode mit dem Verweis auf das erste Node. Auch die Klasse
ct DList ist eine konkrete Klasse. Zu den virtuellen Methoden, die von der Basisklasse

ct _Collection ererbt werden, figen wir Konstruktor, Kopier-Konstruktor, Destruktor und
Gleich-Operator hinzu. Aus der Reihe der Methodenimplementierungen sehen wir uns als
Beispiel wieder die Definition der Methode AddAfter an. In unserer Listenimplementierung

Spirick Tuning Tutorial Seite 22

bilden die Nodes einen Ring. Auch das erste und letzte Element sind miteinander verbunden.
Dadurch entfallt die Sonderbehandlung des Listenanfangs und -endes in AddAfter und Delete.

class ct_DListNode

{

friend class ct DList;

t Entryld 0_PrevNode;
t Entryld 0_NextNode;
ct Object * pco_Object;
ct_DListNode (ct_Object * pco_obj):
IE
class ct DList: public ct_Collection
{
t_Length 0_Length;
t Entryld o_FirstNode:
ct DListNode * GetNode (t_EntryId o id) const;
public:
ct DList ();
ct DList (const ct DList & co_init);
virtual ~ct DList ();
ct DList & operator = (const ct DList & co_asgn);

virtual const char * GetTypeName () const;

virtual t_Length GetLen () const;

virtual t_Entryld First () const;

virtual t_Entryld Next (t_Entryld o _id) const;

virtual ct_Object * GetObj (t _EntrylId o_id) const;

virtual t_Entryld AddAfter (t Entryld o id, ct Object * pco_obj);:
virtual t_Entryld Delete (t_Entryld o id);

b

t Entryld ct DList:: AddAfter (t _Entryld o _id, ct Object * pco _obj)

t Entryld o new = (t_Entryld) new ct DListNode (pco_obj);
if (0_id == 0)

{
if (o_Length != 0)

0_1d = GetNode (o_FirstNode)-> o PrevNode;
0 _FirstNode = o_new:

}
if (o_Length !=0)

t Entryld o _next = GetNode (o_id)-> o_NextNode;
GetNode (o_new)-> o PrevNode = o_id;
GetNode (o_new)-> o NextNode = o _next;:
GetNode (o_id)-> o NextNode = o_new:
GetNode (o_next)-> o PrevNode = 0 new:;
}
0_Length ++;
return o_new;

}

1.4.3 Entryld und Langenangabe

Nachdem wir die Klassen ct_Array und ct DList deklariert haben, missen wir noch die
passenden Datentypen flir Ldngenangabe und Entryld finden. Die Lange eines statischen
Arrays in C+ + ist bei den meisten Compilern durch den Datentyp unsigned int begrenzt.
Dieselbe Begrenzung gilt auch fiir dynamische Arrays, die mit einem Zeiger verwaltet

Spirick Tuning Tutorial Seite 23

werden, denn in C+ + werden Arrays und Zeiger sehr ahnlich behandelt. Unsere
Implementierung der DList hat hingegen keine Einschrdnkungen beztliglich der Anzahl der
enthaltenen Elemente. Der dazu geeignete ganzzahlige Typ ist unsigned long. Das ist der
umfassendere Datentyp, und ihn kénnen wir fir die Definition des Ldngentyps in der
Basisklasse ct _Collection verwenden. Die Entryld eines neuen Eintrags im Array ist wieder
vom Typ unsigned int, denn die Entryld ist identisch mit dem Index im Array. Beim
Hinzufligen eines neuen Elementes in einer DList wird ein neues Node erzeugt. Der Zeiger
auf dieses Node (ct DListNode *) dient als Entryld. Fir die allgemeine Entryld bendtigen wir
also einen Datentyp, der sowohl unsigned int als auch einen Zeiger enthalten kann. Die
GroRRe dieser Datentypen ist abhdngig vom Speichermodell, mit dem wir unser Programm
Ubersetzen. Im allgemeinen gilt, daf3 ein Objekt vom Typ unsigned long sowohl einen int-Wert
als auch einen Zeiger-Wert enthalten kann.

Wirden wir als Datentyp fir die Lange unsigned int verwenden, ware die DList einer
unnotigen Beschrénkung ausgesetzt. Eine Instanz der Klasse ct DList kénnte nur so viele
Elemente aufnehmen, wie der Wertebereich von unsigned int zula3t. Durch die Verwendung
von unsigned Tong als Langentyp mussen wir aber in der Implementierung der Methoden der
Klasse ct_Array haufig casten, zum Beispiel in der folgenden Programmzeile.

ppco_Array = (ct_Object * *)
realloc (ppco_Array, (unsigned) o_Length * sizeof (ct_Object *));

Diese haufigen Typumwandlungen kénnten wir vermeiden, wenn wir statt unsigned Tong
einen Klassentyp verwenden. Die Programmiersprache C + + bietet zahlreiche
Maoglichkeiten, primitive Datentypen (int, char usw.) durch Klassen zu ersetzen. Das
Wichtigste ist, dal3 wir fir eine Klasse eigene Operatoren definieren kénnen. Eine Klasse fir
einen Langentyp kénnte zum Beispiel so aussehen.

class ct_Length
{

union

{

unsigned u_Length;
unsigned Tong ul_Length;

b

public:
ct _Length & operator = (unsigned u_length)
{ u_Length = u_Tength; return * this; }
ct_Length & operator = (unsigned Tong ul_Tength)
{ ul_Length = ul_length; return * this; }
unsigned operator * (unsigned u)

{ return u_Length * u; }
unsigned long operator * (unsigned long ul)
{ return ul Length * ul; }

1%
Wir haben die Mittel der Sprache C + + elegant angewendet und eine Losung gefunden, in
der keine einzige Typumwandlung erforderlich ist. Im arithmetischen Ausdruck co_Length *
sizeof (ct_Object *) findet der Compiler automatisch, daR er fur die Multiplikation die
Methode operator * (unsigned u) der Klasse ct_Length anwenden muf3. Wo liegt nun das
Problem bei dieser Vorgehensweise? Ein Problem aus programmtechnischer Sicht gibt es
nicht, aber ein Performance-Problem. Jede Klasse in C+ + hat mindesten einen Konstruktor,
Kopier-Konstruktor, Destruktor und Gleich-Operator. Wird er nicht explizit definiert, wie in
der Klasse ct_Length, so werden diese Methoden vom Compiler automatisch erzeugt. Auch
wenn wir einen gut optimierenden Compiler einsetzen, ist die Verwendung primitiver
Datentypen effizienter. Die Typen fir Ldngenangabe und Entryld werden sehr haufig

genutzt. Wirden wir sie als Klassen deklarieren, wirde sich die Geschwindigkeit unseres
Programms splirbar verlangsamen. Sehen wir uns dazu wieder ein Beispiel an.

Spirick Tuning Tutorial Seite 24

ct_Length ct Array:: GetLen () { return co_Length; }

ct_Array co_array;
ct_Length co_Tength3;

co_length3 = co_array. GetLen ();

In der letzten Programmzeile lauft nacheinander das Folgende ab: Aufruf der Methode

ct Array:: GetlLen (), Erzeugen eines temporéren ct_Length-Objekts als Rickgabewert,
Zuweisung des temporaren Objekts an co_length3 durch Aufruf der Methode ct Length::
operator = (const ct_Length &) und Zerstoren des temporaren Objekts. Das Erzeugen des
temporéaren Objekts besteht wiederum aus zwei Schritten: Speicher bereitstellen und Aufruf
des Kopier-Konstruktors ct_Length:: ct _Length (const ct Length &). Temporéare Objekte werden
nicht nur bei Rickgabewerten erzeugt sondern auch bei Methoden-Parametern, zum Beispiel
in der Methode ct_EntryId ct_Array:: Next (ct_Entryld co_id). Selbst wenn der Compiler gut
optimiert, sind die eingebauten Mechanismen fiir Kopieren, Berechnen und Umwandeln
einfacher Datentypen effizienter. Wir nehmen also einige manuelle Typumwandlungen in
Kauf und bleiben bei den primitiven Datentypen fiir Langenangabe und Entryld. Zur
Deklaration der Klasse ct _Collection figen wir die beiden oben erdrterten Typdefinitionen
hinzu.

typedef unsigned Tong t_Length;
typedef unsigned long t_Entryld;

class ct_Collection: public ct _Object

[

Die soeben gewonnenen Erkenntnisse werden wir im weiteren Verlauf des Buches
wiederholt anwenden und fassen sie in einer Regel zusammen.

Bei Datentypen, die nur einen einzelnen Wert enthalten und sehr haufig verwendet werden,
sind primitive Datentypen (int, char usw.) effizienter als Klassen.

Die Entryld, die eindeutige Identitédt jedes Eintrags in einer Collection, verwenden wir, um
schneller auf die Elemente zugreifen zu kénnen. Zwischen Array und DList gibt es aber einen
wichtigen Unterschied bei der Verwendung von Entrylds. In einem Array ist die Entryld
gleich dem Index im dynamischen Speicherblock. Wird im Array etwas hinzugefligt oder
geldscht, so verschieben sich alle dahinter stehenden Eintrége, und es éndern sich die
Indizes und Entrylds. Die Entryld eines einzelnen Elementes bleibt im allgemeinen nur
solange giiltig, wie im Array nichts geadndert wurde. Abbildung 1-11 zeigt den EinfluR des
Léschens auf die Entrylds in einem Array.

Ldschen

<~

Zeiger 1 Zeiger 2 Zeiger 3 Zeiger 4

Entryld: 1 2 3 4

Zeiger 1 Zeiger 3 Zeiger 4

Entryld: 1 2 3

Abb. 1-11: Entrylds beim Loschen in einem Array

Spirick Tuning Tutorial Seite 25

Bei der DList ist die Entryld gleich der Speicheradresse des Nodes, das den Zeiger auf das
Objekt enthéalt. Das Node behalt seine Adresse, auch wenn in der Liste Veranderungen
vorgenommen werden. Wir kdnnen also ohne Bedenken Entrylds einer DList aufbewahren
und spater auf die damit referenzierten Objekte zugreifen. Die Entryld verliert erst ihre
Glltigkeit, wenn das Element selbst aus der Collection entfernt wird. Sehen wir uns dazu
Abbildung 1-12 an. Tabelle 1-1 fal3t anschlieBend die wichtigsten Eigenschaften der beiden
Collectionklassen ct_Array und ct DList zusammen.

Léschen
Node 1 1 [Node 2 1 [Node 3 Node 4
Entryld: O0x8E004410 0x8E004420 0x8E004430 0x8E004440
Node 1 :] [: Node 3 :] [: Node 4
Entryld: Ox8E004410 0x8E004430 0x8E004440

Abb. 1-12: Entrylds beim Léschen in einerDList
Eigenschaft Array DList
Speicherbedarf wenig viel
Anzahl Elemente begrenzt unbegrenzt
Gultigkeit Entryld begrenzt unbegrenzt
Verandern kleine Coll. schnell schnell
Verandern grof3e Coll. langsam schnell

Tab. 1-1: Wesentliche Eigenschaften der Collections

1.4.4 Implementierung der Stringklasse

In der Standardbibliothek des C + +-Compilers gibt es einen Modul fir
Zeichenkettenverarbeitung (string.h). Darin befinden sich Funktionen zum Kopieren,
Anhéangen und Bearbeiten. Es fehlen jedoch Funktionen zum Verwalten des Speichers der
Zeichenkette und zum Einfligen und Léschen in einer Zeichenkette. Unsere eigene Klasse
ct_String wird auf den Standardfunktionen aufbauen und die gewlinschten Erweiterungen
enthalten.

Die Lange der Zeichenkette soll dynamisch sein. Ahnlich wie beim Array bendtigen wir einen
Zeiger auf den dynamischen Speicherblock. Da sich in diesem Speicherblock eine
Zeichenkette befindet, hat das Attribut die Definition char * pc Block. In C und C+ + sind
Zeichenketten normalerweise nullterminiert. Unsere Stringklasse soll sich harmonisch in die
vorhandene Umgebung standardisierter Bibliotheken einpassen. Wir bernehmen die
Konvention und speichern deshalb am Ende des dynamischen Blocks ein Nullzeichen. Dabei
ist zu beachten, dal? das Nullzeichen bei der Berechnung der Lange der Zeichenkette nicht
mitgezahlt wird. Beim Anfordern von Speicher fiir den dynamischen Block muf3 es aber
berlicksichtigt werden. Die Standardfunktion strilen ermittelt die Lange einer nullterminierten
Zeichenkette, indem sie den Speicher nach dem Nullzeichen durchsucht. Bei langen
Zeichenketten kann das zu einem Rechenzeitproblem werden. Die Lange der Zeichenkette

Spirick Tuning Tutorial Seite 26

wird haufig bendtigt, zum Beispiel beim Einfligen oder Loschen von Teilzeichenketten (siehe
Methode Insert). Deshalb nehmen wir in die Stringklasse ein zuséatzliches Attribut u_Length
auf, das zum schnelleren Zugriff die Lange enthalt.

Auch die Klasse ct_String ist eine konkrete Klasse. Wir ergédnzen die Methoden aus dem
Design um Konstruktor, Kopier-Konstruktor, Destruktor und Gleich-Operator. Zur besseren
Verarbeitung normaler Zeiger auf Zeichenketten (char*) nehmen wir einen weiteren
Konstruktor und Gleich-Operator auf. Der folgende Programmausschnitt zeigt die
vollstdndige Deklaration der Klasse ct_String und die Implementierung der Methode Insert.

class ct_String: public ct_Object

{
unsigned u_Length;
char * pc_Block;
public:
ct _String ();
ct_String (const char * pc_init);
ct_String (const ct _String & co_init);
virtual ~ct_String O);
ct _String & operator = (const char * pc_asgn);:
ct String & operator = (const ct _String & co_asgn);
virtual const char * GetTypeName () const;
unsigned GetLen () const;
const char * GetStr (unsigned u_pos = 0) const;
void Insert (unsigned u_pos, const char * pc_ins);
void Delete (unsigned u_pos, unsigned u_len);
char & operator [] (unsigned u_pos);
b
void ct_String:: Insert (unsigned u_pos, const char * pc_ins)
{

ASSERT (u_pos <= u_Length);
ASSERT (pc_ins != 0);
unsigned u_inslen = strlen (pc_ins);
if (u_inslen > 0)
{
u_Length += u_inslen;
pc_Block = (char *) realloc (pc_Block, u_Length + 1);
ASSERT (pc_Block !'= 0);
memmove (pc_Block + u_pos + u_inslen, pc_Block + u_pos,
u_Length - u pos - u_inslen + 1);
memcpy (pc_Block + u_pos, pc_ins, u_inslen);

}

Mit der Klasse ct_String ist unsere Sammlung fundamentaler Klassen komplett. Wir haben
uns bei der Implementierung redliche Miihe gegeben und sehen uns die kleine
Klassenbibliothek noch einmal in Abbildung 1-13 an.

Spirick Tuning Tutorial Seite 27

ct_Object
~ct_Object

GetTypeName
IsOfType

.

I -

ct_Collection ct_String
GetLen u_Length
First pc_Block
Next ct_String
GetObj ct_String
Add ct_String
AddCond ~ct_String
AddAfter operator =
Delete operator =
GetTypeName
T GetlLen
GetStr
Insert
Delete
operator []
ct_Array ct_DList
o_Length o_Length
ppco_Array o_FirstNode
ct_Array ct_DList
ct_Array ct_DList
~ct_Array ~ct_DList ct_DListNode
operator = operator = o PrevNode
GetTypeName GetTypeName o NextNode
GetlLen GetlLen pco_Object
First First
Next Next
GetObj GetObj
AddAfter AddAfter
Delete Delete
Abb. 1-13: Die fundamentalen Klassen von OHelp

1.5 Anwendungsklassen von OHelp

Unser Beispielprogramm OHelp ist das Informationsmodell (der Programmkern) eines
interaktiven Hilfesystems. Die Anforderungen aus der Sicht des Anwenders des
Hilfesystems wurden bereits aufgezahlt und betreffen im wesentlichen die inhaltliche Seite
des Informationsmodells.

Aus Sicht des Programmierers, der mit diesem Informationsmodell umgeht und eine
Benutzeroberflache entwirft, kommen eine Reihe konkreter Anforderungen hinzu. Diese
Anforderungen betreffen vor allem die Programmierschnittstelle. Der Umgang mit dem
Informationsmodell soll einfach sein. Anderungen interner Details sollen sich méglichst nicht
auf die Schnittstelle auswirken. Im einzelnen bedeutet das:

Spirick Tuning Tutorial Seite 28

e Der Zugriff auf Attribute erfolgt nicht direkt, sondern Uber Get- und Set-Methoden.

e Zeichenketten werden Uber normale Zeiger (const char *) ausgetauscht, nicht Gber die
interne Stringklasse.

* Die haufigsten Typumwandlungen (Casts) sind vorprogrammiert.

¢ Themen kdnnen innerhalb eines Hypertextes kopiert werden.

¢ Die Konsistenz der verwalteten Daten muf sichergestellt sein.

1.5.1 Design der Anwendungsklassen

Ein Thema unseres Hilfesystems enthalt einen Text. Ihm kénnen mehrere Formatangaben
und Hyperlinks zugeordnet werden. Zur internen Darstellung eines Textes mit
Zusatzinformationen gibt es mehrere Méglichkeiten. Haufig modelliert man einen
zeilenorientierten Text als Collection von Zeilen. Diese Form ist besonders fiir das Editieren
grolBer Texte geeignet, erschwert aber die Positionierung der Zusatzinformationen. Bei
Veranderungen im Text treten komplizierte Fallunterscheidungen auf, um Zeile und Spalte
der Zusatzinformationen neu zu berechnen. Einfacher ist es, den Text als eine
zusammenhangende Zeichenkette zu behandeln. Eine Textposition besteht nur noch aus
einer einzelnen Angabe, der Spalte, und |43t sich bei Veranderungen leicht aktualisieren. Bei
langen Zeichenketten kénnen Einflige- und Loschoperationen zu einem Rechenzeitproblem
werden. In unserem Beispiel wird ein einzelner Text aber nicht sehr grol3, denn er enthalt
genau eine Seite aus dem Hilfesystem. Deshalb entscheiden wir uns fir die zweite Variante.

Ein Hyperlink ist ein Verweis von einem Thema zu einem anderen. Das Zielthema kann auf
zwei Arten gespeichert werden, als Zeiger auf das Thema oder als Entryld aus der Collection
der Themen. Wir geben der Entryld den Vorzug, denn damit gelangen wir sowohl zum
Collectioneintrag als auch zum Thema. In der Liste der Forderungen an OHelp steht, dal ein
Hyperlink optional eine Textposition besitzt. Unsere Klasse ct HyperLink erhalt also zwei
Konstruktoren, einen mit der Entryld des Zielthemas und einen mit Position und Entryld. Wir
kénnen ein Hyperlink fragen, ob es eine Textposition besitzt (IsInText). Danach kénnen wir
die Position abfragen (GetPos) und verschieben (MovePos). Mit der Methode GetTopicld erhalten
wir die Entryld des Zielthemas dieses Hyperlinks.

Eine Formatangabe stellen wir mit der Klasse ct_Format dar. Position, Ladnge und Textformat
werden mit dem Konstruktor initialisiert. Die Position ist die Spalte im Text, ab der das
Textformat gilt. Sie kann mit der Methode GetPos abgefragt und mit MovePos verschoben
werden. Die Lange beschreibt den Gliltigkeitsbereich des Textformats ab der Startposition.
Auch dafiir haben wir Methoden zum Abfragen (GetLen) und Andern (ChangeLen). Das
Textformat an sich codieren wir in einer ganzen Zahl mit hinreichend vielen Bits. Jedes Bit
steht flr ein einzelnes Textformat, zum Beispiel fett, kursiv, unterstrichen und
Schreibmaschinentext. Durch logische Oder-Verknlipfung dieser Bits kann die Klasse
ct_Format mehrere Textformate enthalten, ist jedoch unabhéngig von den konkreten
Textformaten. Die Klasse stellt Methoden zur Abfrage der Textformate (GetFormat), zum
Hinzuflgen (AddFormat) und zum L&schen (DelFormat) eines einzelnen Textformats bereit.

Uberall dort, wo in einer Klasse eine Menge gleichartiger Objekte enthalten ist, nehmen wir
die folgenden Methoden auf:

¢ Eine Methode zur Abfrage der gesamten Collection (z.B. GetEntrys).

¢ Eine Methode zur Abfrage eines einzelnen Objekts mit Typumwandlung (z.B. GetEntry).
¢ Eine oder mehrere Methoden zum Hinzufligen von Objekten (z.B. AddEntry).

¢ Eine Methode zum Léschen eines Objekts (z.B. DelEntry).

Mit der Methode GetEntrys kénnen wir die gesamte Collection abfragen und durchlaufen. Sie
liefert einen Zeiger vom Typ const ct_Collection *. Es kdnnen nur die const-Methoden der
Collection aufgerufen werden, nicht die Methoden zum Einfligen und L6éschen von
Elementen. Beim Zugriff auf die Eintrage erhalten wir von der Collection einen Zeiger auf die

Spirick Tuning Tutorial Seite 29

Basisklasse ct_Object. Um die haufige Typprifung mit der Methode IsOfType und die
anschlieBende Typumwandlung zu sparen, nutzen wir die Methode GetEntry. Sie ermittelt
aus der Collection den Zeiger auf das Objekt, prift dessen Typ und gibt den umgewandelten
Zeiger zurlick.

Das Einfligen eines neuen Objekts besteht aus zwei Schritten, dem Erzeugen des Objekts
und dem Einfligen in die Collection. Beides wird von der Methode AddEntry ausgeflhrt. Sie
erhalt die Konstruktor-Parameter des Objekts, erzeugt damit ein neues Objekt, fligt es in die
Collection ein und gibt die neue Entryld zurick. Hat das Objekt mehrere Konstruktoren, gibt
es auch mehrere Uberladene AddEntry-Methoden. Die Methode DelEntry l6scht das
referenzierte Objekt und entfernt den Eintrag aus der Collection. In der Collection wird nie
direkt gedndert, sondern nur indirekt tber die Methoden AddEntry und DelEntry. Dadurch
enthalt die Collection stets glltige Zeiger. Alle erzeugten Objekte werden beim Entfernen
aus der Collection geléscht, und die Konsistenz der Collection ist gewahrleistet.

Die Klasse zur Verwaltung eines Themas (ct _Topic) ist die umfangreichste unseres
Beispielprogramms. Sie besitzt die gré3te Funktionalitat. Ein Thema enthélt zwei Mengen
gleichartiger Objekte, die Formate und die Hyperlinks. Wir fiigen in die Klasse ct_Topic die
oben genannten Verwaltungsmethoden ein. Das sind fur Hyperlinks die Methoden
GetHyperLinks, GetHyperLink, AddHyperLink und DelHyperLink. AddHyperLink ist als Gberladene
Methode doppelt vorhanden, denn die Klasse ct_HyperLink hat zwei verschiedene
Konstruktoren. Zur Verwaltung der Formate dienen die Methoden GetFormats, GetFormat,
AddFormat und DelFormat. AddHyperLink und AddFormat erzeugen nicht nur ein neues Element in
der jeweiligen Collection, sondern sortieren es an der richtigen Stelle ein. Die Sortierung der
Hyperlinks und Formate in aufsteigender Reihenfolge bezliglich der Textposition ist wichtig
flr den Programmteil, der die interne Darstellung auf dem Bildschirm anzeigen soll.

Fir den Titel des Themas bendtigen wir die Zugriffsmethoden GetTitle und SetTitle. Der
Text wird als eine zusammenhangende Zeichenkette behandelt. Einen Zeiger darauf (const
char *) erhalten wir mit der Methode GetText. Anderungen im Text kdnnen wir mit InsertText
und DeleteText vornehmen. Eine Anderung im Text betrifft nicht nur die Zeichenkette,
sonden auch die dahinter positionierten Zusatzinformationen. Die Methoden InsertText und
DeleteText missen also den Text und die Collections fir Hyperlinks und Formate
aktualisieren.

Die Klasse zur Darstellung des gesamten Hypertextes nennen wir ct_HyperText. Sie enthalt
Zugriffsmethoden fiir den Namen und das Wurzelthema (Get/SetName und Get/SetRootTopicld).
Ein Hypertext enthalt eine Menge Themen. Wir nehmen die zugehdrigen
Verwaltungsmethoden in die Klasse ct_HyperText auf (GetTopics, GetTopic, AddTopic und
DelTopic). Zusatzlich war gefordert, daf3 ein Thema innerhalb eines Hypertextes kopiert
werden kann. Dabei unterscheiden wir das Kopieren zu einem neuen Thema (CopyTopic) und
das Uberschreiben eines vorhandenen Themas (ReplaceTopic).

Mit diesen Uberlegungen haben wir eine gute Grundlage fiir die Implementierung der
Anwendungsklassen geschaffen. Abbildung 1-14 zeigt die wesentlichen Resultate unseres
Designs.

Spirick Tuning Tutorial Seite 30

ct_Object

~ct_Object

GetTypeName
1sOfType

1.5.2

ct_Format ct_Topic ct_HyperLink ct_HyperText
ct_Format GetTypeName ct_HyperLink GetTypeName
GetTypeName GetTitle o,n 1 || ct_HyperLink GetName
GetPos —D— SetTitle GetTypeName SetName
MovePos N || GetText GetPos GetTopics
GetlLen InsertText <} MovePos GetTopic
Changelen DeleteText on 11| 1sInText AddTopic
GetFormat GetHyperLinks GetTopicld CopyTopic
AddFormat GetHyperLink ReplaceTopic
DelFormat AddHyperLink DelTopic
AddHyperLink > SetRootTopicld
DelHyperLink || 1 1.n || GetRootTopicld
GetFormats -
GetFormat
AddFormat
DelFormat
Abb. 1-14: Design der Anwendungsklassen von OHelp

Implementierung der Anwendungsklassen

Zur Implementierung der Klassen ct_HyperlLink und ct_Format ist die wesentliche Arbeit bereits
getan. Wir erweitern die Methodenschnittstelle aus dem Design um Parameter,
Rickgabewerte und die Attribute. Beide Klassen enthalten ausschlie3lich primitive
Datentypen und besitzen keine abhangigen Objekte. Deshalb funktionieren die vom Compiler
automatisch generierten Methoden Kopier-Konstruktor, Destruktor und Gleich-Operator. Wir
mussen sie nicht selbst definieren. Sehen wir uns nun die Deklaration beider Klassen und je
eine Methodenimplementierung an.

class ct_HyperLink: public ct_Object

{

unsigned

bool

t Entryld
public:

u_Pos;
b InText;
o _Topicld;

ct_HyperLink (t_Entryld o_id);
ct_HyperLink (unsigned u_pos, t EntryId o id);

virtual const char * GetTypeName () const;

unsigned
void

bool

t Entryld
b

GetPos () const;
MovePos (int i delta);
IsInText () const;:
GetTopicld () const;

void ct _HyperLink:: MovePos (int i_delta)

ASSERT ((int) u_Pos + i _delta >= 0);
u_Pos += 1i_delta:

}

Spirick Tuning Tutorial Seite 31

const unsigned cu_Bold 0x01;
const unsigned cu_Italic 0x02;
const unsigned cu_Underline = 0x04;
const unsigned cu_Example 0x08;

class ct_Format: public ct_Object

{

unsigned u_Pos:

unsigned u_Len;

unsigned u_Format;
pubTic:

ct_Format (unsigned u_pos, unsigned u_len,
unsigned u_format);
virtual const char * GetTypeName () const;

unsigned GetPos () const;
void MovePos (int i_delta);
unsigned Getlen () const;
void ChangeLen (int i_delta);
unsigned GetFormat () const;
void AddFormat (unsigned u_format);
void DelFormat (unsigned u_format);
b

void ct_Format:: DelFormat (unsigned u_format)
{
u_Format &= ~ u_format;
}

Die Klasse ct_Topic enthélt je eine Collection firr Hyperlinks und Formate. Beide werden nur
innerhalb der Klasse genutzt. Es existieren keine Verweise von aul3erhalb auf Elemente der
Collections. Deshalb kénnen wir zu deren Implementierung die speicherplatzsparende
Collection ct_Array verwenden. In einem Objekt der Klasse ct HyperLink ist kein Zeiger auf
das referenzierte Thema enthalten, sondern die Entryld aus der Liste aller Themen. Um auf
das Objekt zugreifen zu kénnen, bendtigen wir in der Klasse ct_Topic einen Verweis auf den
Hypertext, denn der Hypertext enthalt diese Liste der Themen. Der Zeiger auf den
zugehorigen Hypertext wird im Konstruktor initialisiert und kann spater nicht mehr geandert
werden.

Ein Objekt der Klasse ct _Topic kann erst geléscht werden, wenn keine Hyperlinks mehr auf
dieses Objekt verweisen. Um das zu prifen, mifRten wir die Hyperlinks aller Themen
durchlaufen. In derartigen Fallen verwendet man oft einen Referenzzahler. Das ist eine
nichtnegative Zahl. Kommt ein neuer Verweis auf das Objekt hinzu, wird er um eins erhéht.
Verschwindet ein Verweis, erniedrigt er sich um eins. Ist der Referenzzahler gleich Null,
existieren keine Verweise mehr auf das Objekt, und es kann geléscht werden. Wir fiigen zur
Klasse ct_Topic das Attribut u RefCount und die Zugriffsmethode GetRefCount hinzu. Die
Methoden IncRefCount und DecRefCount erhéhen bzw. erniedrigen den Referenzzahler um eins.
Beide Methoden sind privat, denn der Referenzzahler wird nur von eigenen Methoden der
Klasse ct _Topic geandert. Mit dem Referenzzahler haben wir gleichzeitig einen Beitrag zur
Sicherung der Konsistenz geleistet. Zum Beispiel ist im Destruktor ~ct Topic die Anweisung
ASSERT (u_RefCount == 0) enthalten.

In der Klasse ct_Topic haben der automatisch generierte Kopier-Konstruktor und Gleich-
Operator nicht das gewilinschte Verhalten. Beim Kopieren einer Collection (zum Beispiel mit
ct Array:: operator =) werden nur die Zeiger kopiert, nicht die referenzierten Objekte. Der
automatisch generierte ct_Topic:: operator = nutzt den Gleich-Operator der Collection und
wiurde die Hyperlinks und Formate nicht kopieren. Fir die Klasse ct _Topic missen wir also
die Methoden Kopier-Konstruktor, Destruktor und Gleich-Operator selbst definieren. Das
Leeren der Collections wird an zwei Stellen benétigt, beim Destruktor und beim Gleich-
Operator. Wir nutzen dazu die private Methode ClearCollections. Ebenso gibt es eine private
Methode zum Kopieren der Collections eines anderen Objekts der Klasse ct Topic. Diese

Spirick Tuning Tutorial Seite 32

Methode CopyCollections wird vom Kopier-Konstruktor und vom Gleich-Operator verwendet.
Der folgende Programmausschnitt zeigt die vollsténdige Deklaration der Klasse ct Topic und
die Implementierung von InsertText. Zur Erinnerung sei noch einmal darauf hingewiesen, dal}
die Methode InsertText nicht nur den Text sondern auch die von der Anderung betroffenen
Zusatzinformationen &ndert.

class ct_Topic: public ct_Object

{
ct HyperText * pco_HyperText;
unsigned u_RefCount;
ct_String co Title;
ct_String co_Text;
ct_Array co_HyperLinks;
ct_Array co_Formats;
void IncRefCount ();
void DecRefCount ();
void ClearCollections ();
void CopyCollections (const ct_Topic & co_copy);
public:
ct_Topic (ct_HyperText * pco_hyperText,
const char * pc_title);

ct_Topic (const ct _Topic & co_init);
virtual ~ct_Topic ();
ct _Topic & operator = (const ct Topic & co_asgn):
virtual const char * GetTypeName () const;
ct_HyperText * GetHyperText () const;
unsigned GetRefCount () const;
const char * GetTitle () const;
void SetTitle (const char * pc_title);
const char * GetText () const;
void InsertText (unsigned u_pos, const char * pc_ins);
void DeleteText (unsigned u_pos, unsigned u_len);
const ct_Collection * GetHyperLinks () const;
ct HyperLink * GetHyperLink (t_Entryld o _hyperLinkId) const;
t Entryld AddHyperLink (t_Entryld o_topicld);
t Entryld AddHyperLink (unsigned u_pos, t Entryld o topicld);
t Entryld DelHyperLink (t_EntryId o _hyperLinkId);
const ct_Collection * GetFormats () const;
ct_Format * GetFormat (t_Entryld o formatId) const;
t Entryld AddFormat (unsigned u_pos, unsigned u_len,

unsigned u_format);
t Entryld DelFormat (t_EntryId o formatld);
b
void ct_Topic:: InsertText (unsigned u_pos, const char * pc_ins)

{

t Entryld o_id;
unsigned u_insLen = strlen (pc_ins);
co_Text. Insert (u_pos, pc_ins);
for (o_id = co_HyperLinks. First ():
0id !=0;
0 id = co_HyperLinks. Next (o_id))

ct_HyperLink * pco_hyli = GetHyperLink (o _id);
if (pco_hyli-> GetPos () > u_pos)
pco_hyli-> MovePos (u_inslLen);
}
for (o_id = co_Formats. First ();
o id = 0;
0_id = co_Formats. Next (o_id))

ct_Format * pco_format = GetFormat (o_id);

Spirick Tuning Tutorial Seite 33

if (pco_format-> GetPos () > u_pos)
pco_format-> MovePos (u_insLen);
else
if (pco_format-> GetPos () + pco_format-> GetLen () > u_pos)
pco_format-> Changelen (u_insLen);
}

}

Fir die Klasse ct_HyperText wurde die wesentliche Arbeit bereits im Design getan. Wir
erweitern die Methodenschnittstelle um Konstruktor und Destruktor. Das Kopieren eines
vollstandigen Hypertextes wird im Rahmen unseres Beispielprogramms nicht berlicksichtigt.
Der Hypertext enthélt eine Collection von Themen. Es existieren Verweise auf die Eintrage in
dieser Collection, die Hyperlinks. Die Collection wird mit der Klasse ct DList implementiert,
denn in einer DList behalten die Entrylds auch nach Anderungen ihre Giiltigkeit. Bevor ein
Thema geldéscht werden kann, missen alle Hyperlinks auf dieses Thema geléscht werden.
Dazu verwenden wir die Methode DelTopicUsages. Diese Methode wird von der Methode
DelTopic aufgerufen, kann aber auch separat genutzt werden. Es folgt nun die Deklaration
der Klasse ct_HyperText und die Implementierung der Methoden DelTopicUsages und DelTopic.

class ct_HyperText: public ct_Object

{
ct_String co_Name:
t Entryld 0_RootTopicld;
ct DList co_Topics;
public:

ct_HyperText ();
virtual ~ct_HyperText ();
virtual const char * GetTypeName () const;
const char * GetName () const;
void SetName (const char * pc_name);
t Entryld GetRootTopicld () const;
void SetRootTopicld (t_Entryld o rootld);
const ct_Collection * GetTopics () const;
ct Topic * GetTopic (t_Entryld o topicld);
t Entryld AddTopic (const char * pc_title);
t Entryld CopyTopic (t_EntryId o_source,

const char * pc_newTitle);
void ReplaceTopic (t _Entryld o_repl, t Entryld o_source,
const char * pc newTitle);

void DelTopicUsages (t_Entryld o topicld);
t Entryld DelTopic (t_Entryld o topicld);
)

void ct_HyperText:: DelTopicUsages (t _Entryld o topicld)

for (t Entryld o idl = co Topics. First ();
o idl !=0;
0 i1dl = co_Topics. Next (o_idl))
{
ct _Topic * pco_topic = GetTopic (o_idl);
t Entryld o _id2 = pco_topic-> GetHyperLinks ()-> First ();
while (o_id2 != 0)
if (pco_topic-> GetHyperLink (o_id2)-> GetTopicld () == o _topicld)
0_1d2 = pco_topic-> DelHyperLink (o _id2);
else
0 1d2 = pco_topic-> GetHyperLinks ()-> Next (o_1d2);

}
ASSERT (GetTopic (o_topicld)-> GetRefCount () == 0);
}

t Entryld ct HyperText:: DelTopic (t_Entryld o topicld)

if (o_topicld == o RootTopicld)

Spirick Tuning Tutorial Seite 34

0_RootTopicld = 0;

if (GetTopic (o_topicld)-> GetRefCount () > 0)
DelTopicUsages (o _topicld);

delete co_Topics. GetObj (o _topicld);

return co_Topics. Delete (o_topicld);

}

Nun ist unser Beispielprogramm OHelp komplett. Es ist sicher kein Ausgangspunkt flr ein
perfektes Hilfesystem. Das war auch nicht unsere Absicht. Wir wollten ein kleines,
Uberschaubares Programm. Dieses Programm dient uns im folgenden als Studienobjekt fir
Performance-Analysen. Abbildung 1-15 zeigt die Implementierung der Anwendungsklassen
von OHelp. Der Ubersichtlichkeit halber enthalt das Diagramm keine privaten Methoden.

ct_Object

~ct_Object
GetTypeName
IsOfType

ct_Format ct_Topic ct_HyperLink ct_HyperText
u_Pos pco_HyperText u_Pos co_Name
u_Len u_RefCount b_InText o_RootTopicld
u_Format co_Title 0,n 1 || o_Topicld co_Topics
ct_Format N co_Text . ct_HyperLink ct_HyperText
GetTypeName v o,n co_l;yperLlnks ct_HyperLink ~ct_HyperText
GetPos w A GetTypeName GetTypeName
MovePos ct_Topic 2 GetPos GetName
GetlLen ct_Topic on 1 MovePos SetName
ChangeLen ~ct_Topic IsInText GetRootTopicld
GetFormat operator = GetTopicld SetRootTopicld
AddFormat GetTypeName GetTopics
DelFormat GetHyperText GetTopic

GetRefCount AddTopic

GetTitle N CopyTopic

SetTitle 1 v 1,n || ReplaceTopic

GetText DelTopicUsages

InsertText DelTopic

DeleteText

GetHyperLinks

GetHyperLink

AddHyperLink

AddHyperLink

DelHyperLink

GetFormats

GetFormat

AddFormat

DelFormat

Abb. 1-15: Die Anwendungsklassen von OHelp

1.56.3 Stunde der Wahrheit

Bevor wir zu OHelp eine Benutzeroberflache implementieren kénnen, missen wir alle
Progammteile griindlich auf Herz und Nieren priifen. Dazu schreiben wir ein Testprogramm.
Darin werden alle Methoden mindestens einmal aufgerufen. Bei komplizierten Methoden,
deren Verhalten vom Kontext abhangig ist, versuchen wir, jeden Kontext einmal zu
durchlaufen. Auf diese Weise stellen wir die Richtiglkeit der Algorithmen sicher. Das ist aber
nur die halbe Arbeit. Zu einem gut funktionierenden Programmteil gehoért auch, daf3 die

Spirick Tuning Tutorial Seite 35

Performance im Rahmen der Erwartungen bleibt. Die Performance (Betriebsverhalten,
Leistungsfahigkeit) zeigt sich direkt in der Rechengeschwindigkeit und indirekt im
Speicherbedarf. Bei einem zu hohen Speicherbedarf bremst die Verwaltung des virtuellen
Speichers das Programm durch standiges Ein- und Auslagern auf Festplatte, oder das
Programm bricht wegen Speicheriberlaufs ab. Fir einen kritischen Performancetest nutzen
wir Datenmengen, wie sie in der Praxis im Grenzfall auftreten. Es ist keine Seltenheit, daR in
einem Hilfesystem tGber 1000 Themen enthalten sind. Zum Testen von OHelp verwenden
wir einem Hypertext mit folgendem Umfang:

¢ 10 000 Themen,

e Titel des Themas mit 15 Zeichen,

e pro Thema 10 Zeilen,

e pro Zeile 30 Zeichen Text und

e pro Zeile je eine Formatangabe und ein Hyperlink.

Nachdem OHelp den algorithmischen Teil des Tests erfolgreich bestanden hat, atmen wir
erleichtert auf. Bei diesen kleinen Datenmengen verlief auch alles recht flott. Doch was
passiert nun? Eigentlich sollte das Testprogramm den oben beschriebenen Hypertext
aufbauen und darin einige Operationen ausfiihren. Stattdessen bleibt der Computer stehen
und rdhrt sich nicht mehr. Haben wir wieder einmal vergessen, die Turbo-Taste zu driicken?
Oder ist unser Programm in eine Endlosschleife geraten? Jetzt sehen wir wieder Bewegung
am Computer. Die rote Kontrolldiode der Festplatte regt sich haufiger, und wir héren auch
akustisch, dal3 die Festplatte immer stéarker beansprucht wird. In unserem Testprogramm
sind aber gar nicht so viele Dateioperationen enthalten. Es ist wohl das Betriebssystem, das
mehr und mehr virtuellen Speicher ein- und auslagern muf3. Wird das Programm auch die
letzten Tests erfolgreich abschlieBen? Wir schwanken in unserer Hoffnung. Dann kommt das
endglltige Aus. Auf dem Bildschirm steht grof3 und deutlich die Fehlermeldung Out of
memory. Nachdem wir uns von diesem Schreck erholt haben, wiederholen wir die
Performancetests mit gednderten Parametern. Dabei stellen wir nach und nach die folgenden
Symptome an OHelp fest:

¢ Bei kleinen Datenmengen ist es flott und bendtigt wenig Speicher.

¢ Beim Aufbau groRer Datenmengen benétigt es viel Speicher.

¢ Reine Abfragen (ohne Veranderung) sind dann zu langsam.

e Beim Verandern groRer Datenmengen wird es zunehmend langsamer.

¢ Im Laufe der Zeit bendtigt es mehr und mehr Speicher, obwohl keine neuen Daten
hinzukommen.

Bei der Entwicklung von OHelp haben wir nicht nur auf einen guten Programmierstil
geachtet, sondern auch auf die Performance. Wir verwenden primitive Datentypen fir
Langenangabe und Entryld. Formatangaben und Hyperlinks werden mit der
speicherplatzsparenden Collection ct_Array verwaltet. Ein nochmaliges Durchsehen der
Programmtexte bringt keine offensichtlichen Effizienzfehler zutage. Was haben wir verkehrt
gemacht? Woran liegt das schlechte Abschneiden im Performancetest?

Wer ein Haus baut, sollte Baugrund und Baumaterial genau prifen. Und er sollte die
Handwerker unter die Lupe nehmen, denen er den Bau anvertraut. Was im Baugewerbe
Ublich ist, darf auch ein Programmierer nicht aul3er acht lassen. Der Baugrund fiir OHelp ist
die Programmiersprache C + +. Das Baumaterial ist die C-Standardbibliothek. Die
Handwerker sind der Compiler und der Linker. Die Programmiersprache haben wir bereits bei
der Festlegung der Datentypen flir Langenangabe und Entryld naher betrachtet. Dabei haben
wir festgestellt, dal3 es in der Sprache C+ + Konzepte gibt, die die Performance negativ
beeinflussen. Unter diesem Blickwinkel prifen wir in den folgenden drei Abschnitten auch
den Compiler und die Standardbibliothek. Das Ubersetzen virtueller und Inline-Methoden
gehort in den Arbeitsbereich des Compilers. Die dynamische Speicherverwaltung ist
Bestandteil der Standardbibliothek.

Spirick Tuning Tutorial Seite 36

1.6 Ein Blick hinter die Kulissen des
Compilers

1.6.1 Virtuelle Methoden

Betrachten wir kurz einige Begriffe, die mit virtuellen Methoden zusammenhangen.
Vererbung und Polymorphie sind Basiskonzepte der objektorientierten Programmierung. Sie
werden von jeder objektorientierten Sprache unterstiitzt. Vererbung bedeutet, dal3 eine
Klasse ihre Eigenschaften auf eine andere Klasse Ubertragt, einschlieRlich der Attribute und
Methoden. Man sagt, die geerbte Klasse ist die Basisklasse, und die erbende die abgeleitete
Klasse. Das Konzept der Vererbung wird oftmals eingesetzt, ein Interface (eine
Methodenschnittstelle) auf unterschiedliche Art zu implementieren. Das Interface wird durch
eine abstrakte Basisklasse vorgegeben. Sie enthélt nicht implementierte Methoden. Davon
kénnen keine Objekte gebildet werden, deshalb heil3t sie abstrakt. In den abgeleiteten
Klassen werden die Methoden implementiert. Eine Klasse, in der alle Methoden implemeniert
sind, heil3t konkrete Klasse, denn von ihr kénnen Objekte erzeugt werden.

Ein Objekt einer abgeleiteten Klasse kann in einem Kontext verwendet werden, in dem nur
das Interface der abstrakten Basisklasse bekannt ist. Dieses Konzept nennt man
Polymorphie. Ein anschauliches Beispiel flir Polymorphie ist in unserer kleinen
Klassenbibliothek enthalten. Die abstrakte Basisklasse ct Collection gibt das Interface fir
Collections vor. Die Klassen ct_Array und ct DList sind konkrete Implementierungen davon.
Uber einen Zeiger kénnen die Methoden der Klasse ct_Collection aufgerufen werden, ohne
dal3 bekannt ist, welche konkrete Klasse sich hinter dem Zeiger verbirgt.

Wird eine Methode einer abstrakten Basisklasse aufgerufen, so entscheidet sich erst zur
Laufzeit des Programms, welche konkrete Methode abgearbeitet werden muf3. Dazu bedarf
es einer neuen Technik, denn normalerweise sind dem Compiler die Methoden schon beim
Ubersetzen des Programms bekannt. Sehen wir uns ein Programmfragment an, in dem beide
Falle enthalten sind.

ct String * pco_string =;
ct _Collection * pco _collection =;

pco_String-> Getlen (); // Aufruf von ct String:: GetlLen ()
pco_collection-> GetlLen (); // Nicht eindeutiq,
// Aufruf von ct Array:: GetlLen () oder ct DList:: GetlLen ()

Eine Methode, die in einem polymorphen Klassenbaum mehrmals implementiert wird, heif3t
virtuelle Methode. Die Methode ct _String:: GetlLen ist es nicht. Virtuell sind hingegen
ct_Collection:: GetLen, ct Array:: GetLen und ct DList:: GetLen. Die Methode ct Collection::
Getlen ist rein virtuell, denn sie ist nicht implementiert. In einigen Programmiersprachen sind
alle Methoden virtuell. Der Aufruf einer virtuellen Methode ist aber langsamer. Deshalb gibt
es in C+ + beide Formen, die nicht virtuelle und die virtuelle. Eine virtuelle Methode mufR3
mit dem Schllsselwort virtual gekennzeichnet werden. Beim Redefinieren einer virtuellen
Methode in einer abgeleiteten Klasse ist das Schlisselwort virtual optional.

Die technische Umsetzung virtueller Methoden ist nicht Bestandteil der Sprachdefinition von
C+ +. Jeder Compiler kann dafiir seine eigenen Mechanismen verwenden. Zum Ermitteln
der aufzurufenden Methode mul jedes Objekt auf die konkreten Methoden verweisen. Da
die Liste der konkreten Methoden fir alle Objekte einer Klasse gleich ist, kann diese Liste
wie ein statisches Attribut behandelt werden. Im Objekt selbst muf3 nur eine Klassen-
Identitat enthalten sein. Darliber kann aus der statischen Liste ein Verweis auf die richtige
Methode ermittelt werden. Um den Zugriff zu beschleunigen, ist die Klassen-ldentitat meist
ein direkter Zeiger auf die Liste, und in der Liste befinden sich direkte Zeiger auf die

Spirick Tuning Tutorial Seite 37

Methoden. Zur Liste sagt man kurz virtuelle Tabelle. Zeiger und virtuelle Tabelle sind fiir den
Programmierer unsichtbar. Waren sie sichtbar, wirden sie fur die Klasse ct Array etwa so
aussehen:

class ct_Array
{
void * pv_ToVirtualTable;
static void * apv_VirtualTable [8];

b

ct Array:: ct_Array ()

{
pv_ToVirtualTable = & apv_VirtualTable;

// Kein korrektes C++!
void * ct_Array:: apv_VirtualTable [8] =

ct Array:: ~ct_Array,
ct_Array:: GetTypeName,
ct Array:: Getlen,

ct Array:: First,

ct Array:: Next,

ct Array:: GetQObj,

ct Array:: AddAfter,

ct Array:: Delete

S R0 Q0 20 O O RO O RO

Der Zeiger auf die virtuelle Tabelle wird im Konstruktor initialisiert und spater nicht mehr
gedndert, auch nicht durch einen Gleich-Operator. Die virtuelle Tabelle enthalt Zeiger auf
jede implementierte virtuelle Methode. Die Reihenfolge der Zeiger mul3 bei allen abgeleiteten
Klassen gleich sein. Dann kann auf die Tabelle sehr schnell mit einem Index zugegriffen
werden. Zum Beispiel muR in den virtuellen Tabellen der Klassen ct Array und ct DList der
Destruktor den Index Null, GetTypeName den Index Eins, GetLen den Index Zwei usw. haben.
Zum Aufruf der virtuellen Methode in pco_collection-> GetlLen () wird aus dem Objekt
*pco_collection der Zeiger auf die virtuelle Tabelle ermittelt. Aus der Tabelle ergibt sich mit
dem Index Zwei der Zeiger auf die konkrete virtuelle Methode. SchlieRBlich wird diese
Methode aufgerufen.

Aus dem Blickwinkel der Performance miissen wir bei der Arbeit mit virtuellen Methoden
zwei Dinge beachten. Zum einen hat jede Klasse, in der eine virtuelle Methode enthalten ist,
implizit ein zusatzliches Attribut. Das gilt auch fir alle davon abgeleiteten Klassen. Zum
anderen ist der Aufruf einer virtuellen Methode langsamer, denn er erfolgt Gber mehrfache
Indirektion.

Aus der Verwendung virtueller Methoden resultiert nicht in jedem Fall eine Verschlechterung
der Performance. In der Praxis kommt es auf das Verhaltnis zwischen der Losung mit und
ohne virtuellen Methoden an. Besitzt eine Klasse schon hundert Attribute, spielt die
Hinzunahme eines weiteren Attributs praktisch keine Rolle. Besitzt sie jedoch nur ein
einzelnes Attribut vom Typ char, vergroRert sich der Umfang der Klasse durch die
Verwendung virtueller Methoden um ein Vielfaches. Ahnlich verhilt sich die
Rechengeschwindigkeit. Die weiter oben dargestellte Methode ct_Array:: AddAfter enthalt
viele Anweisungen. Beim Aufruf wirkt sich die Indirektion nur unwesentlich auf die gesamte
Abarbeitungszeit aus. Die Methode ct_Array:: GetLen hat hingegen nur die eine Anweisung
return o_Length. Dabei ist der Unterschied zwischen einer nicht virtuellen und einer virtuellen
Implementierung erheblich. Die folgende Regel falRt diese Beziehungen zusammen. In
Abbildung 1-16 werden sie graphisch veranschaulicht.

Spirick Tuning Tutorial Seite 38

Virtuelle Methoden kénnen Rechenzeit und Speicherplatz belasten. An
performancekritischen Stellen suchen wir eine L6sung ohne virtuelle Methoden. Existiert
diese Losung nicht, setzen wir weiterhin virtuelle Methoden ein.

Relativer Speicherbedarf Relative Rechenzeit
Klasse mit Klasse mit Methode mit Methode mit
vielen Attributen wenigen Attributen vielen Anweisungen wenigen Anweisungen

[] []

Ohne virtuelle Methoden Mit virtuellen Methoden

Abb. 1-16: Einflul3 virtueller Methoden auf die Performance

1.6.2 Inline-Methoden

Das Konzept der Inline-Methoden ist kein Bestandteil der objektorientierten Programmierung.
Es ist eine Erweiterung von C+ + gegenlber C, um den Programmierstil zu verbessern. Was
sind die Hintergriinde fir dieses Konzept? Einen Algorithmus, der mehrmals verwendet wird,
fal3t man in einer Methode zusammen. Eine Verwendung des Algorithmus ist gleich dem
Aufruf der zugehdérigen Methode. Beim Aufruf der Methode wird aber nicht nur der
enthaltene Algorithmus abgearbeitet, sondern auch ein Methodenrahmen. Er ist fir den
Programmierer unsichtbar und wird vom Compiler automatisch hinzugefligt. Der Umfang des
Methodenrahmens ist stark abhangig von Hardware, Betriebssystem, Compiler und
Compilerschaltern. Vor dem Aufruf der Methode missen interne Zustédnde der Hardware
gesichert und nach dem Aufruf wiederhergestellt werden. Dieser Rahmen kostet nattrlich
Rechenzeit. Ahnlich wie bei den virtuellen Methoden ist auch die Auswirkung des
Methodenrahmens auf die Performance von der Gréfl3e der Methode abhéangig. Die
Ausflihrungszeit einer Methode mit vielen Anweisungen wird durch den Methodenrahmen
nur geringfligig vergréRert.

Es gibt in jedem Programm viele kleine Algorithmen, die nur aus einer einzelnen Anweisung
bestehen. Wird ein kleiner Algorithmus als Methode implementiert und sehr haufig
verwendet, kann durch den Methodenrahmen ein erheblicher Geschwindigkeitsverlust
eintreten. In C hat man bei diesen Fallen den Praprozessor zu Hilfe genommen und fiir den
Algorithmus ein Makro definiert. Das ist jedoch aus zwei Griinden kein guter
Programmierstil. Zum einen sind Makros kein Bestandteil der Sprache C+ +. Durch
Mischung von Makros und C+ +-Konstrukten verschlechtert sich die Lesbarkeit des
Programms. Zum anderen wird die Fehlersuche erschwert. Beim fehlerhaften Aufruf einer
Methode meldet der Compiler sehr genau Ursache und Textposition des Fehlers. Wird ein
Makro falsch verwendet, beziehen sich Fehlermeldung und Textposition auf das expandierte
Makro. Dieses ist aber im Programmtext nicht zu sehen, und die Ratselrunde zum Auffinden
des Fehlers beginnt. Ein typisches Beispiel fir einen kleinen Algorithmus, der haufig

Spirick Tuning Tutorial Seite 39

verwendet wird, ist das Berechnen des Minimums zweier ganzer Zahlen. Sehen wir uns dazu
ein Programmfragment an.

#define MIN(x, y) ((x) < (y) ? (x) : (y)»
int i = MIN (5, -7): // Richtige Verwendung
char * pc = MIN ("Albert", "Andreas"): // Falsche Verwendung

inTine int Min (int 11, int i2) { return il <2 ? il : i2; }
int 1 = Min (5, -7); // Richtige Verwendung
char * pc = Min ("Albert", "Andreas"); // Falsche Verwendung

In der Definition der Methode Min haben beide Parameter einen Typ. Werden Parameter mit
einem falschen Typ Ubergeben, meldet der Compiler sehr genau diesen Fehler. Das Makro
MIN ist nicht typsicher, denn es ist eine reine Textoperation. Bei Verwendung des Makros ist
aber die Ausfiihrungsgeschwindigkeit deutlich besser. Im neuen Konzept der Inline-Methode
sind beide Vorteile miteinander vereint. Eine Inline-Methode wird wie eine normale Methode
deklariert und definiert und zusatzlich mit dem Schllisselwort inline versehen. Eine
Methode, deren Definition (Anweisungsteil) innerhalb der Klassendeklaration steht, gilt auch
ohne Schlisselwort als inline. Dadurch verschlechtert sich aber die Lesbarkeit des
Programms. Definieren wir eine Inline-Methode auRRerhalb der Klassendeklaration, missen
wir das Schllsselwort inline bei der Definition angeben. Optional kann es auch in der
Deklaration stehen. Der Compiler kann eine Methode nur inline expandieren, wenn er ihre
Definition gesehen hat. Deshalb sollte der Anweisungsteil unter der Klassendeklaration in der
Headerdatei plaziert werden. Im folgenden Programmausschnitt sind beide Arten der Inline-
Definition enthalten.

class ct_String: public ct Object

{
public:
inline unsigned GetLen () const: // Gut lesbar
const char * GetStr (unsigned u_pos) const
{ ASSERT (u_pos <= u_Length); // Anweisungsteil stort
return pc_Block + u_pos; } // an dieser Stelle
b

// Inline-Definition in der Headerdatei plazieren!
inTine unsigned ct String:: Getlen () const

{

return u_Length;

}

Die Verwendung einer Inline-Methode ist typsicher wie bei anderen Methoden. Der Compiler
erzeugt beim Ubersetzen aber keinen Methodenaufruf. Ahnlich wie der Praprozessor
expandiert er die Methode direkt an der Verwendungsstelle. Dadurch entfallt der
Methodenrahmen. Analog zum Makro ist eine Inline-Methode nur sinnvoll, wenn sie wenige
Anweisungen enthalt. Bei einer Methode mit vielen Anweisungen ist der Rechenzeitgewinn
gering, und es tritt ein zusatzliches Problem auf. Zum Aufruf einer Methode erzeugt der
Compiler nur wenig Code. Das Inline-Expandieren einer Methode mit vielen Anweisungen
bendtigt hingegen mehr Code. Wird die Methode haufig verwendet, vergroRert sich der Code
des gesamten Programms splrbar. Sehen wir uns dazu Abbildung 1-17 an.

Spirick Tuning Tutorial Seite 40

Relativer Speicherbedarf Relative Rechenzeit

Methode mit Methode mit Methode mit Methode mit
vielen Anweisungen wenigen Anweisungen vielen Anweisungen wenigen Anweisungen

[] []

Ohne Inline-Methoden Mit Inline-Methoden

Abb. 1-17: Einflu3 von Inline-Methoden auf die Performance

Die Datenkapselung ist ein Basiskonzept der objektorientierten Programmierung. Die Sprache
C + + unterstltzt dieses Konzept durch die Vergabe von Zugriffsrechten fiir Elemente einer
Klasse. Attribute, Methoden usw. kénnen private, protected oder public deklariert werden. In
der Praxis sind Attribute meist privat, und der Zugriff erfogt indirekt Gber Methoden. Der
Vorteil des indirekten Zugriffs ist, da die Implementierung des Attributs dem Anwender der
Klasse verborgen bleibt. Eine Anderung der internen Darstellung des Attributs betrifft nur
selten die Zugriffsmethoden. Das Interface der Klasse bleibt dabei konstant. In den
Anwendungsklassen von OHelp finden wir viele typische Zugriffsmethoden. Zum Beispiel
wird der Titel eines Themas mit GetTitle abgefragt und mit SetTitle gesetzt. Beide Methoden
arbeiten mit dem primitiven Datentyp const char *. Die interne Darstellung des Titels mit der
Klasse ct_String ist fur den Anwender nicht sichtbar. Wirden wir spéater eine andere
Stringklasse verwenden, bliebe das Interface der Zugriffsmethoden konstant, und der
Anwender miuRte nichts andern.

Durch die Datenkapselung tauchen in einem C + +-Programm viele kleine Methoden auf.
Diese Zugriffsmethoden fiihren zu einer Verlangsamung des Programms. Erst mit Inline-
Methoden wird der indirekte Zugriff auf Attribute effizient. Definieren wir Zugriffsmethoden
stets inline, ist unsere objektorientierte Welt wieder in Ordnung. Wir kénnen das Konzept
der Datenkapselung einsetzen und muissen nicht auf die Performance verzichten.

Oder haben wir etwas Ubersehen?

Der Compiler kann eine Methode nur inline expandieren, wenn er genau weil3, um welche
Methode es sich handelt. Beim Aufruf einer virtuellen Methode weil® er es im allgemeinen
nicht. Ist eine Zugriffsmethode virtuell, missen wir also einen doppelten Performanceverlust
hinnehmen. Die konkrete Methode wird (iber mehrfache Indirektion ermittelt. Danach wird
sie mit ihrem Methodenrahmen aufgerufen. Sehen wir uns unter diesem Aspekt noch einmal
das Programmfragment mit virtuellen Zugriffsmethoden an.

ct String * pco_string =;
ct_Collection * pco_collection =;

pco_String-> Getlen (); // Aufruf von ct_String:: GetlLen ()
pco_collection-> GetLen (); // Nicht eindeutig,
// Aufruf von ct Array:: GetlLen () oder ct DList:: GetlLen ()

Ist die Zugriffsmethode ct String:: GetLen eine Inline-Methode, ergibt sich daraus ein
Rechenzeitgewinn. Das Inline-Definieren der Methoden ct Array:: GetLen und ct DList::
GetlLen nltzt uns in diesem Beispiel wenig, denn der Compiler weil3 an der Verwendungsstelle

Spirick Tuning Tutorial Seite 41

pco_collection-> GetLen () nicht, welche Methode er inline expandieren soll. Stattdessen wird
der Mechanismus zum Aufruf einer virtuellen Methode verwendet. Abbildung 1-18
verdeutlicht den doppelten Rechenzeitverlust, der in diesen Fallen eintritt.

Relative Rechenzeit

Methode mit Methode mit
vielen Anweisunaen wenigen Anweisunaen

Virtuelle Methode Normale Methode Inline-Methode

Abb. 1-18: Rechenzeit von virtuellen, normalen und Inline-Methoden

Zugriffsmethoden wie Getlen werden in einem Programm sehr haufig verwendet. Deshalb
sollten wir uns Uberlegen, ob es sinnvoll ist, auch virtuelle Methoden inline zu definieren.
Eine virtuelle Methode kann inline expandiert werden, wenn an der Verwendungsstelle die
konkrete Klasse bekannt ist, zu der die Methode gehort. Es mufld sichergestellt sein, dal’ das
Objekt nicht zu einer abgeleiteten Klasse gehort, denn in der abgeleiteten Klasse kdonnte die
Methode anders definiert sein. Der genaue Typ eines Objekts ist manchmal aus dem
KontrollfluR des Programms ersichtlich. Aber nicht alles, was der Programmierer sieht, sieht
auch der Compiler. In diesen Fallen hangt es von der Qualitdat des Compilers ab, ob er die
virtuelle Methode inline expandiert. Eindeutig ist die Methode erst, wenn der Programmierer
die zugehorige Klasse mit dem ::-Operator angibt. Betrachten wir ein Programmfragment, in
dem zahlreiche Verwendungen der virtuellen Methode ct Array:: GetLen enthalten sind. Die
Abkulrzungen in den Kommentaren bedeuten:

e PO: Dem Programmierer ist der Typ des Objekts bekannt.
e PM: Dem Programmierer ist die konkrete Methode bekannt.
e CO: Dem Compiler ist der Typ des Objekts bekannt.

e« CM: Dem Compiler ist die konkrete Methode bekannt.

« 7: Fraglich.
o ?7: Sehr fraglich.
e ???: Uberaus fraglich.

ct_Array co_array;

ct _Topic co_topic;

ct_Collection * pco _collectionl = new ct Array;

const ct_Collection * pco_collection2 = co_topic. GetHyperLinks ();

/1.
// Guter Programmierstil, aber Tangsam
co_array. GetlLen (); // PO PMCO CM?

pco_collectionl-> GetLen (); // PO PM CO? (M??
pco_collection2-> GetLen (); // PO PM CO?? CM?7?7

/2.
// Weniger guter Programmierstil

Spirick Tuning Tutorial Seite 42

co_array. Getlen (); // PO PM CO CM?
((ct_Array *) pco_collectionl)-> GetlLen (); // PO PM CO? CM??
((ct_Array *) pco_collection2)-> GetlLen (); // PO PM CO?? CM???

// 3.
// Schnell, aber gefdhrlicher Programmierstil !!
co_array. ct_Array:: GetLen (); // PO PM CO CM

((ct_Array *) pco_collectionl)-> ct Array:: GetLen (); // PO PM CO? CM
((ct_Array *) pco_collection2)-> ct Array:: GetLen (); // PO PM C0O?? (M

Im ersten Teil geben wir dem Compiler keinerlei Hinweise. Beim Aufruf der Methode GetlLen
Uber das Objekt co_array ist der Typ des Objekts eindeutig. Der Compiler kann aber sagen:
Nun, es ist eine virtuelle Methode, deshalb rufe ich sie auch wie eine virtuelle Methode auf.
Im Falle des Zeigers pco_collectionl kann der Compiler aus dem Kontrollflu3 erkennen, daR
diesem Zeiger ein Objekt der Klasse ct_Array zugewiesen wurde. Da der Zeiger seit der
Initialisierung nicht gedndert wurde, zeigt er immer noch auf ein Array. Beim Zeiger
pco_collection2 wird es schwieriger. Es mul3 berlicksichtigt werden, dal3 die Methode

ct Topic:: GetHyperLinks einen Zeiger auf ein Objekt des Typs ct_Array liefert usw.

Im zweiten Teil geben wir dem Compiler den Hinweis, dal3 die Zeiger in beiden Fallen auf die
abgeleitete Klasse ct_Array verweisen. Das reicht aber zum Ermitteln der konkreten Methode
nicht aus, denn der Typ des referenzierten Objekts kdnnte von ct_Array abgeleitet sein. Der
Compiler miaRte wiederum Informationen aus dem KontrollfluR zu Hilfe nehmen. Im dritten
Teil beseitigen wir alle Unklarheiten durch genaue Angabe der Klasse, zu der die Methode
gehort. Das ist in C+ + die einzige Mdglichkeit, eine virtuelle Methode nicht virtuell
aufzurufen. In diesen Fallen darf der Compiler keinen Aufruf einer virtuellen Methode
erzeugen.

Ist die Methode ct Array:: GetlLen inline definiert, haben wir im dritten Teil gute Chancen fir
einen Rechenzeitgewinn. Die genaue Angabe der Klasse mit dem ::-Operator erschwert aber
die Programmpflege. Andern wir zum Beispiel den Typ des Objekts co_array in ct_MyArray,
muissen wir auch den Aufruf der Methode korrigieren und co_array. ct_MyArray:: GetlLen ()
schreiben. Die folgende Regel fal3t diese Erkenntnisse zusammen.

Wir versuchen, performancekritische Zugriffsmethoden stets inline zu definieren. Wir
erzwingen nicht das Inline-Expandieren mit dem ::-Operator. Stattdessen suchen wir eine
Losung ohne virtuelle Methoden.

1.6.3 Dynamische Speicherverwaltung

In der Entwicklungsphase eines Programms wissen wir nicht genau, wieviel Speicher es zur
Laufzeit belegen wird. Zum Beispiel ist uns bei OHelp nicht bekannt, wieviele Themen in das
Hilfesystem gelangen werden und wieviel Text jedes einzelne Thema enthalten wird. Zum
Bereitstellen dieses Speichers bendtigen wir eine dynamische Speicherverwaltung. Die
Speicherverwaltung hei3t dynamisch, weil Anzahl und GroRe der angeforderten
Speicherblocke variieren kénnen. Zur Verwaltung des Speichers gibt es in der C-Bibliothek
des Compilers drei Standardfunktionen, malloc zum Anfordern, realloc zum Verandern der
GrolRe und free zum Freigeben eines Blocks. Alle drei Funktionen arbeiten mit rohen
Speicheradressen vom Typ void *. Bei einer Zeichenkette oder einem dynamischen Array
kann sich die GréRe des Speicherblocks im Laufe der Zeit dndern. In solchen Féllen
verwendet man auch in C+ + die C-Standardfunktionen.

Die GroRe eines Objekts bleibt wahrend seiner Lebensdauer konstant. Fiir das Erzeugen und
Léschen von Objekten gibt es in C+ + die komfortableren Operatoren new und delete. Der

Spirick Tuning Tutorial Seite 43

Operator new fordert einen Speicherblock an, ruft den Konstruktor des Objekts auf und gibt
einen typisierten Zeiger zuriick.

Der Operator delete wird auf einen typisierten Zeiger angewendet. Er ruft den Destruktor des
Objekts auf und gibt anschlieRend den belegten Speicher frei. Sehen wir uns als Beispiel
eine Instanz der Klasse ct_String an. Die GréRe des eigentlichen Objekts ist konstant. Es
kann mit new erzeugt und mit delete geléscht werden. Die Zeichenkette befindet sich jedoch
in einem dynamischen Speicherblock und wird mit malloc, realloc und free verwaltet.
Abbildung 1-19 zeigt das Speicherlayout einer String-Instanz. Jedes zusammenhéngende
Rechteck stellt einen einzelnen Speicherblock dar. Ist die Gr6RBe des Speicherblocks bekannt,
markiert jeder kleine Strich an der linken Seite je ein Byte.

void * pv_ToVirtualTable

t_Length o_Length

char * pc_Block —[} Zeichenkette

Objekt vom Typ ct_String Speicherblock variabler Lange

Abb. 1-19: Speicherlayout einer Instanz der Klasse ct_String

Jedes moderne Betriebssystem hat eine eigene Speicherverwaltung. Die
Anwendungsschnittstelle unterscheidet sich aber von System zu System. Zum Beispiel
arbeiten einige Betriebssysteme nicht mit Speicheradressen, sondern mit Handles. Die
tatsachliche Speicheradresse erhalten wir erst nach Aufruf einer zusatzlichen Funktion. Die
Speicherverwaltung eines Betriebssystems ist nicht auf kleine Anforderungen eingerichtet,
wie wir sie zum Beispiel flr ein String-Objekt benétigen. Deshalb ist in der C-
Standardbibliothek eine eigene Speicherverwaltung enthalten. Sie fordert vom
Betriebssystem grof3e Blocke an und gibt kleinere an das Anwendungsprogramm weiter. Die
Schnittstelle dieser Speicherverwaltung ist vom Betriebssystem unabhangig und besteht aus
den genannten Funktionen malloc, realloc und free. In Abbildung 1-20 sind typische
Speicheranforderungen eines Anwendungsprogramms und der C-Standardbibliothek zu
sehen.

Anwendungsprogramm

é 40 Byte

C-Standardbibliothek

é 32 K Byte

Betriebssystem

Abb. 1-20: Typische Speicheranforderungen

Um die Speicherverwaltung effektiv flir unsere Zwecke einsetzen zu kénnen, missen wir
uns naher mit ihrer Funktionsweise befassen. Betrachten wir zunachst die genaue
Deklaration der drei Standardfunktionen.

Spirick Tuning Tutorial Seite 44

void * malloc (unsigned u_size);
void * realloc (void * pv_block, unsigned u newsize);
void free (void * pv_block);

Die Funktion malloc erhalt als Parameter die GroRRe des bereitzustellenden Speichers. Sie
liefert einen Zeiger auf einen Block, der mindestens die angegebene Gréf3e hat. An die
Funktion free wird nur ein Zeiger auf den Block Ubergeben. Wie grof3 der freizugebende
Block ist, mul® die Speicherverwaltung selbst wissen. Das ist eine Erleichterung fiir den
Anwender. Er mul3 sich die GréRe des angeforderten Speichers nicht merken. Fir die
Speicherverwaltung bedeutet es aber einen Zusatzaufwand. Einem Aufruf von realloc
entspricht je einem Aufruf von malloc und free, wobei der Inhalt des in der Gréf3e
veranderten Speicherblocks erhalten bleiben mul3.

Die Freigabe eines Blocks darf die belegten Blécke nicht beeinflussen, denn das
Anwendungsprogramm setzt voraus, dafd ein angeforderter Speicherblock seine Adresse
behalt. Durch den freigewordenen Block entsteht also im Speicher ein ungenutzter Bereich.
Auch die Freiblécke missen verwaltet werden. Beim Anfordern versucht die
Speicherverwaltung zunachst, die vorhandenen Freiblocke zu fiillen. Gelingt es nicht, muf}
vom Betriebssystem neuer Speicher geholt werden. Durch wiederholtes Anfordern und
Freigeben des Speichers entsteht eine Kette von Freiblocken, die den Speicher in kleine Teile
zerlegt. Dies nennt man Speicherfragmentierung. Um eine Fragmentierung innerhalb der
Freiblécke zu vermeiden, wird bei jeder Freigabe geprift, ob der freigewordene Block
physisch an andere freie Blécke grenzt. In diesem Fall werden benachbarte Freiblocke zu
einem gréReren Block zusammengefaldt. Durch Rundung der GrélRe der Blécke wird der
Speicherfragmentierung entgegengewirkt. Typischerweise wird jede Anforderung des
Anwendungsprogramms auf die nachsthéhere 8- oder 16-Byte-Grenze gerundet. Werden
zum Beispiel 18 Bytes freigegeben und anschlieRend 22 Bytes angefordert, kann der
freigewordene Block genutzt werden. Pro Speicherblock (frei oder belegt) entsteht der
nachstehende Verwaltungsaufwand:

¢ Speichern der GréRe des Blocks,
¢ Speichern von Informationen Gber benachbarte Blécke und
¢ Rundung der GréRe.

Wie grol3 dieser Aufwand tatsachlich ist, hangt von der Implementierung der
Speicherverwaltung ab. Eine effektive Codierung der Zusatzinformationen pro Block kénnte
etwa so aussehen: 15 Bit fiir die Lange (8 Bytes bis 256 KB in 8-Byte-Schritten); ein Bit fir
die Information, ob der Block belegt oder frei ist; 15 Bit fiir die Ld4nge des Vorganger-Blocks.
Die Adresse des Vorgangers ergibt sich aus der Adresse des Blocks vermindert um die
Lange des Vorgangers. Die Adresse des Nachfolgers entsteht durch Addition der eigenen
Adresse mit der eigenen Lange. Die Summe dieser Informationen betragt 31 Bit (4 Bytes).

Wegen der Rundung auf die nachsthéhere 8-Byte-Grenze bleiben null bis sieben Bytes
ungenutzt. Pro Speicherblock miissen wir also vier bis elf Bytes flir die Verwaltung
einkalkulieren. Das fallt insbesondere bei kleinen Anforderungen ins Gewicht. Hinzu kommt
die im Laufe der Zeit wachsende Fragmentierung. Diese fiihrt nicht nur zu brach liegendem
Speicher, sondern auch zu einer Verlangsamung der Verwaltung. Bei jeder neuen
Anforderung mul3 die Freiliste geprift werden. Je langer sie wird, desto ldnger dauert im
Durchschnitt diese Uberpriifung. Es gibt verschiedene Algorithmen zum Optimieren der
Freiliste. Zum Beispiel ist es Ublich, dald sich der freie Speicher selbst verwaltet und keinen
zusatzlichen Speicher belegt. Dennoch hat jede dynamische Speicherverwaltung folgende
Nachteile:

e Sie ist ungeeignet flr kleine Anforderungen von zehn oder zwanzig Bytes.
¢ Haufiges Anfordern und Freigeben fihrt zur Fragmentierung.
¢ Sie ist ungeeignet fir viele Anforderungen derselben Gréfe.

Spirick Tuning Tutorial Seite 45

Der zuletzt genannte Nachteil macht sich auch in unserem Hilfesystem bemerkbar. Darin
sind viele kleine Objekte vom Typ ct HyperLink und ct_Format enthalten. In einer statischen
Speicherverwaltung, die speziell auf Objekte dieser GroRe ausgerichtet ist, kdnnte der
Verwaltungsaufwand pro Objekt auf fast Null reduziert werden. Eine dynamische
Speicherverwaltung kennt solche Optimierungen jedoch nicht. Alle Nachteile sind fir den
Programmierer unsichtbar. Sie verstecken sich hinter den Standardfunktionen malloc, realloc
und free und hinter den Operatoren new und delete. Wie bei den virtuellen und den Inline-
Methoden kénnen wir auch nach diesem Blick hinter die Kulissen des Compilers die
Schwachstellen unseres Programms leichter aufdecken.

1.7 Performance-Analyse von OHelp

Alle bisherigen Erfahrungen zusammengenommen, kénnen wir nun den folgenden
Fragekatalog aufstellen. Zur Abklrzung bedeutet "Kleine Methode" Methode mit wenigen
Anweisungen und "Kleine Klasse" Klasse mit wenigen Attributen. Die Antwort Ja steht in
jedem Fall fir eine schlechte Performance.

1. Gibt es Klassen, die nur einen einzelnen Wert enthalten und sehr haufig verwendet
werden?

2. Gibt es kleine Methoden, die sehr haufig aufgerufen werden, aber nicht inline definiert
sind?

3. Gibt es kleine virtuelle Methoden, die sehr haufig aufgerufen werden?

4. Gibt es kleine Klassen, die sehr haufig verwendet werden und einen virtuellen
Tabellenzeiger enthalten?

5. Treten bei einer typischen Datenmenge sehr viele kleine Speicherblécke auf?

6. Gibt es grolRe Mengen Speicherblécke derselben GréRe?

Die erste Frage kdnnen wir zu unseren Gunsten mit Nein beantworten. Alle anderen Fragen
mussen wir bejahen. Die genaue Analye dieses schlechten Abschneidens wird in den
folgenden beiden Abschnitten vorgenommen. Die Rechengeschwindigkeit 18Rt sich nur
relativ bestimmen. Der Speicherbedarf wird hingegen mit konkreten Datenmengen genau
berechnet.

1.7.1 Rechenzeitverhalten

Bei der Implementierung von OHelp haben wir keine Inline-Methoden verwendet. Ware die
Rechengeschwindigkeit zufriedenstellend, kénnten wir auch dabei bleiben. Im
Performancetest mit groRen Datenmengen war das Programm aber zu langsam. Der Zugriff
auf die Attribute einer Klasse kann fast immer mit einer Inline-Methode erfolgen. Es kénnen
jedoch auch andere Methoden, die nur aus ein oder zwei Anweisungen bestehen, inline
definiert werden. Das Umwandeln in eine Inline-Methode ist schnell erledigt. Wir verwenden
das Schlisselwort inline und verschieben die Definition in die Headerdatei. Sehen wir uns
die so geanderte Deklaration von ct_Topic an.

class ct_Topic: public ct_Object
{

m] 1.'ne void IncRefCount ();

inline void DecRefCount ();
public:

inline virtual const char * GetTypeName () const;

inline ct HyperText * GetHyperText () const;

inline unsigned GetRefCount () const;

Spirick Tuning Tutorial Seite 46

1%
inline void ct_Topic:: IncRefCount ()

u_RefCount ++;

}

inline void ct_Topic:: DecRefCount ()

{
ASSERT (u_RefCount > 0);
u_RefCount --:

}

Das Rechenzeitverhalten eines Programms wird im wesentlichen durch die zeitkritischen
Stellen bestimmt. Zeitkritisch sind die Anweisungen, die am haufigsten abgearbeitet
werden. Am genauesten finden wir diese Stellen mit einem Programmierwerkzeug, dem
Profiler. Der Profiler untersucht das Programm zur Laufzeit und liefert eine Statistik. Die
Aussagekraft dieser Statistik hangt stark vom jeweiligen Profiler und davon ab, wie lange
wir uns mit ihm beschéaftigen. Der Profiler hilft uns erst zu einem Zeitpunkt, an dem es
eigentlich schon zu spét ist. Das nachtragliche Andern getesteter Programmteile ist stets mit
Risiken verbunden. Besser ist das frihzeitige Aufdecken der zeitkritischen Stellen in der
Entstehungsphase des Programms. Beim Design kénnen wir diese Stellen grob einkreisen.
Waéhrend der Implementierung achten wir besonders auf Schleifen im Anweisungsteil. Treten
geschachtelte Schleifen auf, sind die inneren Schleifen am meisten zeitkritisch. Sehen wir
uns unter diesem Aspekt ein Programmfragment an. Darin sind eine Methode der Klasse
ct_Topic und ein Methodenteil der Benutzerschnittstelle zum formatierten Anzeigen eines
Themas enthalten. Der Kommentar "1 VM" bedeutet, dal3 in dieser Programmzeile eine
virtuelle Methode aufgerufen wird. Virtuelle Methoden innerhalb eines ASSERT-Makros zahlen
nicht.

ct_Format * ct Topic:: GetFormat (t Entryld o formatld) const

ct Object * pco_obj = co Formats. GetObj (o formatld); // 1 VM

ASSERT (pco_obj-> IsOfType ("ct Format")); // Zah1t nicht
return (ct_Format *) pco_obj;
}
void ct_TopicView:: ViewFormatted (ct Topic * pco_topic)
{

ct_String co_str = pco_topic-> GetText ();
const ct_Collection * pco_formats = pco_topic-> GetFormats ();
t Entryld o_id;

for (o_id = pco_formats-> First (); /11 WM
o id = 0;
0_id = pco_formats-> Next (o_id)) /71 WM
{
ct_Format * pco_format = pco _topic-> GetFormat (o_id); // 1 VM
}
const ct_Collection * pco_hyperLinks = pco_topic-> GetHyperlLinks ();
for (o_id = pco_hyperLinks-> First (); /1 WM
o id = 0;
0_1d = pco_hyperLinks-> Next (o_id)) /7 1 WM
{
ct_HyperLink * pco_hyli = pco_topic-> GetHyperLink (o_id): // 1 VM
}
}

Der Aufruf von ct Array:: GetObj in ct _Topic:: GetFormat kann optimiert werden, indem wir
auch in der Klasse ct_Array kleine Methoden inline definieren. Dann liegt es aber noch am

Spirick Tuning Tutorial Seite 47

Compiler, ob er die Methode an dieser Verwendungsstelle tatsachlich inline expandiert. Die
anderen virtuellen Methoden lassen sich nur durch genaue Angabe des Objekttyps
eliminieren. Das ist aber nicht im Sinne der Polymorphie.

Nicht zuféllig gehdéren in diesem Programmfragment alle virtuellen Methoden zu den
Collections. Zeitkritische Stellen sind innerhalb von Schleifen. Wie entsteht eine Schleife?
Dies geschieht durch lterieren einer Collection. Das bedeutet, dal3 an fast allen zeitkritischen
Stellen eines Programms die Collections beteiligt sind. Den Aspekt Geschwindigkeits-
Optimierung haben wir bei der Entwicklung unserer Collections nicht berlcksichtigt. Eine
kleine nachtragliche Anderung wie bei den Inline-Methoden ist in diesem Fall nicht méglich.
Wir bendtigten ein grundlegend anderes Konzept fiir Collections. Die folgende Regel faf3t
diese Erkenntnisse zusammen.

An fast allen zeitkritischen Stellen eines Programms werden Collections verwendet.
Collections mit virtuellen Methoden sind fiir ein schnelles Iterieren und Zugreifen ungeeignet.

Eine Collection mit virtuellen Methoden ist vergleichbar mit einem Flugzeug, das aus
leichtem Holz oder Kunststoff besteht. Fir den Transport kleiner Glter und fir einen
Rundflug Uber einer Stadt reicht es aus. Wollen wir aber viele Giter transportieren und
groRe Stecken Uberwinden, bendétigen wir ein Disenflugzeug aus einer stabilen
Metallkonstruktion.

1.7.2 Speicherbedarf

Fir jede einzelne Klasse von OHelp untersuchen wir die folgenden Kriterien: Absolute GroRRe
in Bytes, Anteil virtueller Tabellenzeiger und Anzahl der Speicherblocke. Bei komplexen
Objekten betrachten wir das eigentliche Objekt und die abhangigen Objekte getrennt. Zur
Berechnung der absoluten GroRe von Objekten setzen wir einen 32-Bit-Compiler voraus. Die
primitiven Datentypen umfassen: char ein Byte, short zwei Bytes, int vier Bytes, Tong vier
Bytes und Zeiger vier Bytes.

Wir beginnen mit den fundamentalen Klassen. Weiter oben sahen wir bereits das
Speicherlayout eines Strings. Betrachten wir nun die Klasse ct_Array. Bei Design und
Implementierung haben wir uns besondere Miihe gegeben, diese Collection
speicherplatzoptimal zu gestalten. Abbildung 1-21 zeigt das Speicherlayout eines Arrays mit
n Eintrdgen. Die genauen Analyseergebnisse befinden sich in Tabelle 1-2. Die in der
Collection enthaltenen Objekte sind kein Bestandteil der Collection. Wir miissen aber
beachten, dal jedes dieser Objekte einen eigenen Speicherblock erfordert.

void * pv_ToVirtualTable ct_Object * —[} ct_Object 1

t_Length o_Length

+

ct_Object * * ppco_Array : ct_Object * —[} ct_Object n

Objekt vom Typ ct_Array Speicher-Block Referenzierte Objekte

Abb. 1-21: Speicherlayout einer Instanz der Klasse ct_Array

Eine DList ist komfortabler als ein Array. Diesen Komfort missen wir mit erhéhtem
Speicherbedarf bezahlen. Jeder Eintrag erfordert ein Node. Dieses Node belegt nicht nur

Spirick Tuning Tutorial Seite 48

Speicher. Es wird auch in einem einzelnen Block untergebracht.
das Speicherlayout einer Collection mit n Eintragen.

In Abbildung 1-22 sehen wir

void * pv_ToVirtualTable

(ct_DListNode *) o_PrevNode

t _Length o_Length

(ct_DListNode *) o_NextNode

(ct_DListNode *) o_FirstNode

ct_Object * pco_Object

ct_Object 1

~

4;

(ct_DListNode *) o_PrevNode

(ct_DListNode *) o_NextNode

_[>

ct_Object * pco_Object ct_Objectn

Objekt vom Typ ct_DList Objekte vom Typ ct_DListNode Referenzierte Objekte

Abb. 1-22: Speicherlayout einer Instanz der Klasse ct_DList

Objekttyp Absolute GroRe Virt. Tab.-Zeiger Anzahl Blécke
String ohne Inhalt 12 Bytes 4 Bytes 1
Zeichenkette der Lange n n + 1 Bytes O Bytes 1
String der Lange n 12 + n + 1 Bytes 4 Bytes 2
Array ohne Inhalt 12 Bytes 4 Bytes 1

1 Array-Eintrag 4 Bytes O Bytes 0
Array mit n Eintragen 12 + 4 * n Bytes 4 Bytes 2
DList ohne Inhalt 12 Bytes 4 Bytes 1

1 DList-Eintrag 12 Bytes O Bytes 1
DList mit n Eintrdgen 12 + 12 * n Bytes 4 Bytes 1T+ n

Tab. 1-2: Speicheranalyse fiir String, Array und DList

Fir eine detaillierte Analyse des Speicherbedarfs der Anwendungsklassen nutzen wir
dieselben Daten wie beim ersten Performancetest. Zur Erinnerung seien diese Zahlen noch
einmal wiederholt. In Abbildung 1-23 sehen wir das Speicherlayout eines einzelnen Themas.
Tabelle 1-3 enthalt die Analyseergebnisse.

¢« 10 000 Themen,

* Titel des Themas mit 15 Zeichen,

e pro Thema 10 Zeilen,

e pro Zeile 30 Zeichen Text und

e pro Zeile je eine Formatangabe und ein Hyperlink.

Spirick Tuning Tutorial Seite 49

void * pv_ToVirtualTable

ct_HyperText * pco_HyperText

unsigned u_RefCount

— ct_String co_Title
— void * pv_ToVirtualTable

t_Length o_Length

char * pc_Block —[) 15 + 1 Zeichen Titel
— ct_String co_Text
— void * pv_ToVirtualTable

t_Length o_Length

char * pc_Block —D 300 + 1 Zeichen Text
— ct_Array co_HyperLinks
— void * pv_ToVirtualTable

ct_Object * ct_HyperLink 1

E t_Length o_Length

ct_Object *

—
—

ct_Object * —[) ct_Format 1
—

ct_Object * * ppco_Array —[) ct_HyperLink 10

ct_Array co_Formats

void * pv_ToVirtualTable

t_Length o_Length

:

ct_Object * * ppco_Array : ct_Object * ct_Format 10

Objekt vom Typ ct_Topic Abhangige Objekte

Abb. 1-23: Speicherlayout einer Instanz der Klasse ct_Topic

Objekttyp Absolute Grole Virt. Tab.-Zeiger Anzahl Blocke
Hyperlink 16 Bytes 4 Bytes 1
Formatangabe 16 Bytes 4 Bytes 1

Thema ohne Inhalt 60 Bytes 20 Bytes 1

Titel mit 15 Zeichen 15 + 1 Bytes O Bytes 1

Text mit 300 Zeichen 300 + 1 Bytes O Bytes 1

10 Array-Eintrage 40 Bytes O Bytes 1

10 Hyperlinks 160 Bytes 40 Bytes 10

10 Formatangaben 160 Bytes 40 Bytes 10

Thema mit Inhalt 777 Bytes 100 Bytes 25

Tab. 1-3: Speicheranalyse der Klasse ct_Topic

Ein Thema mit Inhalt belegt 25 einzelne Speicherblécke. Die dynamische Speicherverwaltung
bendtigt pro Block im Durchschnitt acht Bytes fiir ihre eigenen Zwecke (siehe Abschnitt
1.6.3). Daraus ergibt sich ein tatsachlicher Speicherbedarf von 977 Bytes. Von diesem

Spirick Tuning Tutorial Seite 50

Gesamtspeicher entfallen 300 Bytes auf virtuelle Tabellenzeiger und Speicherverwaltung.
Das sind dber 30 Prozent reine Verwaltungsdaten, die fir den Programmierer unsichtbar
sind. Wegen der groRen Anzahl Themen in unserem Datenbeispiel fallt das einzelne
Hypertext-Objekt kaum ins Gewicht. Interessant ist aber der Aufwand zur Verwaltung der
Themen. Deshalb lassen wir bei der Analyse der Klasse ct HyperText zuerst den Inhalt der
Themen aulRer acht. Danach berechnen wir den Gesamtaufwand mit Inhalt der Themen.
Abbildung 1-24 zeigt das Speicherlayout eines Hypertexts. In Tabelle 1-4 befinden sich die
Ergebnisse der Speicheranalyse.

E void * pv_ToVirtualTable

— ct_String co_Name
— void * pv_ToVirtualTable

t_Length o_Length

— char * pc_Block —D 15 + 1 Zeichen Name

E t_Entryld o_RootTopicld
— ct_DList co_Topics

E void * pv_ToVirtualTable

(ct_DListNode *) o_PrevNode

t_Length o_Length (ct_DListNode *) o_NextNode

‘.L

: ct_Object * pco_Object —[) ct_Topic 1
I

. o~
< I

1
(ct_DListNode *) o_PrevNode

(ct_DListNode *) o_FirstNode

(ct_DListNode *) o_NextNode

ct_Object * pco_Object —[) ct_Topic 10000

Objekt vom Typ ct_HyperText Abhangige Objekte

Abb. 1-24: Speicherlayout einer Instanz der Klasse ct_HyperText

Objekttyp Absolute GroRRe Virt. Tab.-Zeiger Anzahl Blécke
Hypertext ohne Inhalt 32 Bytes 12 Bytes 1

Titel mit 15 Zeichen 15 + 1 Bytes O Bytes 1

10 000 DList-Eintrage 120 000 Bytes O Bytes 10 000

10 OO0 Themen ohne Inhalt 600 000 Bytes 200 000 Bytes 10 000
Hypertext mit Th. o. I. 720 048 Bytes 200 012 Bytes 20 002

10 000 Themen mit Inhalt 7 770 000 Bytes 1 000 000 Bytes 250 000
Hypertext mit Inhalt 7 890 048 Bytes 1 000 012 Bytes 260 002

Tab. 1-4: Speicheranalyse der Klasse ct_HyperText

Bei der Verwaltung der Themen ohne Inhalt fallen die Nachteile einer DList auf. Pro Eintrag
sind zwei Speicherblécke (Node und Objekt) und zwolf Bytes fir das Node erforderlich. Die

Spirick Tuning Tutorial Seite 51

abschlieBende Gesamtrechnung zeigt uns, warum beim ersten Test der Speicher
Ubergelaufen ist. Fiir 260 002 einzelne Speicherblécke missen wir etwa zwei MB
Zusatzinformationen einkalkulieren. Zusammen mit den virtuellen Tabellenzeigern ergibt sich
ein reiner Verwaltungsspeicher von drei MB. Damit haben wir nicht gerechnet. Unsere
Hardware ist auf das Entwickeln eines kleinen Beispielprogramms ausgerichtet. Den
nachsten Test sollten wir besser auf einer Workstation durchfiihren.

Auch bei etwas kleineren Datenmengen treten viele einzelne Speicherblécke auf. Damit ist
die beste dynamische Speicherverwaltung Uberfordert. Wir verstehen nun, warum das
Testprogramm im Laufe der Zeit immer langsamer wird. Durch haufiges Andern der Daten,
wie es auch in der Praxis vorkommt, fragmentiert der Speicher zunehmend. Das fihrt zu
einem erhéhten Speicherbedarf und zur Verlangsamung des gesamten Programmes.

1.7.3 Auswertung

Die Speicheranalyse hat ergeben, dal® unser Programm relativ viel Verwaltungsspeicher
verbraucht. Wieviel Speicher wird davon tatsachlich benétigt? Der groRte Teil der virtuellen
Tabellenzeiger ist in den Hyperlinks und Formatangaben enthalten. Beide Klassen besitzen im
Grunde keine virtuellen Methoden. Sie miissen nur wegen unserer Collections von der
abstrakten Basisklasse erben. Von der Klasse ct _Object erben sie keine Eigenschaften im
Sinne einer Is-A-Relation, sondern einigen Overhead in Form des virtuellen Destruktors und
der virtuellen Methode GetTypeName. Beide Klassen tauchen nie in einem polymorphen Kontext
auf und bendétigen keinen virtuellen Destruktor.

Die Situation ist mit einem Biro vergleichbar, in dem nur 380-V-Steckdosen vorhanden sind.
Fir Handwerker mit schweren Maschinen mag es geeignet sein. Was aber tun wir
Softwareentwickler, wenn wir in diesem Biro arbeiten missen? Sollen wir alle elektrischen
Kleingerate mit einem Drehstromanschlul® versehen, einschlieRlich der Kaffeemaschine?
Oder ist es nicht besser, das Blro mit einem normalen Stromnetz auszustatten? Die
folgende Regel verdeutlicht diesen Sachverhalt.

Erben speicherplatzkritische Klassen von einer Basisklasse mit virtuellen Methoden, priifen
wir, ob die Vererbung inhaltlich erforderlich ist. Erfolgt sie nur aus formalen Griinden,
versuchen wir, sie zu umgehen.

Die grof3e Zahl der Speicherblocke im Testbeispiel wird im wesentlichen durch die Hyperlinks
und die Formatangaben verursacht. Auch dieser Verwaltungsaufwand ist im Grunde unnétig.
Beide Klassen werden nur in homogenen Collections verwendet. Unsere Collections sind auf
diesen Fall nicht eingerichtet. Die verwalteten Objekte werden dynamisch erzeugt. Die
dynamische Speicherverwaltung ist jedoch fir viele gleichgroRe Objekte ungeeignet. Besser
ware es, wenn sich die Collections selbst um die Verwaltung ihrer Objekte kiimmern
wiurden.

In unserem Beispielprogramm OHelp kommen keine polymorphen Collections vor. Das
entspricht natarlich nicht der Praxis. In groRen Anwendungsprogrammen treten sowohl
polymorphe als auch homogene Collections auf. Die meisten performancekritischen
Collections enthalten jedoch viele gleichartige Objekte. Deshalb richten wir auf die
homogenen Collections unsere besondere Aufmerksamkeit. An den bisherigen Collections
mul3ten wir in der Performance-Analyse die folgenden gravierenden Mangel feststellen:

¢ Virtuelle Methoden verlangsamen das lterieren und den Zugriff.
¢ Die verwalteten Objekte miissen von einer abstrakten Basisklasse erben.
¢ Homogene Collections belasten die Speicherverwaltung unnétig.

Spirick Tuning Tutorial Seite 52

Es gibt viele Moglichkeiten, die Performance eines Programms zu verbessern. Man kann die
Anwendungsklassen daraufhin priifen, ob sie unnétige Informationen enthalten. Das kann
aber nur vor Ort geschehen. Die verwendeten Algorithmen kdénnen verbessert werden, zum
Beispiel durch angepal3te Sortierverfahren. Allgemeine Datenstrukturen und Algorithmen sind
jedoch seit vielen Jahren grindlich erforscht. Was bleibt, ist die Optimierung des Einsatzes
der Programmiersprache und der Standardbibliothek. Bei einer so jungen Sprache wie C+ +
gibt es auf diesem programmtechnischen Gebiet noch viel zu tun. Die folgende Regel fal3t
die wesentlichen Resultate unserer Analysen zusammen und sagt damit, was wir in den
weiteren Abschnitten untersuchen werden.

Die Hauptfaktoren der programmtechnischen Effizienz sind Speicherverwaltung,
Objektverwaltung (Collections) und zeitkritische Methoden.

Spirick Tuning Tutorial Seite 53

2 Grundlagen einer besseren Performance

Im ersten Teil des Buchs haben wir gesehen, in welche Performance-Fallen wir bei der
Entwicklung eines C + +-Programms tappen kdénnen. Der zweite Teil enthélt das Design zur
Verbesserung. Kleine Anderungen an der Oberflache reichen dazu nicht aus. Wir werden
grundlegend neue Konzepte kennenlernen. Zuerst werden wir uns Uberlegen, was eigentlich
ein Computerprogramm ist und aus welchen Komponenten es besteht. Die unmittelbar
folgenden Abschnitte sind deshalb sehr abstrakt.

2.1 Ein Abstecher in die Philosophie

2.1.1 Modellierung - Wichtiger Bestandteil menschlicher
Tatigkeit

Der Mensch konnte bereits in frihen Stadien der gesellschaftlichen Entwicklung Arbeiten
ausfihren, zu denen kein Tier in der Lage ist. Besonders auffallig ist das hohe Niveau der
Handwerke und Kiinste in solchen Gesellschaften, in denen auch die Wissenschaften einen
hohen Stand erreicht haben. Schon damals setzten die Menschen wissenschaftliche
Erkenntnisse in ihrer taglichen Arbeit ein. Die Entwicklung und Anwendung der
Wissenschaften wird stark von informationsverarbeitenden Prozessen beeinflul3t. Ein hohes
Niveau der Aufbewahrung und Weitergabe von Informationen wirkt wie ein Katalysator auf
die Forschung. Je besser die gesellschaftlichen und technischen Rahmenbedingungen dafir
sind, desto besser kdnnen sich wissenschaftliche Erkenntnisse entwickeln und ausbreiten.

Jede Wissenschaft hat einen Gegenstandsbereich. In diesem Bereich stellt sie
Untersuchungen an und dokumentiert ihre Ergebnisse. Die frihesten Wissenschaften waren
noch sehr mit der Natur und der praktischen Tatigkeit des Menschen verbunden. Die
Mathematik ist die erste Wissenschaft, deren Gegenstand kein Bestandteil der Natur ist. Sie
befaldt sich mit abstrakten Dingen wie Zahlen, Mengen und Aussagen. Heute gibt es viele
abstrakte Wissenschaften. Die Informatik zahlt mit ihren Teilbereichen auch dazu. Die
Ergebnisse einer Wissenschaft werden in Form von Begriffen, Axiomen und Theorien fixiert.
Darin ist der untersuchte Gegenstandsbereich modellhaft abgebildet. Der Wert dieser
Erkenntnisse besteht in ihrer universellen Verwendbarkeit. Eine wissenschaftliche Erkenntnis
bezieht sich auf einen bestimmten Kontext. Trifft man in der Praxis auf denselben Kontext,
kann das vorhandene Wissen angewandt werden. Der Geltungsbereich einer Erkenntnis ist
abhangig von ihrem Abstraktionsgrad. Je abstrakter sie ist, desto universeller ist sie
einsetzbar.

Ein wenig gebildeter Obstbauer kennt zahlreiche Regeln zum Bilden von Obstmengen, zum
Beispiel "Fiinf Apfel plus sieben Apfel ergibt zwélf Apfel" und "Fiinf Birnen plus sieben
Birnen ergibt zwolf Birnen". Diese Regeln sind wiederverwendbar. Jedesmal, wenn finf
Apfel und sieben Apfel in einen Korb gelegt werden, gilt die erste Regel. Sie sind aber so
konkret, dal® sie kaum in eine Wissenschaft aufgenommen werden. Die mathematische
Regel "5 + 7 = 12" erspart hingegen die vielen Einzelregeln. Sie ist eine abstrakte
Rechenregel, die auf beliebige Gegenstédnde anwendbar ist. Das Obstbeispiel ist so einfach,
dal® jedes Kind es versteht. Es zeigt aber exemplarisch, wie kompliziertes Wissen
zustandekommt und angewandt wird.

Spirick Tuning Tutorial Seite 54

Eine Wissenschaft bildet Modelle von ihrem Gegenstandsbereich. Alle Erkenntnisse werden
in modellhafter Form dargestellt. Zum Beispiel wird jeder chemischen Substanz eine Formel
zugeordnet. In einem Lehrbuch der Chemie finden wir niitzliches Wissen Uber zahlreiche
Substanzen. Sie werden aber nicht in einem Reagenzglas mitgeliefert, sondern als
chemische Formel abgebildet. Der Wissenschaftler gewinnt im praktischen Experiment oder
durch abstraktes Untersuchen neues Wissen (siehe Abbildung 2-1). In unserem Obstbeispiel
ist eine Zahl die Verallgemeinerung von Anzahl. Eine Anzahl von fiinf Apfeln ist das
Konkrete. Die Zahl Finf ist das abstrakte Modell. Die zugehdrige Wissenschaft ist die
Mathematik. Sie untersucht abstrakte Modelle wie ganze Zahlen oder logische Aussagen.
Die einfache Rechenregel "5 + 7 = 12" gehoért ebenso zum mathematischen Wissen wie
die Satze der Aussagenlogik.

Abstraktes Modell —_—

Eigenschaften:

AlB|c G

AN

Anwendung vorh. Wissens:
Aus Eigensch. "A" und "B" folgt "C"

Untersuchung: | Untersuchung:
Hat Eigensch. "A" Hat Eigensch. "B"

Konkreter Gegenstand
Eigenschaften:

A|B|C|D|E|F

Abb. 2-1: Bildung neuen Wissens in Form eines Modells

Auch in der Anwendung wissenschaftlicher Erkenntnisse werden Modelle gebildet. Zu einem
konkreten Problem suchen wir ein abstraktes Modell. Im giinstigen Fall gibt es bereits
zahlreiches Wissen Uber dieses Modell. Dann erhalten wir eine abstrakte Losung und kénnes
sie in die Praxis umsetzen (siehe Abbildung 2-2). Haben wir zum Beispiel zwei Chemikalien
in Reagenzglasern vor uns, missen wir die zugehérigen Formeln bestimmen. Dann kdénnen
wir nachschlagen, welche Reaktion sich durch Mischen der Substanzen ergibt. Je nach
Auskunft des Lehrbuchs beginnen wir mit dem Experiment oder erhéhen den
Sicherheitsabstand der Reagenzglaser. Im Obstbeispiel gehért zum konkreten Problem "Finf
Apfel plus sieben Apfel" die abstrakte Rechenaufgabe "5 + 7". Dazu finden wir die
abstrakte Losung "12". Die Umsetzung in die Praxis ergibt die konkrete L6sung "Zwolf
Apfel".

Anwendung vorh. Wissens
Abstraktes Problem {) Abstrakte Lésung
Umsetzung
Modellierung
Konkretes Problem Konkrete Lésung

Abb. 2-2: Anwendung abstrakten Wissens zur Lésung eines Problems

Spirick Tuning Tutorial Seite 55

Wissenschaftliche Erkenntnisse haben zahlreiche Gemeinsamkeiten mit
Computerprogrammen. Wir kédnnen ein Programm als einen kleinen, in sich geschlossenen
Wissensbereich betrachten. Das Wissen wird in einer computerlesbaren Form, zum Beispiel
einer Programmiersprache, dargestellt. Ein Programm entsteht ahnlich wie neues Wissen
(siehe Abbildung 2-1). In der Designphase werden Informationen von konkreten Objekten in
ein objektorientiertes Modell Uibertragen. Vorhandenes "Computerwissen” liegt in Form
wiederverwendbarer Bibliotheken vor. Diese werden hauptsachlich wahrend der
Implementierung eingesetzt. Auch die Anwendung eines Computerprogramms entspricht der
Verarbeitung abstrakten Wissens (siehe Abbildung 2-2). Stehen wir vor einer konkreten
Aufgabe und verfligen Uber ein geeignetes Programm, miissen wir das Problem abstrakt
formulieren und in den Computer eingeben. Wir erhalten vom Programm eine theoretische
Losung und kénnen sie in die Praxis umsetzen.

2.1.2 Arten und Eigenschaften von Modellen

Im folgenden werden einige Grundbegriffe erlautert. Dabei wird nicht versucht, ein neues
mathematisches oder philosophisches Begriffssystem aufzustellen. Diese Uberlegungen
sollen nur unser Verstandnis der Computerprogrammierung vertiefen.

Modelle spielen nicht nur bei der wissenschaftlichen Arbeit des Menschen eine Rolle. Im
allgemeinsten Sinn ist ein Modell ein Gegenstand, der einem anderen ahnlich ist. Modelle
werden gebildet, wenn der Bezugsgegenstand fir unser Bewul3tsein nicht faBbar ist. Zum
Beispiel traumt ein Kind von einer alten Ritterburg. Die Burg ist aber weit entfernt oder nur in
einem Marchen vorhanden. Deshalb baut das Kind eine ahnliche Burg in den Sand. Ein Jahr
spater mochte es ein Flugzeug steuern. Dazu mufd das Kind aber noch viele Jahre lernen und
begnligt sich mit einem ferngesteuerten Modellflugzeug. Zwischen Sandburg und Flugzeug
gibt es einen wesentlichen Unterschied. Das Flugzeug ist ein dynamisches Modell, es kann
seinen Zustand &ndern. Die Burg andert zwar auch ihren Zustand, wenn ein Haustier dariber
lauft. Diese Zustandsanderung ist jedoch keine Modelleigenschaft, sondern eine Eigenschaft
des Materials, aus dem das Modell besteht. Als Modell betrachtet besitzt die Sandburg nur
statische Eigenschaften.

Modellflugzeug und Sandburg sind reale Gegenstande. Wir kénnen sie sehen und mit den
Handen danach greifen. Bei der intellektuellen Tatigkeit nutzen wir jedoch abstrakte Modelle.
Ein abstrakter Gegenstand besteht nicht aus Materie und kann nur mit Hilfe einer
Darstellung verwendet werden. Ein sehr einfaches, abstraktes Modell ist die ganze Zahl Vier.
Maogliche Darstellungen sind "||||", "IV" und "4". Die Darstellungen sind real, der
dargestellte Gegenstand ist jedoch abstrakt. Ein Regelsystem zur Darstellung gleichartiger
Gegenstéande ist eine Notation. Zum Beispiel ist das Dezimalsystem eine Notation fiir ganze
Zahlen. Abstrakte Gegenstande kénnen graphisch oder mit symbolischen Zeichen dargestellt
werden. Ein Regelsystem, das auf einer endlichen Zeichenmenge operiert, ist eine Sprache.

Wird ein dynamischer Gegenstand abstrakt modelliert, besitzt auch das Modell dynamische
Eigenschaften. Das dynamische Verhalten des realen Gegenstands ist ein ProzeR. Das
entsprechende Modell enthéalt eine Folge von Zustanden. Die gesamte Folge ist eine
Simulation. Das Flugzeugmodell ist real und dynamisch. Eine Simulation ist ein abstraktes,
dynamisches Modell. Zur Veranschaulichung bendtigt sie eine Darstellung. Eine der ersten
Anwendungen elektronischer Rechenautomaten war die Berechnung der Flugbahn von
Geschossen. Das auf dem Ubungsplatz abgefeuerte GeschoR ist ein realer ProzeR. Es
bewegt sich nach den Gesetzen den Newtonschen Mechanik und des Luftwiderstands.
Diese Gesetze sind lange erforscht und in Lehrblichern dokumentiert. Durch Programmierung
kann die Flugbahn simuliert werden. Der Computer liefert uns Darstellungen der Simulation,
zum Beispiel eine Folge von Koordinaten oder eine Zeichnung.

Der Ubergang eines abstrakten Gegenstands von einem Zustand in einen anderen wird meist
mit Funktionen (im mathematischen Sinn eindeutigen Abbildungen) beschrieben. Auch eine

Spirick Tuning Tutorial Seite 56

Funktion ist ein abstrakter Gegenstand und bendtigt eine Darstellung. Funktionen auf reellen
oder komplexen Zahlen kdnnen graphisch dargestellt werden. Fir exakte Berechnungen
nutzt man jedoch Formelschreibweisen. Eine Funktionsdarstellung mit elementaren
Einzelschritten ist ein Algorithmus. Fir das Formulieren von Algorithmen existieren
zahlreiche Sprachen. Dazu zé&hlen auch die Programmiersprachen. Abbildung 2-3 zeigt drei
Darstellungen derselben Funktion. Eine Funktion ist ein statisches Modell, denn sie andert
nichts, sondern beschreibt etwas. Die Anwendung der Funktion ist jedoch ein dynamisches
Modell. Beschreibt die Funktion einen ProzelR, ist ihre Anwendung eine Simulation.

int Square (int x)

f(x) = x2 return x * x;
Graphische Darstellung Mathematische Formel Algorithmus in C++

Abb. 2-3: Verschiedene Darstellungen einer Funktion

Ein Modell wird zu einem bestimmten Zweck gebildet. Vom Bezugsgegenstand werden nur
ausgewahlte Eigenschaften auf das Modell Gbertragen. Bei der Modellierung realer
Gegenstande ist eine starke Vereinfachung nétig. Vorgénge in der Natur sind kontinuierlich
und besitzen selten scharfe Grenzen. Die zugehdérigen Modelleigenschaften sind meist
diskret. Sie entsprechen also ganzen Zahlen. Zum Beispiel schaffen Meteorologen
statistische Modelle von Wettervorgangen. Zur Auswertung gelangen nicht alle
Erscheinungen, die wir in der Atmosphéare beobachten kénnen, sondern nur ausgewéhlte
MeRwerte. Diese werden auf eine sinnvolle Genauigkeit gerundet. Eine rationale Zahl mit
einigen Kommastellen kann durch Multiplikation mit einer Zehnerpotenz in eine ganze Zahl
umgewandelt werden. Die Wetterstatistiken sind also diskrete Modelle.

2.1.3 Modellierung mit Computern

Dieser philosophische Exkurs hat unsere grauen Zellen stark beansprucht. Nun sind wir in
der Lage, das Wesen eines Computerprogramms zu beschreiben. Es ist ein abstraktes,
statisches und diskretes Modell mit Funktionen und Modellen realer Gegenstande. Durch
Starten des Programms werden die Funktionen angewendet, und wir erhalten ein
dynamisches Modell. Die Darstellung eines Programms erfolgt meist mit einer
Programmiersprache. Moderne CASE-Werkzeuge erlauben auch andere textuelle und
graphische Ansichten.

Zahlen sind abstrakte Gegenstdnde und kénnen auf unterschiedliche Weise dargestellt
werden. In Computern werden besondere Formen der Darstellung verwendet. Zahlen werden
binar codiert, als Folge von Nullen und Einsen. Ein einzelnes Bit entspricht einem
physikalischen Zustand in einem Speichermedium. Ein Computer ist aus philosophischer
Sicht ein technisches Gerat zur Verarbeitung ganzer Zahlen. Er besitzt vier wesentliche
Eigenschaften:

e Er kann ganze Zahlen darstellen.

e Auf Zahlen kénnen elementare Operationen angewandt werden.

¢ Die Operationen sind als Zahlen codiert und kénnen gespeichert werden.
¢ Gespeicherte Operationen kénnen automatisch ausgefiihrt werden.

Spirick Tuning Tutorial Seite 57

Aus diesen Eigenschaften folgt, dal3 ein Computer diskrete Modelle darstellen und verandern
kann. Das Abarbeiten von Funktionen fihrt zu einem dynamischen Modell. Wir kénnen also
mit einem Computer Prozesse simulieren. Voraussetzung fir die Simulation ist, dal3 die
Modelle als ganze Zahlen vorliegen und die Funktionen als elementare Operationen codiert
sind. Wer schon einmal einen Computer auf Maschinenebene programmiert hat, méchte kein
grolReres Programm auf diese Weise entwickeln. Deshalb formulieren wir unsere Modelle in
einer héheren Programmiersprache. Mit einem Compiler Gbersetzen wir das Programm in eine
ausfiihrbare Form oder flihren es mit einem Interpreter direkt aus.

Bei der theoretischen L&sung eines Problems kiimmern wir uns wenig um den erforderlichen
Aufwand. Einem Mathematiker reicht es im allgemeinen, wenn ein Problem in endlich vielen
Schritten losbar ist. Soll die Losung auf einem Computer implementiert werden, missen wir
dessen technische Eigenschaften beachten. Das theoretische Modell mul3 in einer
Programmiersprache dargestellt werden. Moderne, objektorientierte Sprachen erleichtern uns
diese Arbeit. Die Ausdrucksmittel entsprechen etwa denen, die wir in unserem abstrakten
Denken gebrauchen. Dennoch treffen wir tberall auf technische Details. Zum Beispiel
werden in modernen Computern ganze Zahlen mit 8, 16 oder 32 Bit dargestellt. Die
ganzzahligen Datentypen einer Programmiersprache entsprechen dieser internen Darstellung.

Der Speicher eines Computers besteht aus elementaren Einheiten, den Worten. Ein Wort
umfaldt eine bestimmte Anzahl Bits. In ihm kann eine Zahl aus dem entsprechenden
Wertebereich gespeichert werden. Jedes Wort hat eine eindeutige Adresse. Der Zugriff auf
die gespeicherten Zahlen erfolgt stets Uber ihre Adresse. In alteren Computern war der
AdrelRraum linear aufgebaut. Die Worte erhielten aufsteigende Nummern. Heute kann der
Hauptspeicher mit Auslagerungsdateien vergroRert werden. Auch in einem virtuellen
Speicher hat jedes Wort eine eindeutige Adresse.

Ein Objekt im Sinne der objektorientierten Programmierung ist ein abstraktes, diskretes
Modell. Es enthalt binar codierte Informationen und Funktionen, die darauf angewendet
werden kdénnen. In der objektorientierten Sprechweise sagen wir dazu Attribute und
Methoden. Mehrere gleichartige Objekte werden zu einer Klasse zusammengefal3t. Die
Methoden sind fiir alle Objekte einer Klasse gleich. Deshalb miissen sie nur einmal
gespeichert werden. Die Werte der Attribute kdnnen sich jedoch unterscheiden. Dafir
bendtigt jedes Objekt einen eigenen Speicherbereich.

Wollen wir die Attribute eines Objekts mit einer Programmiersprache beschreiben, miissen
wir sie aus primitiven Datentypen zusammensetzen. Fir die Darstellung des Objekts im
Computer wird eine bestimmte Menge Speicher benétigt. Der Speicherbedarf ist vom
Informationsgehalt abhangig. Der Zugriff auf das Objekt erfolgt mit der Adresse seines
Speichers. Einem einzelnen Objekt kénnen wir einen Namen zuordnen. Die Adresse dieses
Objekts bendétigen wir nicht. Der Compiler ermittelt sie aus dem Namen. Zur Laufzeit des
Programms entstehen jedoch neue Objekte ohne Namen. Wollen wir darauf zugreifen,
mussen wir ihre Adresse ermitteln.

Befindet sich ein Objekt in einer Datei, ist der Zugriff komplizierter. Im Hauptspeicher wird
eine Kopie erzeugt. Diese besitzt eine Adresse und kann direkt manipuliert werden. Das
geanderte Objekt wird in die Datei zuriickgeschrieben. Ahnlich wie der Speicher eines
Computers besteht auch eine Datei aus Worten. Diese werden vom Dateibeginn aufsteigend
numeriert. Innerhalb der Datei hat also jedes Objekt eine eindeutige Adresse. Die
Veranderung der Datei erfolgt zwar indirekt, gleicht im Prinzip jedoch der im Hauptspeicher.
Zur Vereinfachung betrachten wir deshalb im folgenden keine Dateien und Datenbanken,
sondern nur den internen Speicher des Computers.

Wahrend der Abarbeitung eines Programms werden Objekte erzeugt und geldscht. Dafir
bendtigen wir eine Objektverwaltung. Ihre Aufgabe besteht im Sammeln und Ordnen
dynamisch erzeugter Objekte. In diesen Bereich gehodren Collections, wie wir sie in den
fundamentalen Klassen von OHelp kennengelernt haben. Die Aufbewahrung dieser
Informationen erfordert Speicher. Die Objektverwaltung beruht also auf einer

Spirick Tuning Tutorial Seite 58

Speicherverwaltung. Diese verarbeitet rohen Speicher und sogt auf unterster Ebene fir die
Darstellung komplexer dynamischer Modelle in einem Computer.

2.2 Zugriff auf Objekte

Nach diesen allgemeinen Uberlegungen betrachten wir nun wieder unsere
Programmiersprache. In einem C+ +-Programm kann ein Objekt auf eine der folgenden
Arten entstehen:

¢ als globale Variable,

¢ als lokale Variable einer Methode,

¢ durch den Operator new,

e durch einen expliziten Konstruktor-Aufruf,

e als ein temporares Objekt,

e als Teil eines anderen Objekts (Attribut oder Basisklasse).

In jedem Fall bendétigen wir fir den Zugriff auf das Objekt seine Adresse. In einem Zeiger
oder einer Referenz ist eine Adresse enthalten. Ist das Objekt eine Variable, kbnnen wir mit
dem Namen darauf zugreifen. Er ist identisch mit einer Referenz. Der Compiler hat fir die
Variable Speicher bereitgestellt und rechnet den Namen in die Adresse um. Mit dem Adrel3-
Operator "&" kénnen wir auch die Adresse einer Variablen direkt abfragen. Der Operator new
liefert einen typisierten Zeiger auf ein neu erzeugtes Objekt. Damit kénnen wir auf das
Objekt zugreifen. Durch einen expliziten Konstruktor-Aufruf erhalten wir eine Referenz auf
ein temporares Objekt. Es existiert nur innerhalb der Anweisung, in der es erzeugt wurde,
und mul in dieser Anweisung weiterverarbeitet werden. Im Abschnitt 1.4.3 "Entryld und
Langenangabe" wurden weitere Beispiele fir temporare Objekte genannt. Wird ein Objekt als
Teil eines anderen Objekts erzeugt, erfolgt der Zugriff tGber die Adresse des umfassenden
Objekts. Der folgende Programmausschnitt enthalt einige Beispiele flir Zugriffe auf Objekte.

class ct _Dialog

{
public:
void Show ();

b

struct st_BigDialog

{
ct Dialog co Dialogl;
ct Dialog co Dialog?;

}:
ct Dialog TempDialog (); // Methode liefert ein temporares Objekt

void TestDialog ()

{

ct Dialog co_dialog; // Lokale Variable

ct Dialog * pco _dialog; // Zeiger auf ein Objekt

pco_dialog = & co_dialog; // Berechnung der Adresse der Variablen
co_dialog. Show (); // Zugriff mit dem Namen

ct Dialog & rco_dialog = co _dialog; // Referenz auf die Variable
rco_dialog. Show (); // Zugriff mit der Referenz

pco_dialog = new ct Dialog (); // Erzeugen eines neuen Objekts
pco_dialog-> Show (); // Zugriff mit dem Zeiger

(* pco_dialog). Show (); // Andere Schreibweise flr Zeigerzugriff
ct Dialog (). Show (); // Temp. Objekt durch Konstruktor-Aufruf
TempDialog (). Show (); // Zugriff auf zweites tempordres Objekt
st _BigDialog so bd; // Umfassende Variable

Spirick Tuning Tutorial Seite 59

so_bd. co Dialog2. Show (); // Zugriff auf einen Teil
}

2.2.1 Zeiger in C+ +

Mit einem Zeiger kdnnen wir einen Speicherbereich oder ein darin befindliches Objekt
identifizieren. Die Schreibweise fir einen Zeigertyp in C+ + ist declaration_specifier *
const_volatile opt. Der declaration_specifier enthalt den Typ, auf den gezeigt wird. Das
nachgestellte const volatile opt bezieht sich auf den Zeiger selbst. Zeigertypen sind zum
Beispiel const char * (Zeiger auf ein konstantes Zeichen), int * const (konstanter Zeiger auf
eine Zahl) oder ct _Dialog * (Zeiger auf ein Dialogobjekt). Ein Objekt des Zeigertyps ist ein
Zeiger, zum Beispiel const char * pc. Er kann einen beliebigen Wert aus dem Bereich des
Zeigertyps annehmen. Ein Zeigerwert kann giltig oder ungliltig sein. Wir wissen bereits, dal3
ein C+ +-Zeiger eine Speicheradresse enthalt. Gliltige Zeigerwerte sind also Adressen, die
von der Speicherverwaltung zur Verfligung gestellt wurden. Der Wert Null ist per Definition
ungultig. Die Menge der gultigen Zeigerwerte eines Programms bildet einen Zeigerraum.

In C+ + mul zwischen typisierten und untypisierten Zeigern unterschieden werden. Ein
untypisierter Zeiger enthalt im declaration_specifier das Schllisselwort void, zum Beispiel
void * oder const void * volatile. Damit kénnen wir kein Objekt, sondern nur einen
Speicherbereich identifizieren. Der Compiler wandelt automatisch typisierte in untypisierte
Zeiger um. Umgekehrt missen wir die Typumwandlung selbst vornehmen. Untypisierte
Zeiger werden unter anderem beim binaren Kopieren von Speicher eingesetzt. Die
Standardfunktion memmove hat die Deklaration memmove (void * pv_destination, const void *
pv_source, unsigned u_Tength). Wir kdnnen sie auch mit typisierten Zeigern aufrufen, zum
Beispiel memmove (& co dialogl, & co dialog2, sizeof (ct Dialog)).

Die Sprache C+ + erlaubt die Verwendung weiterer Zeigertypen. Auf globale Methoden und
nichtstatische Member einer Klasse (Attribute und Methoden) kénnen Zeiger gebildet
werden. Diese spezialisierten Zeiger betrachten wir nicht ndher. Zur Untersuchung der
Speicher- und Objektverwaltung sind herkémmliche Zeiger ausreichend. Diese enthalten eine
Speicheradresse und haben deshalb zwei wichtige Eigenschaften. Zum einen ist der Zugriff
auf die referenzierten Objekte sehr schnell, denn die Hardware des Computers kann
Adressen direkt verarbeiten. Zum anderen ist ein Zeigerwert nur zur Laufzeit eines
Programms gliltig. Beim nachsten Programmstart kann die Speicherverwaltung andere
Adressen zur Verfligung stellen. Haben wir dltere Adressen persistent in einer Datei
gespeichert, flhrt deren Verwendung zu Fehlern. Das folgende Programmfragment faf3t die
wichtigsten Begriffe zusammen.

char c;

char * pc; // Zeigertyp: char *, Zeiger: pc
pc = & C; // Zeigerwert: Adresse von ¢
*pc = "T'; // Zugriff mit dem Zeiger: * pc

2.2.2 Indizes von Arrays

Wir kénnen in C+ + Arrays von Objekten definieren, zum Beispiel ct Dialog aco dialogs [10].
Die einzelnen Objekte werden durch einen Index identifiziert. Ein Index kann also wie ein
Zeiger betrachtet werden. Der Zeigertyp ist bei jedem Array unsigned int. Ein Zeiger ist ein
Objekt dieses Typs, zum Beispiel unsigned int u_idx. Der Wertebereich des Zeigertyps umfal3t
alle nichtnegativen ganzen Zahlen. Im obigen Beispiel sind aber nur die Werte von null bis
neun gultig. Die glltigen Zeigerwerte ergeben sich aus der GroRRe des Arrays und bilden
einen Zeigerraum.

Spirick Tuning Tutorial Seite 60

Wollen wir auf ein bestimmtes Objekt zugreifen, bendtigen wir seine Adresse. Diese erhalten
wir durch Indizierung. Zum Beispiel liefert der Ausdruck aco dialogs [4] eine Referenz auf das
finfte Objekt des Arrays. Der Zugriff mit einem Index ist langsamer als mit einem normalen
Zeiger. Die Adresse des Objekts mufld aus der Anfangsadresse des Arrays und dem Index
berechnet werden. Der Index ist jedoch auch bei spateren Programmstarts noch gultig. Er
kann also in einer Datei persistent gespeichert und spater wieder verwendet werden.

Fir den Zugriff auf das finfte Objekt reicht der Zeigerwert Vier allein nicht aus. Wir missen
auch das Array angeben, auf das er sich bezieht. Das ist ein wichtiger Unterschied zu
normalen Zeigern. Wéhrend diese global giiltig sind, ergibt ein Index nur mit dem
zugehdrigen Array einen Sinn. Das Array Ubernimmt die Rolle eines Zeigerverwaltungs-
Objekts. Im folgenden Programmbeispiel sehen wir die wichtigsten Zeigerbegriffe bei einem
Array.

ct_Dialog aco_dialogs [10]; // Array mit Zeigerraum 0 bis 9

unsigned int u_idx; // Zeigertyp: unsigned int, Zeiger: u_idx
u_idx = 4; // Zeigerwert: 4

aco_dialogs [u_idx]. Show (); // Zugriff mit Zeiger: aco_dialogs [u_idx]

2.2.3 Logische Zeiger

In unserer kleinen Klassenbibliothek haben wir die Entrylds als eine weitere Art Zeiger
kennengelernt. Diese besitzen dhnliche Eigenschaften wie die Indizes der C+ +-Arrays. Der
Zeigertyp ist t_Entryld und gilt fur alle von ct _Collection abgeleiteten Klassen. Ein gultiger
Zeigerwert ist eine Entryld. Mit der Methode GetObj kdnnen wir auf das damit referenzierte
Objekt zugreifen. Die gultigen Entrylds einer Collection bilden einen Zeigerraum. Mit den
Methoden First und Next kénnen wir ihn vollstandig durchlaufen. Eine Entryld ist nur
zusammen mit ihrer Collection sinnvoll. Sie besitzt also wie ein Index eine lokale Gliltigkeit.
Sehen wir uns zur Veranschaulichung wieder ein Programmfragment an.

ct DList co_dlist; // Liste als Zeigerverwaltungs-0Objekt
t Entryld o_id; // Zeigertyp: t Entryld, Zeiger: o_id
0_id = co_dlist. First (); // Zeigerwert: Erster gult. Zeiger der Liste
co_dlist. GetObj (o_id)-> GetTypeName (); // Zugriff mit Methode GetObj

Bei der Festlegung des Datentyps flir die Entryld haben wir das dynamische Array und die
DList berlicksichtigt und ihn auf unsigned Tong definiert. Im Performancetest muf3ten wir
feststellen, dafd vor allem die Collections Mangel aufweisen. Sie sind flr einen moéglichst
breiten Einsatz konzipiert. Das vereinfacht ihre Anwendung, erschwert jedoch die
Anpassung an konkrete Situationen. Die Performance eines Programms wird stark von den
fundamentalen Klassen beeinflul3t. Sie missen flexibler als bisher gestaltet werden, damit
wir sie an konkrete Erfordernisse, zum Beispiel eine homogene Collection, anpassen kdnnen.

In einer DList belegen die Zeiger einen beachtlichen Teil des Speichers. Ein Node enthalt je
einen Zeiger zum Vorganger und Nachfolger. Wissen wir von einer Instanz der DList, dal3
darin nicht mehr als hundert Eintrdge vorkommen, ist ein 32-Bit-Zeiger ungeeignet. Acht Bit
reichen flr die Codierung der Zeiger vollkommen aus. Gibt es von dieser Liste viele
Instanzen, kénnen wir dadurch viel Speicher sparen. Es ist nicht sinnvoll, einen bestimmten
Zeigertyp fir alle Collections vorzuschreiben. Normale C + +-Zeiger, Indizes und Entrylds
werden deshalb zu logischen Zeigern verallgemeinert. Diese haben folgende Eigenschaften:

Spirick Tuning Tutorial Seite 61

e Ein Zeigertyp ist ein diskreter Datentyp.

¢ Ein Zeiger kann mit der Zahl Null verglichen werden.

¢ Es gibt glltige und unglltige Zeigerwerte.

e Der Wert Null ist per Definition ungltig.

* Ein glltiger Zeiger kann in eine Adresse umgerechnet werden.
e Die glltigen Zeigerwerte bilden einen Zeigerraum.

¢ Dieser wird global oder von einem Objekt verwaltet.

Zeiger kdnnen mit beliebigen diskreten Typen dargestellt werden. Sie werden in den
fundamentalen und Anwendungs-Klassen eines Programms sehr haufig verwendet. Wir
wissen bereits, dal® daflir primitive Datentypen effizienter sind als Klassen.
Performanceorientierte Zeigertypen sind also void *, unsigned char, unsigned short, unsigned int
und unsigned Tong.

2.3 Speicherverwaltung

Die Speicherverwaltung hat den Ruf einer betriebssystemnahen Hilfsarbeit. Bei der
objektorientierten Umgestaltung der Softwareentwicklung wurde sie bisher aul3er acht
gelassen. Die Situation ist mit einem grofRen Birogeb&ude vergleichbar. Viele betrachten
dort den Heizer als einen Hilfsarbeiter im Keller. Nun wird das Haus nach neuen Richtlinien
umgestaltet. Rundherum werden neue, gréRere Fenster eingebaut. Dadurch gelangt mehr
Licht in die Rdume. Das Arbeiten wird angenehmer. Es wurde aber vergessen, die Heizung
an die neuen Bedingungen anzupassen. Besonders bei klirrender Kalte geht durch die Fenster
mehr Wéarme verloren, und die Leute haben an der Umgestaltung keine Freude mehr.

Das Erzeugen und Léschen von C + +-Objekten erfolgt mit den Operatoren new und delete.
Diese sind keine Erneuerung der Speicherverwaltung, sondern nur eine elegante
Anwendung. Dynamische Blécke, zum Beispiel in einer Stringklasse, werden in C+ + immer
noch mit den Standardfunktionen malloc, realloc und free verwaltet. Unser Performancetest
hat gezeigt, dalR die Speicherverwaltung eine wichtige Grundlage des Programms ist. Je
starker wir ein Programm algorithmisch optimieren, desto héher werden unsere Anspriiche
an die Speicherverwaltung (siehe Abbildung 1-2 im Abschnitt 1.1). Deshalb verleihen wir ihr
nun ein objektorientiertes Gewand.

Ein Speicherverwaltungsobjekt nennen wir im folgenden kurz Store. Es fordert vom
Betriebssystem oder einem anderen Store groRe Speicherblocke und verwaltet kleinere.
Seine Aufgabe besteht darin, die eigenen Blocke effizienter zu verwalten als der Lieferant
der Blocke. Das gelingt durch neue Techniken oder durch Spezialisierung. Ist ein Store zum
Beispiel auf Blocke einer bestimmten GroRRe spezialisiert, kann er sie besser als eine
dynamische Speicherverwaltung handhaben. Stores werden wie Collections an
performancekritischen Stellen eingesetzt. Die Analyse von OHelp hat ergeben, daf3 dafir
eine gemeinsame Basisklasse mit virtuellen Methoden ungeeignet ist. Von einer Storeklasse
fordern wir deshalb nur, dafl3 sie ein Interface wie im folgenden Beispiel besitzt.

class ct_AnyStore
{

pubTlic:
typedef unsigned char t Size;
typedef unsigned short t Pointer;

unsigned long MaxAlloc () const;

unsigned StorelnfoSize () const:

t Pointer AlToc (t_Size o _size);

t Pointer Realloc (t_Pointer o ptr, t Size o size);
void Free (t_Pointer o ptr);

Spirick Tuning Tutorial Seite 62

void * AddrOf (t_Pointer o_ptr) const;
t Pointer LogPtrOf (void * pv_adr) const;

b

Der Datentyp t Size wird fur die GréRRe der Speicherblocke bendtigt. Ist er auf unsigned char
definiert, kann ein Block maximal 255 Bytes umfassen. t Pointer ist der logische Zeigertyp
des Stores. Das Beispiel unsigned short bedeutet, dal’ er bis zu 65535 Blocke verwalten
kann. Die ersten beiden Methoden geben Uber wichtige Eigenschaften des Stores Auskunft.
MaxAlloc liefert die maximale GroRRe eines Blocks, zum Beispiel 22 bei einem auf diese Grolde
spezialisierten Store. Mit StoreInfoSize kénnen wir fragen, wieviel Bytes konstanter
Verwaltungsspeicher (ohne Rundung) pro Block bendtigt werden. Die nachsten drei
Methoden gleichen den Standardfunktionen zur Speicherverwaltung. Mit Alloc wird ein Block
angefordert. Ist die GrélRe gleich Null oder kann der Block nicht bereitgestellt werden, wird
der Nullzeiger zuriickgegeben. Die Methode Realloc andert die GréfRRe eines Blocks. Fir beide
Parameter ist der Wert Null zulassig. Mit Free kénnen wir einen Speicherblock freigeben.
Auch diese Methode mufR3 den Wert Null als Parameter akzeptieren. AddrOf wandelt einen
logischen Zeiger in eine Speicheradresse um. Zum logischen Nullzeiger erhalten wir die
Adresse Null. LogPtrOf berechnet umgekehrt den logischen Zeiger, der zu einer Adresse
gehort. Betrachten wir die Anwendung dieser Methoden anhand einfacher Beispiele.

ct_AnyStore co_store; // Store
ct_AnyStore:: t Pointer o ptr; // Zugehériger logischer Zeiger
void * pv; // C++-Zeiger, enthdlt eine Adresse

o ptr = co_store. Alloc (10); // 10 Bytes anfordern

pv = co_store. AddrOf (o_ptr): // Adresse des 10-Byte-Blocks ermitteln
o ptr = co_store. Realloc (o_ptr, 20):; // Block vergroBern

pv = co_store. AddrOf (o_ptr): // Neue Adresse ermitteln

co_store. Free (o ptr); // Speicher freigeben

pv =0; // Adresse nicht mehr verwenden!

Nach jeder Anderung des logischen Zeigers wird die zugehérige Speicheradresse aktualisiert.
Wird der Zeiger ungliltig, darf die entsprechende Adresse nicht mehr verwendet werden.
Eine Speicheradresse kann auch in anderen Féllen ungultig werden. Die Verwaltung der
Blocke in einem Store erfolgt mit Hilfe der logischen Zeiger. Speicheradressen werden nur
far den unmittelbaren Zugriff bereitgestellt. Die Gultigkeitsdauer der Adresse ist von der
Implementierung des Stores abhangig. Es kann sein, dal3 das Bereitstellen eines neuen
Blocks alle anderen physisch im Speicher verschiebt. Damit dndern sich ihre Adressen. Die
logischen Zeiger sind jedoch weiterhin giltig und kénnen fir den Zugriff genutzt werden.

2.3.1 Eine runde Sache

Ein grol3es Problem jeder dynamischen Speicherverwaltung ist die Fragmentierung. Je langer
die Liste der freien Blécke wird, desto langsamer wird die Verwaltung des Freispeichers, und
desto mehr Speicher bleibt ungenutzt. Durch Rundung der BlockgréRe kann der
Fragmentierung entgegengewirkt werden. Beim Blick hinter die Kulissen des Compilers
sahen wir, dal® schon die Speicherverwaltung der Standardbibliothek auf die nachsthéhere
8- oder16-Byte-Grenze rundet. Werden zum Beispiel 18 Bytes freigegeben und anschlielend
22 Bytes angefordert, kann der freigewordene Block genutzt werden. Auch das Verandern
der GroRRe eines Blocks wird durch die Rundung beschleunigt. Verringert sich die Lange einer
Zeichenkette von 34 auf 30 Bytes, wird eine 16-Byte-Grenze unterschritten. Ein kleinerer
Block mufl3 gesucht und der Inhalt dorthin kopiert werden. Verringert sich hingegen die
Lange von 30 auf 26 Bytes, kann derselbe Block genutzt werden. Weder Suchen noch
Kopieren sind notwendig.

In fundamentalen Klassen sind oft Rundungsmechanismen eingebaut. Eine Stringklasse kann
nicht nur die Lange der Zeichenkette, sondern auch eine MinimalgréRe enthalten. Der
dynamische Speicherblock wird nie kleiner als die MinimalgréRe, auch wenn die eigentliche

Spirick Tuning Tutorial Seite 63

Zeichenkette kleiner wird. Dadurch wird die Speicherverwaltung von der Behandlung sehr
kleiner Blocke entlastet. Ist die MinimalgroRe ein nichtstatisches Attribut der Stringklasse,
kann sie fur jede Instanz anders festgelegt werden. Dieser Komfort wird selten benétigt,
kostet aber einigen Speicher. Ein Stringobjekt ist klein. Die Hinzunahme eines weiteren
Attributs erhdht den relativen Speicherbedarf erheblich. Sinnvoller ist die Deklaration der
MinimalgroRe als ein statisches Attribut. Die Stringklasse kdénnte etwa so aussehen.

class ct_RoundedString

{

static unsigned u_MinSize;

unsigned u_Length;

char * pc_Block;

unsigned RoundedSize ():
public:

}s
unsigned ct RoundedString:: RoundedSize ()

if (u_Length + 1 < u MinSize)
return u_MinSize;

else
return u_Length + 1;

}

Das statische Attribut u_MinSize gilt fir alle Instanzen dieser Stringklasse. Die private
Methode RoundedSize berechnet eine gerundete GréfRRe. Sie verwendet die Lange, die
MinimalgroRe und eventuell andere Rundungsverfahren. Bisher wurde ein neuer Block durch
die Anweisung realloc (pc _Block, u_Length + 1) angefordert. Nun schreiben wir realloc
(pc_Block, RoundedSize ()).

Speicherblécke variabler Lange werden nicht nur in Strings, sondern auch in Bitmaps,
Arraycollections usw. verwendet. Wollten wir die dynamische Speicherverwaltung durch
Rundung effektiv entlasten, miRten wir in vielen Klassen Rundungsmechanismen vorsehen.
Die Rundung ist jedoch keine Eigenschaft der dargestellten Modelle. Mit einer Stringklasse
wird eine Folge von Zeichen modelliert. Diese besitzt eine bestimmte Lange, aber keine
gerundete GroRe. Auch das Modell der Zeichenfolge benétigt keine Rundung. Sie ist nur zur
Entlastung der Speicherverwaltung erforderlich und gehort somit in deren Arbeitsbereich.

Eine dhnliche Arbeitsteilung wird vom Model-View-Controller-Konzept vorgeschlagen. Es
beschreibt die Architektur interaktiver Programme. Danach ist es zum Beispiel unzulassig,
dal® das Model eine Fehlermeldung auf dem Bildschirm anzeigt. Die Anzeige der Nachricht
und die Auswertung der Benutzereingabe gehdéren in den Bereich Controller. Analog dazu
sollten in Strings und Arrays keine Rundungsmechanismen enthalten sein. Diese Klassen
bendtigen Speicher zur Darstellung ihrer Informationen. Das effektive Verwalten des
Speichers ist jedoch nicht ihre Aufgabe. Die Rundung der GroRe dynamischer Blocke steht
auf derselben Ebene wie deren Anfordern und Freigeben. Es gehort in den Bereich der
Speicherverwaltung. Andern wir nach diesem Konzept die Stringklasse.

class ct_RoundedStore

{

public:

typedef unsigned int t Size;

typedef void * t_Pointer;
private:

t Size 0 MinSize;

t Size Round (t_Size o size);
pubTic:

} co_RoundedStore;

Spirick Tuning Tutorial Seite 64

class ct_RoundedString

ct_RoundedStore:: t Size 0_Length;
ct_RoundedStore:: t Pointer o Block;
pubTic:

b

const char * ct RoundedString:: GetStr ()
{

return (const char *) co_RoundedStore. AddrOf (o _Block);

}

void ct_RoundedString:: Insert (unsigned u_pos, const char * pc_ins)

{

0_Block = co_RoundedStore. Realloc (o_Block, o _Length + 1);

In diesem Beispiel wird die spezialisierte Storeklasse ct RoundedStore deklariert. Sie enthalt
das Attribut o MinSize. Die private Methode Round rundet eine gegebene GroéfRRe mit Hilfe der
MinimalgréRe und eventuell anderer Verfahren. Sie wird von den Methoden Alloc und Realloc
aufgerufen. Die Klasse ct_RoundedStore kann als globale oder lokale Variable oder als Teil
anderer Klassen verwendet werden. Das Objekt co_RoundedStore realisiert eine globale
Verwaltung der Minimalgréf3e und der gerundeten Blocke. Die Stringklasse ct RoundedString
zeigt eine Anwendung des Stores. Die Attribute o_Length und o Block richten sich nach den
Typen t Size und t_Pointer der Storeklasse. Zum Verandern der GrofRRe des Blocks wird die
Methode ct_RoundedStore:: Realloc aufgerufen. Fir dynamische Arrays kann dasselbe oder
ein anderes globales Storeobjekt verwendet werden.

2.3.2 Rundungstechniken

Die Rundung spart auf der einen Seite Speicher, denn die Liste der freien Blécke wird
kleiner. Auf der anderen Seite kostet sie Speicher, denn die belegten Blécke sind gréRer als
notig. Zum Beispiel bleiben bei der Rundung von 67 auf 80 Bytes die letzten 13 Bytes
ungenutzt. Der Gesamtspeicherbedarf eines Programms ergibt sich aus der Summe der
belegten und freien Blocke. Ist er gleich oder geringfligig hdher als bei der ungerundeten
Speicherverwaltung, haben wir dennoch einen Performancegewinn erzielt. Die
Rundungstechniken sorgen fir eine kleinere Freiliste. Dadurch wird die Verwaltung des
freien Speichers wesentlich beschleunigt. Abbildung 2-4 verdeutlicht diese Verhaltnisse.

Gesamter Speicherbedarf Rechenzeit fur Freispeicher

Frei (ungenutzt)

Frei (ungenutzt
f (ungenutzt) Belegt, ungenutzt

Belegt, genutzt Belegt, genutzt

Ohne Rundung Mit Rundung Ohne Rundung Mit Rundung

Abb. 2-4: Auswirkung der Rundung auf die Performance

Spirick Tuning Tutorial Seite 65

Welche Rundungstechnik far ein Anwendungsprogramm die beste ist, hangt von dessen
Speicheranforderungen ab. Belegt es zunehmend neuen Speicher und gibt wenig Speicher
frei, sollte keine Rundung eingesetzt werden. Die Freiliste ist klein und kann wenig optimiert
werden. Die Rundung wirde aber die belegten Blécke vergroRern. Je mehr Speicher das
Programm freigibt und neu anfordert, desto besser wirkt sich die Rundung auf die
Performance aus. Eine grobere Rundung erhéht den Anteil des belegten, ungenutzten
Speichers, verringert aber die Fragmentierung. Je starker die Belastung der
Speicherverwaltung ist, desto grober sollte die Rundungstechnik sein (siehe Abbildung 2-5
und Rechenzeittest weiter unten).

Performance der Speicherverwaltuna

—

Geringe Belastung Mittlere Belastung Starke Belastunag
Ohne Rundung Feine Rundung Grobe Runduna

Abb. 2-5: Rundungstechniken bei zunehmender Belastung

Ziel einer Rundungstechnik ist es, die Anzahl der Blockgré6Ren zu minimieren. Je weniger
BlockgroRRen es gibt, desto hoher ist die Wahrscheinlichkeit, in der Freiliste ein passendes
Element zu finden. Gibt es fir eine Anforderung keinen freien Block, mul3 neuer Speicher
verwendet werden. Ohne Rundung existieren zwischen ein und hundert Bytes genau hundert
mogliche BlockgroRen. Werden 67 Bytes angefordert, ist die Wahrscheinlichkeit gering, dal3
die Freiliste einen Block dieser GroRe enthalt. Die Verwendung einer Schrittweite ist eine
einfache Rundungstechnik. Werden die Blécke zum Beispiel auf eine 16-Byte-Grenze
gerundet, gibt es zwischen ein und 128 Bytes nur noch acht verschiedene GroRen (16, 32,
48, 64, 80, 96, 112 und 128 Bytes). Die Anforderung 67 wird auf 80 Bytes gerundet. Die
Wahrscheinlichkeit, in der Freiliste einen 80iger Block zu finden, ist gréfer.

Wir haben die Festlegung einer MinimalgréRe bereits als eine Rundungstechnik
kennengelernt. Ergdnzen wir die Schrittweite 16 um die MinimalgréRe 50 Bytes, existieren
zwischen ein und 128 Bytes nur noch die GrélRen 64, 80, 96, 112 und 128 Bytes. Damit
wird die Speicherfragmentierung weiter eingeschrankt. Der Gesamtspeicherbedarf erhéht
sich jedoch. Alle Anforderungen von ein bis 64 Bytes werden auf 64 Bytes gerundet.
Besonders bei kleinen Blécken ist der relative Anteil ungenutzten Speichers hoch. Eine
MinimalgrofRe lohnt also nur, wenn die Anzahl der kleinen Blécke gering ist.

Die Rundung auf eine 16-Byte-Grenze ist im Bereich von ein bis 128 Bytes sinnvoll. Bei
groRBeren Blocken wirkt sie der Fragmentierung kaum noch entgegen. Zum Beispiel nitzt es
wenig, einen Block von 375 auf 384 Bytes zu runden. Eine gute Rundungstechnik sollte sich
der GréRRe der Blocke anpassen. Wir bendtigen eine relative Schrittweite. Zwischen 128 und
256 Bytes kann die Schrittweite auf 32 erhéht werden, zwischen 256 und 512 Bytes auf
64 usw. Die Berechnung der gerundeten GroRe wird dadurch komplizierter. Zu einem
gegebenen Wert (375) missen wir die nachstkleinere Zweierpotenz ermitteln (256). Diese
wird durch den Schritt-Teiler Vier dividiert, und wir erhalten die Schrittweite (64). Wir
kénnten uns auch nach Zehnerpotenzen richten. Die Berechnung von Zweierpotenzen ist

Spirick Tuning Tutorial Seite 66

jedoch schneller, denn sie 14t sich auf einfache Shift-Operationen zurickfihren. In
Abbildung 2-6 sehen wir relative Schrittweiten bei verschieden grof3en Schritt-Teilern.

MinimalgréRe = 16, Schritt-Teiler = 1, 2 und 4

L 1 1 1 1] ST =1
0o 16 32 64 128 256
L L 111 1 1 1 1] ST=2
0 16 32 48 64 9% 128 192 256
L [I 1 1 1 1 1 1 1] ST=4
0 16 32 48 64 80 95 112 128 160 192 224 256

Abb. 2-6: Auswirkung des Schritt-Teilers auf die Rundung

Zur Vereinfachung der Berechnung fordern wir, dal3 sowohl MinimalgréRe als auch Schritt-
Teiler Zweierpotenzen sind. Ein Schritt-Teiler, der gréRRer als die MinimalgréRRe ist (zum
Beispiel 32 und16), ergibt keinen Sinn. Er ist in unserem Rundungsverfahren nicht erlaubt. In
Abbildung 2-6 haben wir fiir die Berechnung der Schrittweite einen sturen Algorithmus
eingesetzt. Er berechnet beim Schritt-Teiler Vier zwischen 16, 32 und 64 die Schrittweiten
Vier und Acht. Auch dieses Verhalten ergibt keinen Sinn. Wir andern den Algorithmus, so
dal3 die Schrittweite nicht kleiner als die MinimalgroRe werden kann (siehe Abbildung 2-7).

MinimalgréfRe = 16, Schritt-Teiler = 1, 2 und 4 (Schrittweite >= Minimalgrofie)

L 1 1 1 1] ST =1
0o 16 32 64 128 256
L 1 [1 1 1 1] ST=2
0 16 32 48 64 9% 128 192 256
L 1 [1 1 1 1 1 1 1 1] ST=4
0 16 32 48 64 80 9 112 128 160 192 224 256

Abb. 2-7: Verbesserts Rundungsverfahren

Ein gréBerer Schritt-Teiler (8, 16 usw.) verkleinert die Schrittweite und erhéht die Anzahl
moglicher BlockgréRRen. Damit passen sich die Blécke den tatsachlichen Anforderungen
besser an, die Fragmentierung nimmt aber wieder zu. Beim kleinstméglichen Schritt-Teiler
Eins ergibt sich hingegen die bindre Rundung. Dabei werden alle Anforderungen auf die
nachstgrolRere Zweierpotenz gerundet. Der Anteil des pro Block ungenutzten Speichers ist
groRer als bei anderen Rundungsverfahren. Die binare Rundung wirkt aber der
Fragmentierung am starksten entgegen. Sie ist besonders fiir Programme mit vielen
Anforderungen und Freigaben geeignet.

An einem rechen- und speicherintensiven Programm wurde der folgende Test durchgefihrt:
Es wurde einmal ohne und einmal mit binarer Rundung gestartet. Am Programm selbst
wurde nichts geandert. Es wurde nur die Speicherverwaltung der C-Standardbibliothek durch
einen Store mit bindrer Rundung ersetzt. Der Gesamtspeicherbedarf blieb etwa gleich. Beim
zweiten Mal lief das Programm aber 2,5 mal schneller. Das bedeutet, dal3 beim ersten
Programmstart etwa 70 Prozent der Rechenzeit auf die Standardfunktionen malloc, realloc
und free entfielen (siehe Abbildung 2-8).

Spirick Tuning Tutorial Seite 67

Programm Speicherverwaltung Ohne Rundung

Programm Sp. Mit binarer Rundung

L | | | | | | | | | | b Zeit
0 10 20 30 40 50 60 70 80 90 100

Abb. 2-8: Anteile der Gesamtrechenzeit

Neben den genannten Rundungstechniken sind weitere denkbar. Eine Kombination aus
MinimalgroRe, relativer Schrittweite und variablem Schritt-Teiler ist jedoch fiir die meisten
Falle ausreichend. Vor allem mit dem Schritt-Teiler kénnen wir die Rundung an konkrete
Erfordernisse anpassen. Wird die Speicherverwaltung wenig beansprucht, wéhlen wir einen
groRen Schritt-Teiler (z.B. 16). Bei starker Belastung verwenden wir mit dem Schritt-Teiler
Eins die bindare Rundung. In der Praxis missen wir beachten, dal® jede Rundungstechnik
gleichmaBig verteilte Speicheranforderungen voraussetzt. Eine konkrete Anwendung ist
darauf zu prifen, ob sie viele unglinstige Bloécke anfordert. Zum Beispiel sind bei der
Schrittweite 16 die Werte 17, 33, 49 usw. unglnstig.

Jede dynamische Speicherverwaltung beansprucht pro Block einige Bytes
Verwaltungsspeicher. Wir konnen ihn von einem Storeobjekt mit der Methode StorelnfoSize
abfragen. Bei der Berechnung der gerundeten Gréfe muld er berlicksichtigt werden. Erst
dann wirkt die Rundung effektiv der Fragmentierung entgegen. Im folgenden Rechenbeispiel
betragt die Schrittweite 16 und die StorelInfoSize vier Bytes. 20 Bytes sollen freigegeben und
danach zweimal zehn Bytes angefordert werden. Ohne Beriicksichtigung der StoreInfoSize
werden 20 Bytes auf 32 gerundet. Die interne GroRe des Blocks betragt 36 Bytes. Zehn
Bytes werden auf 16 gerundet. Bendétigt werden also zwei Blécke der internen GroRRe 20,
insgesamt 40 Bytes. Daflr reicht der freigegebene Speicher von 36 Bytes nicht aus, und
neuer Speicher mulR verwendet werden. Beriicksichtigen wir die StoreInfoSize, werden 20
Bytes auf 28 gerundet. De facto werden 32 Bytes freigegeben. Zehn Bytes werden nun auf
zwolf gerundet und zwei neue Blocke der internen GroRe 16 bendtigt. Daflir kann der
freigewordene Block genutzt werden (siehe Abbildung 2-9).

Intern 36 Intern 32
4 | 32 1x32 4| 28
Intern 20 Intern 20 2% 16 Intern 16| Intern 16
4l 16 4] 16 X 4| 12 [4] 12

| | | | | | b Bytes | | | | | | D Bytes
0 8 16 24 32 40 0 8 16 24 32 40

Rundung ohne StorelnfoSize Rundung mit StorelnfoSize

Abb. 2-9: Rundung und StorelnfoSize

2.3.3 Feste Speicherverwaltung

Eine dynamische Speicherverwaltung verursacht pro Block einen doppelten Overhead. Die
angeforderte Grofle wird gerundet, und einige Bytes Verwaltungsspeicher werden

Spirick Tuning Tutorial Seite 68

hinzugefligt. Bei Anforderung vieler Blocke derselben GroRRe ist eine feste
Speicherverwaltung glnstiger. Sie ist auf Blocke einer bestimmten Grol3e spezialisiert. Im
einfachsten Fall werden sie direkt hintereinander in einem gréRReren, dynamischen Block
untergebracht. Betrachten wir auch dazu ein Rechenbeispiel. Die BlockgroRe betrage zehn
Bytes. Die dynamische Speicherverwaltung bendtigt dafir 16 Bytes, fur finf Blécke
insgesamt 80 Bytes. Werden die fiinf mal zehn Bytes in einem einzelnen Block
hintereinander gespeichert, entsteht ein Block der internen GréRe 64 Bytes, also 16 Bytes
weniger (siehe Abbildung 2-10).

Intern 16| Intern 16| Intern 16| Intern 16| Intern 16 5 x 10 einzel det
al 12 |a] 12 |a]| 12 [a] 12 [4] 12 X 10 einzeln gerunde
Intern 64 .
4| 10, 10 [10 | 10 | 10 10frei 5 x 10 im Block gerundet
1]]]]]]]]]] {> Bytes

0 8 16 24 32 40 48 56 64 72 80

Abb. 2-10: Dynamische und feste Speicherverwaltung

Im Durchschnitt ist die feste Speicherverwaltung effektiver als die dynamische. Es gibt
jedoch auch Grenzfélle. Betragt zum Beispiel die BlockgroRe zwolf Bytes, entsteht bei der
dynamischen Verwaltung kein Rundungs-Overhead. Fir finf Blécke belegt sie 80 Bytes, die
feste Verwaltung 64 Bytes. Kommt ein Block hinzu, benétigt die dynamische 96 Bytes. Die
feste belegt nun in einem Block 72 Bytes. Bei bindrer Rundung wird er intern auf 128 Bytes
gerundet. Flr acht Blécke bendétigen beide denselben Speicher (128 Bytes). Ab neun
Blocken ist die feste Speicherverwaltung wieder glnstiger. Fir einen Block der GroRe 14
Bytes bendétigt die dynamische Verwaltung intern 32 Bytes. Der Overhead betragt pro Block
18 Bytes. Bei dieser BlockgréRe ist die feste Verwaltung deutlich sparsamer (siehe
Abbildung 2-11), ebenso bei sehr kleinen Blocken von vier oder acht Bytes. Dynamische
Speicherverwaltungen besitzen meist eine MinimalgroRe von 16 Bytes und sind auf kleinere
Blocke nicht eingerichtet.

Speicherbedarf Speicherbedarf
PaN PaN)
256 |~ —! 256 - f——
102 | 192 |
128 128
64 64
[I I I I Anzahl L1111 Anzahl
4 8 12 16 20 Blocke 4 8 12 16 207 Blocke
Blockgrofie 12 Bytes Blockgrofie 14 Bytes

Dynamische Speicherverwaltung

Feste Speicherverwaltung

Abb. 2-11: Speicherbedarf bei 12- und 14-Byte-Blécken

Spirick Tuning Tutorial Seite 69

Eine Speicherverwaltung darf ihre Blocke physisch verschieben. Dabei andern sich deren
Adressen. Die logischen Zeiger missen jedoch ihre Giltigkeit behalten. Die einfachste
Zuordnung logischer Zeiger zu den Blocken einer festen Speicherverwaltung ist die
Indizierung. Die fortlaufende Nummer innerhalb des umfassenden Blocks ist zugleich der
logische Zeiger. Die Zahlung muf3 mit der Nummer Eins beginnen, denn der Zeigerwert Null
ist per Definition unglltig. Die Verwaltung dieser Zeiger erfordert keinen Zusatzaufwand. Die
Blocke dirfen aber nicht einzeln verschoben werden. Dadurch wirde sich ihr Index dndern.
Auch bei einer festen Speicherverwaltung kénnen beliebige Blocke freigegeben werden.
Befindet sich der freizugebende Block am Ende des umfassenden Blocks, kann dieser
verkleinert werden. Fir andere Blocke wird eine Freiliste angelegt, denn die nachfolgenden
Blocke missen ihren Index behalten (siehe Abbildung 2-12).

Freigeben Freigeben
Summe 8 Summe 8

1,2 3,4 ,5,6,7, 6 8 1,2 3 4,5 ,6 7 8
Summe 7 Summe 8

1,2 3,4 ,5,6 7 1,2 ,3 4,5 6 frei 8

Abb. 2-12: Freigabe bei fester Speicherverwaltung

Die freien Blécke haben alle dieselbe GrofRe. Deshalb ist die Behandlung der Freiliste nicht
schwer. Ein freier Block bendtigt keine GréRenangabe, sondern nur einen Verweis auf das
nachste Element der Freiliste. Es entstehen jedoch einige Nachteile im Vergleich zur
dynamischen Verwaltung. Fir eine neue Anforderung sollte der freie Block mit dem kleinsten
Index verwendet werden. Dadurch erhéht sich die Wahrscheinlichkeit, daR am Ende des
umfassenden Blocks etwas frei wird und dieser verkleinert werden kann. Die Freiliste mul3
also sortiert sein. Bei einer dynamischen Speicherverwaltung werden benachbarte Freiblocke
zusammengefal3t und kénnen fir grofRere Anforderungen genutzt werden. Die freien Blocke
einer festen Verwaltung stehen nur fiir Anforderungen derselben GréfRRe zur Verfligung.
Abbildung 2-13 zeigt ein Beispiel fir eine sortierte Freiliste.

Summe 16
1 | fre|I frelI 4 | 5 | 6 | frei | frelI frei | frei | fre|I fre|I 13 | frei | 15 | 16

=gl ol sl s e el e

Abb. 2-13: Freiliste im umfassenden Block

Der umfassende Block kann nur verkleinert werden, wenn der physisch letzte Block
freigegeben wird. Treten freie Blocke in der Mitte auf, bleibt der Speicher ungenutzt. Je
mehr Blécke freigegeben werden, desto gréRer wird dieses Problem. Eine Lésung daflr ist
die Aufteilung des Festspeichers auf mehrere Blocke. Diese kénnen mit einer Arraycollection
verwaltet werden. Pro Teilblock entsteht der Overhead eines zusétzlichen Zeigers. Sind die
Teilblécke groRer als hundert Bytes, fallt er kaum noch ins Gewicht. Die Verwaltung der
Freiliste wird jedoch wesentlich effizienter. Praktische Tests haben ergeben, daR 250 bis
1000 Elemente pro umfassendem Block optimal sind. Treten mehr auf, sollte er in Teilblécke
zerlegt werden (siehe Abbildung 2-14).

Spirick Tuning Tutorial Seite 70

. Summe 4
Zeiger — | | frei | frei | 4
Zeiger —|> nglme62
NULL

. Summe 4
Zeiger [) 13 | frei | 15 | 16

Abb. 2-14: Aufteilung auf mehrere Blocke

2.4 Objektverwaltung

In der objektorientierten Sprechweise ist ein Programm eine Sammlung von Objekten. Mit
einem Computer kénnen wir Objekte speichern und deren Methoden aufrufen. Dabei
entstehen neue Objekte, und alte werden geldscht. Einige Objekte sind bereits im statischen
Modell eines C + +-Programms enthalten. Dazu zahlen Variable und temporére Objekte. Die
Bereitstellung von Speicher und die Verwaltung ihrer Adressen tibernimmt der Compiler.
Globalen Variablen und statischen Attributen der Klassen werden beim Programmstart feste
Speicherbereiche zugewiesen. Lokale Variable und temporare Objekte legt der Compiler auf
dem Stack ab. Um dynamisch erzeugte Objekte miissen wir uns selbst kiimmern. Die
Speicherverwaltung stellt den erforderlichen Speicher zur Verfligung. Fir das Sammeln und
Ordnen ist die Objektverwaltung zustandig.

Ihre theoretische Grundlage ist die Mengenlehre. Nach der Art der Elemente unterscheiden
wir homogene und polymorphe Mengen. Eine homogene Menge enthélt nur gleichartige
Objekte, in einer polymorphen kédnnen Objekte verschiedener Typen zusammengefaldt
werden. Sind die Elemente einer Menge einzeln bekannt, sprechen wir von einer statischen
Menge. Sie kann im statischen Modell eines C+ +-Programms mit einem Datentyp
beschrieben werden. Ein C+ +-Array ist zum Beipiel eine statische homogene Menge.
Anzahl und Typ der Elemente sind bekannt. Sie werden mit einem Index identifiziert.
Statische polymorphe Mengen kénnen mit Strukturen (struct) und Klassen (class) dargestellt
werden. Darin besitzt jedes Element (Attribut) einen eindeutigen Namen.

Das Gegenteil einer statischen ist eine dynamische Menge. Anzahl und Typ ihrer Elemente
ergeben sich erst zur Laufzeit des Programms. Die Beschreibung dynamischer Mengen ist
kein Bestandteil der Sprache C + +. Da sie jedoch haufig verwendet werden, existieren
zahlreiche Implementierungen in Klassenbibliotheken. In den fundamentalen Klassen unseres
Beispielprogramms OHelp haben wir zwei Arten dynamischer Mengen kennengelernt, die
Collections ct_Array und ct DList. Damit kénnen wir polymorphe Mengen modellieren. Der
Performancetest hat gezeigt, da® dieses Collection-Konzept nicht ausreicht. In einem
Programm treten auch viele dynamische homogene Mengen auf. Zur Unterscheidung von
den Collections nennen wir sie im folgenden Container (siehe Tabelle 2-1).

Homogene Menge Polymorphe Menge
Statische Menge C+ +-Array Struktur und Klasse
Dynamische Menge Container Collection

Spirick Tuning Tutorial Seite 71

Tab. 2-1: Modellierung von Mengen in C+ +

Ein Container ist auf Objekte eines bestimmten Typs spezialisiert. Wir kénnen ihn als Low-
Level-Collection bezeichnen, denn er ist nicht so universell wie eine Collection einsetzbar.
Diese bietet mehr Programmierkomfort. In den Bereich der Objektverwaltung gehéren auch
Datenbanken. Sie besitzen einen noch gréReren Funktionsumfang. Datenbanken dienen der
persistenten Verwaltung von Objekten in einem Netzwerk. Eine Behandlung dieses Themas
geht aber weit Uber das Ziel des Buchs hinaus. Wir konzentrieren uns auf Dinge, die sich mit
den sprachlichen Mitteln von C + + darstellen lassen. Dazu gehéren Container und
Collections. Sie bilden den Kern der Verwaltung dynamischer Objekte und haben einen
grofRen EinfluR auf die Performance. Abbildung 2-15 zeigt den Aufbau der Objektverwaltung
und ihre Position innerhalb der Verwaltungshierarchie eines Programms.

Anwendungsprogramm

~

Objektverwaltung

Datenbanken

<

Collections

N

Container

v
Speicherverwaltung

~

Betriebssystem

Abb. 2-15: Verwaltungshierarchie eines Programms

2.4.1 Container

Container sind fiir den Einsatz an performancekritischen Stellen gedacht. Bei allen Fragen
des Designs und der Implementierung versuchen wir, eine Lésung mit bestmdglicher
Performance zu finden. Mengen, die nur einen geringen Einflu? auf die Performance
ausliben, kénnen wir mit den komfortableren Collections darstellen. Die Analyse von OHelp
ergab bei Collections die folgenden Performancemangel:

¢ Virtuelle Methoden verlangsamen das lterieren und den Zugriff.
« Die verwalteten Objekte missen von einer abstrakten Basisklasse erben.
* Homogene Collections belasten die Speicherverwaltung unnétig.

Das erste Problem beheben wir, indem wir fir Container keine abstrakte Basisklasse
deklarieren. Dadurch entfallen virtuelle Methoden, die in abgeleiteten Klassen (konkreten
Containern) redefiniert werden missen. Wir fordern jedoch, dal alle Container ein
einheitliches Interface besitzen. Damit vereinfacht sich ihre Handhabung. Im Abschnitt 1.2.2

Spirick Tuning Tutorial Seite 72

"Uberblick ist Alles" haben wir festgestellt, dal® viele Klassen mit demselben Interface
genauso einfach wie eine einzelne zu bedienen sind. Ein breites Spektrum solcher Klassen
bietet hohe Flexibilitét. Wahrend der Implementierung kann ein Container durch einen
anderen ersetzt werden, ohne dald seine Verwendungen davon betroffen sind.

Das zweite Problem I6sen wir mit den sprachlichen Mitteln von C+ +. Ein Container ist eine
Menge gleichartiger Objekte. Wir fordern nicht, dal3 sie von einer bestimmten Basisklasse
erben. Der Container soll sich an seine Objekte anpassen. Eine normale Klasse besitzt diese
Fahigkeit nicht. In der Sprache C+ + kénnen wir jedoch parametrisierte Datentypen mit
Hilfe von Templates darstellen. Einen neuen Container entwerfen wir also in Form eines
Klassentemplates. Der Elementtyp ist ein Parameter des Containers.

Eine Collection enthalt genau genommen keine Objekte. Sie werden aulRerhalb erzeugt und
geldscht. Die Collection verwaltet nur Zeiger darauf. Das ist die Ursache des dritten
Problems. Die vielen einzelnen Objekte belasten die Speicherverwaltung. In einem Container
ist es leicht moglich, den Speicher zu optimieren. Er ist eine homogene Menge und kennt die
GrolRe seiner Objekte. Wir fordern also, dafd ein Container den Speicher fir seine Elemente
selbst verwaltet. Er baut direkt auf der Speicherverwaltung auf und ist enger mit ihr
verbunden als eine Collection (siehe Abbildung 2-16).

Container Collection
Objekt 1 Objekt* | > | Objekt 1
Objekt n Objekt * — [Objekt n

Abb. 2-16: Container und Collection

Beim Entwurf der Schnittstelle fir Container orientieren wir uns an den Collections von
OHelp. Die Datentypen flr die Lange und zur ldentifizierung eines Eintrags werden nicht
global definiert. Sie kénnen sich von Container zu Container unterscheiden und sind als
geschachtelte Typen in der Klasse enthalten. Den Begriff Entryld ersetzen wir durch
"logischer Zeiger". Auch der Objekttyp ist nicht global vorgegeben. Er gelangt als dritte
Typdefinition in die Containerklasse. Die Methodennamen (ibernehmen wir im wesentlichen
von den Collections. Die Methoden zum Einfligen und Léschen nennen wir jedoch
geringfligig anders, denn der Container verwaltet den Speicher seiner Objekte selbst (siehe
Beispiel weiter unten). Add nennen wir nun AddObj, Delete Del0bj usw. Sehen wir uns nun die
vollstandige Deklaration eines Containertemplates an.

template <class t obj>
class gct_AnyContainer

{

public:
typedef unsigned short t_Length;
typedef void * t_Pointer;
typedef t_obj t Object;
t_Length GetLen () const;
t Pointer First () const;
t Pointer Next (t_Pointer o ptr) const;
t Object * GetObj (t_Pointer o _ptr) const;
t Pointer AddObj (const t_Object * po obj = 0);
t Pointer AddObjCond (const t Object * po obj);

Spirick Tuning Tutorial Seite 73

t Pointer AddObjAfter (t_Pointer o ptr,
const t _Object * po obj = 0);

t Pointer DelObj (t_Pointer o ptr);

b

Der groRRte Unterschied zwischen einem Container und einer Collection besteht in der
Bereitstellung des Speichers fiir die Objekte. Sie befinden sich physisch im Container, und er
ruft auch ihre Konstruktoren und Destruktoren auf. Ein neues Objekt wird im Container mit
seinem Standard- oder Kopier-Konstruktor erzeugt. Der Parameter der Methode AddObj hat
den Vorgabewert Null. Ein Aufruf der Methode ohne Parameter fiihrt zur
Standardinitialisierung des neuen Objekts. Ein vorhandenes Objekt kann nicht in den
Container Gbernommen, sondern nur kopiert werden. Dazu mul3 der Methode AddObj ein
Zeiger auf das zu kopierende Objekt (ibergeben werden. Das neue Objekt wird dann mit dem
Kopier-Konstruktor erzeugt.

Die Methode Del0bj verwaltet ebenfalls das referenzierte Objekt und den zugehorigen
Speicher. Sie ruft zuerst den Destrukor des Objekts auf. Dann wird die Verbindung zum
Container geldscht und der belegte Speicher freigegeben. Das folgende Programmfragment
enthalt je ein Beispiel fiir das Erzeugen, Kopieren und Ldschen eines Objekts in einem
Container.

ct_String co_string = "Vorhandener Text";
ct_String * pco_string;

gct_AnyContainer <ct String> co_container;
gct_AnyContainer <ct _String>:: t Pointer o ptr;

// Neues Objekt im Container erzeugen und initialisieren
0 _ptr = co_container. AddObj ();

pco_string = co_container. GetObj (o _ptr);

(* pco_string) = "Neuer Text";

// Vorhandenes Objekt in den Container kopieren
0 ptr = co_container. AddObj (& co_string);

// 0Objekt aus dem Container nehmen und T6schen
co_container. DelObj (o _ptr);

Auch die Methode AddObjAfter besitzt einen Parameter mit dem Vorgabewert Null. Sie dient
dem positionierten Einfligen eines Objekts in den Container. Ein Aufruf ohne
Objektparameter flihrt zum Erzeugen eines neuen Objekts mit dem Standard-Konstruktor.
Der Methode AddObjCond mufd stets ein Zeiger auf ein Objekt Gbergeben werden. Sie prift mit
dem Gleich-Operator, ob das angegebene Objekt schon im Container enthalten ist. Wird ein
gleiches Objekt gefunden, liefert sie den logischen Zeiger darauf. Andernfalls wird ein neues
Objekt mit dem Kopier-Konstruktor erzeugt und dessen logischer Zeiger zurlickgegeben.

Eine Ubergangsform zwischen Container und Collection ist ein Zeiger-Container, also ein
Container, der Zeiger enthalt. Dabei nutzen wir die Effizienz des Containers und die
Allgemeinheit der Collection. Dieser Container besitzt keine virtuellen Methoden und kann
Verweise auf Objekte abgeleiteter Klassen enthalten. Bei der Arbeit mit einem
Zeigercontainer missen wir darauf achten, dal3 die Methode AddObj einen Zeiger auf einen
Zeiger erwartet und GetObj einen Zeiger auf einen Zeiger liefert. Die eigentlichen Objekte
mUissen wie bei einer Collection aul3erhalb erzeugt und geléscht werden.

ct String co_string = "Vorhandener Text";
ct_String * pco_string;

gct_AnyContainer <ct String *> co_container;
gct_AnyContainer <ct String *>:: t Pointer o ptr;

// Neues Objekt erzeugen und in den Container aufnehmen
pco_string = new ct_String ("Neuer Text");

Spirick Tuning Tutorial Seite 74

0 _ptr = co_container. AddObj (& pco_string);

// Vorhandenes Objekt in den Container kopieren
pco_string = new ct String (co_string);
0 _ptr = co_container. AddObj (& pco_string);

// 0Objekt aus dem Container nehmen und T6schen
pco_string = * co_container. GetObj (o _ptr);
co_container. DelObj (o ptr);

delete pco_string:

Eine Containerklasse besitzt zahlreiche Ahnlichkeiten mit einer Storeklasse. Beide sind auf
gute Performance ausgelegt und erben nicht von einer abstrakten Basisklasse mit virtuellen
Methoden. Den Datentypen t Size und t Pointer eines Stores entsprechen im Container
t Length und t Pointer. Ein Container verwaltet keinen rohen Speicher, sondern Objekte.
Deshalb enthélt er als dritten Datentyp t Object. Der Storemethode AddrOf entspricht die
Containermethode GetObj. Wahrend AddrOf einen untypisierten Zeiger auf einen
Speicherbereich liefert (void *), erhalten wir von GetObj einen typisierten Zeiger auf das
referenzierte Objekt. Den reinen Speichermethoden Alloc und Free &ahneln die
objektbezogenen Methoden AddObj und DelObj. Sie verwalten nicht nur den Speicher, sondern
erzeugen bzw. lI6schen auch das darin befindliche Objekt.

Von einem Store fordern wir nicht, dal die Speicherbereiche ihre physische Adresse
behalten. Das gilt auch fir die Adressen der Objekte in einem Container. Erst dadurch wird
es moglich, den Speicher effizient zu verwalten. Nach dem Einfligen oder Léschen eines
Objekts kann der Container andere Objekte im Speicher verschieben. In einem
Arraycontainer verlieren auch die logischen Zeiger ihre Gultigkeit. Ein Listencontainer stellt
sicher, dal® der logische Zeiger, den wir beim Einfligen erhalten, bis zum Léschen dasselbe
Objekt identifiziert.

Bei der Arbeit mit Containern werden unterschiedliche Anforderungen an die Giltigkeit von
Verweisen gestellt. Machmal missen die logischen Zeiger ihre Glltigkeit behalten,
manchmal die Adressen der Objekte. Ein Zeigercontainer stellt sicher, dal3 die referenzierten
Objekte im Speicher an derselben Stelle bleiben. In einem Listencontainer bleiben auch die
logischen Zeiger giiltig. In Tabelle 2-2 sehen wir die Kombinationen, die sich daraus
ergeben. Die Sternchen geben Auskunft Uber die Effizienz des Containertyps. Viele
Sternchen stehen fiir eine gute Performance.

Logischer Zeiger ungultig Logischer Zeiger gliltig
Adresse ungliltig Objekt-Array (****) Objekt-Liste (***)
Adresse glltig Zeiger-Array (**) Zeiger-Liste (*)

Tab. 2-2: Logische Zeiger und Adressen in Containern

2.4.2 Collections

Das Collection-Konzept Gbernehmen wir im wesentlichen aus dem ersten Teil des Buchs. Die
Namensgebung passen wir jedoch an die Stores und Container an. Um Verwechslungen mit
den lokalen Typen der Container zu vermeiden, nennen wir die beiden globalen Typen der
Collections t ColllLen und t_Col1Ptr. Die Methoden zum Einfligen und Léschen von Objekten
heilRen nun AddPtr und DelPtr. Eine Collection verwaltet keine Objekte, sondern nur Zeiger
darauf. Werden Container und Collections gleichzeitig eingesetzt, dirfen die Methoden
AddObj und AddPtr nicht miteinander verwechselt werden. Der folgende Programmausschnitt
zeigt die neue Deklaration der abstrakten Basisklasse ct Collection.

Spirick Tuning Tutorial Seite 75

typedef unsigned long t ColllLen;
typedef unsigned Tong t CollPtr;

class ct_Collection: public ct Object
{

pubTic:
virtual t_ColllLen GetlLen () const = 0;
virtual t_CollPtr First () const = 0;

virtual t_CollPtr Next (t_CollPtr o ptr) const = 0;
virtual ct_Object * GetObj (t_CollPtr o_ptr) const = 0:
virtual t_CollPtr AddPtr (ct _Object * pco_obj) = 0;
virtual t _CollPtr AddPtrCond (ct_Object * pco_obj) = 0;

virtual t_CollPtr AddPtrAfter (t CollPtr o ptr,

ct_Object * pco_obj) = 0;
virtual t _CollPtr DelPtr (t _CollPtr o ptr) = 0;
b

Die Methoden der Collections miissen nicht mehr einzeln programmiert werden. Fir die
Implementierung einer konkreten Collection nutzen wir einen entsprechenden
Zeigercontainer, zum Beispiel einen Arraycontainer fir eine Arraycollection. In der
Anwendung verhalten sich Collections dhnlich wie Zeigercontainer. Die referenzierten
Objekte missen aul3erhalb erzeugt und geléscht werden. Das folgende Programmfragment
enthalt je ein Beispiel fir das Erzeugen, Kopieren und Ldschen eines Objekts in einer
Collection.

ct _String co_string = "Vorhandener Text";
ct_String * pco_string;

ct _Collection * pco _collection =;

t CollPtr o ptr;

// Neues Objekt erzeugen und in die Collection aufnehmen
pco_string = new ct String ("Neuer Text");
0_ptr = pco_collection-> AddPtr (pco_string);

// Vorhandenes Objekt in die Collection kopieren
pco_string = new ct_String (co_string);:
0 _ptr = pco_collection-> AddPtr (pco_string);

// Objekt aus der Collection nehmen und 16schen
pco_string = pco_collection-> GetObj (o _ptr);
pco_collection-> DelPtr (o_ptr);

delete pco_string;

2.5 Sicherheitstraining

2.5.1 Reservespeicher

Moderne Betriebssysteme verfligen Gber einen virtuellen Speicher. Der Arbeitsspeicher des
Computers wird mit Hilfe von Auslagerungsdateien vergréf3ert. Damit steht einem
Anwendungsprogramm ein Vielfaches des Hauptspeichers zur Verfliigung. Aber auch der
virtuelle Speicher geht einmal zu Ende. Unsere Anspriiche wachsen schneller als die
Hardware. Das Multitasking ermdglicht es, mehrere Anwendungen hintereinander zu starten.
Das Schliel3en vergessen wir meist und werden erst daran erinnert, wenn das
Betriebssystem sagt: Out of memory.

Als Softwareentwickler missen wir an jeder Stelle des Programms damit rechnen, dal3 kein
freier Speicher mehr zur Verfligung steht. Unterlassen wir diese Priifungen, kann unser

Spirick Tuning Tutorial Seite 76

Programm unkontrolliert verlassen werden. Das ist meist mit drgerlichem Datenverlust
verbunden. Die traditionelle Lésung des Problems besteht in der Priifung jeder einzelnen
Speicheranforderung. Kann kein Speicher bereitgestellt werden, erhalten wir von den
Standardfunktionen malloc und realloc einen Nullzeiger. Diese Konvention gilt auch fir die
Methoden Alloc und Realloc der Storeklassen.

Eine typische Situation fiir einen Speicheriberlauf ist das Laden einer Textdatei. Betrachten
wir dazu ein Programmbeispiel. Die Klasse ct_TextFile enthalt alle Definitionen zum Einlesen
einer Datei. Andere Eigenschaften werden hier nicht berlicksichtigt. Der Text wird intern als
Folge von Zeilen dargestellt. Fir eine Zeile verwenden wir die Klasse ct_String, fir die Folge
die Collection ct DList. Die Methode Read liest den gesamten Text ein und setzt eine
Statusvariable. Tritt dabei ein Fehler auf, wird der halb eingelesene Text mit der Methode
ClearList gelOscht.

class ct_TextFile

{
public:
enum et _ErrorModes
{
ec 0Ok,
ec_OutOfMemory,
i
private:
ct DList * pco_TextlLines;
et _ErrorModes eo_ErrorMode;
void ClearList ();
et _ErrorModes ReadLine (FILE * pco file, t CollPtr & ro ptr);
pubTic:
void Read ();
b

void ct_TextFile:: Read ()

eo_ErrorMode = ec 0Ok;
t Col1Ptr o_ptr = 0;
FILE * pco _file;
. // Datei 06ffnen
while (! feof (pco_file))

eo_ErrorMode = ReadlLine (pco_file, o _ptr);
if (eo_ErrorMode !'= ec_0k)

{
ClearList ();

break;

}
}

. // Datei schlieBen

Das Einlesen einer einzelnen Zeile erfolgt mit der Methode ReadlLine. lhre Parameter sind ein
Zeiger auf die gedffnete Datei und eine Referenz auf einen logischen Zeiger. Dieser enthalt
den Zeigerwert der zuletzt gelesenen Zeile und bekommt den neuen Zeigerwert zugewiesen.
Eine neue Zeile bendtigt drei Speicherbldcke, je einen flr das Stringobjekt, die eigentliche
Zeichenkette und das DList-Node. In allen drei Fallen kann der Speicher ausgehen. Wurde
das Stringobjekt erzeugt, aber der Speicher fiir die Zeichenkette fehlt, mufd das Objekt vor
der return-Anweisung geldscht werden. Dasselbe gilt, wenn die Liste kein neues Node
bereitgestellt hat. Die Methode ClearList kann nur Stringobjekte I6schen, die schon in der
Liste enthalten sind.

Spirick Tuning Tutorial Seite 77

ct _TextFile:: et ErrorModes
ct TextFile:: ReadLine (FILE * pco file, t CollPtr & ro_ptr)

{
static char ac_buffer [BUFFER SIZE];

. // Neue Zeile aus Datei in ac_buffer lesen
ct String * pco_textlLine = new ct _String (ac_buffer);
if (pco_textLine == 0) // Kein Stringobjekt?
return ec_OutOfMemory;
if (pco_textlLine-> GetStr () == 0) // Keine Zeichenkette?

{

delete pco_textLine;
return ec_OutOfMemory;

}
ro_ptr = pco_TextLines-> AddPtrAfter (ro_ptr, pco_textlLine);

if (ro_ptr == 0) // Nicht in die Liste eingeflgt?
{

delete pco_textline;
return ec_OutOfMemory;

}
}

Der Anweisungsteil der Methode ReadlLine besteht zum gréRRten Teil aus Fehlerabfragen und
deren Behandlung. Flr einen korrekten Test der Methode mii3te die Speicherverwaltung so
manipuliert werden, dal} alle drei Fehlersituationen einmal auftreten. Implementierung, Test
und Wartung solcher Programmteile sind sehr aufwendig. Deshalb wurde die
Ausnahmebehandlung (Exception Handling) in den neuen C + +-Standard aufgenommen.
Damit soll das Reagieren auf Fehler vereinfacht und vereinheitlicht werden. Die Grundidee
des Exception Handlings besteht darin, die Fehlerbehandlung vom ilbrigen Programmcode zu
trennen. Eine Verbundanweisung ohne Fehlerbehandlung wird versuchsweise ausgefiihrt.
Tritt dabei ein Fehler auf, wird er von einem separaten Programmteil behandelt. Betrachten
wir eine Definition der Methode ReadlLine mit Exception Handling.

ct_TextFile:: et ErrorModes
ct TextFile:: ReadlLine (FILE * pco file, t CollPtr & ro_ptr)

{
try

{
static char ac_buffer [BUFFER_SIZEJ:

. // Neue Zeile aus Datei in ac_buffer Tesen
ro_ptr = pco_TextLines-> AddPtrAfter (ro_ptr, new ct String (ac_buffer));

}

catch (xalloc)

{

return ec_OutOfMemory;

}

return ec_0k;

}

Der Programmcode ist klrzer und Ubersichtlicher geworden. Hinter dem Schliisselwort try
steht der eigentliche Inhalt der Methode. Dieser ist so implementiert, als kénnte kein Fehler
auftreten. Daran kénnen sich mehrere catch-Blécke anschlieRen. Jeder ist fliir eine bestimmte
Fehlerart zustandig. Wir betrachten in unserem Beispiel nur Speichermangelfehler. Diese
erzeugen eine Ausnahme (Exception) des Typs xalloc. Wird sie von der Speicherverwaltung
ausgelodst, bricht die Ausfihrung der aktuellen Anweisung ab, und das Programm wird im
zugehorigen catch-Block fortgesetzt.

Tritt in einer Verbundanweisung eine Exception auf, werden wie beim normalen Verlassen
die Destruktoren lokaler Objekte aufgerufen. Nach einer Exception in einem Konstruktor
werden alle vollstandig konstruierten Teilobjekte (Attribute und Basisklassen) zerstort. Diese
Mechanismen vereinfachen die Aufrdumarbeit, sind aber nicht auf dynamisch erzeugte

Spirick Tuning Tutorial Seite 78

Objekte anwendbar. In der Methode ReadlLine wird mit dem Operator new ein neues
Stringobjekt erzeugt. Kann es wegen Speichermangels nicht in die Liste eingefligt werden,
bleibt es nutzlos im Speicher liegen. Wir missen die Fehlerbehandlung noch einmal
Uberarbeiten.

ct_TextFile:: et ErrorModes
ct_TextFile:: ReadLine (FILE * pco_file, t_CollPtr & ro_ptr)

{
ct_String * pco_textlLine = 0;
try

{
static char ac_buffer [BUFFER_SIZEJ:

. // Neue Zeile aus Datei in ac_buffer lesen
pco_textLine = new ct String (ac_buffer);
0 _ptr = pco_TextlLines-> AddPtrAfter (o _ptr, pco_textLine);

catch (xalloc)

{

delete pco_textlLine;
return ec_OutOfMemory;

}

return ec_0k;

}

Das Exception Handling ist komfortabel wie andere C+ +-Mechanismen, die wir schon
behandelt haben. Wollen wir es einsetzen, miissen wir aufmerksam auf Seiteneffekte
achten. Auch hier wartet so manche Falle im Unsichtbaren darauf, da® wir hineintappen. Fir
die Behandlung von Speichermangelfehlern bietet es keine befriedigende Losung. Wir
mussen immer noch viele Félle einzeln behandeln. Dynamischer Speicher wird an zahlreichen
Stellen des Programms bendétigt. Ebenso zahlreich sind die moglichen Fehlersituationen.
Wollen wir den Aufwand fir deren Behandlung auf ein Minimum reduzieren, missen wir uns
nach einer anderen Technik umsehen.

Optimal ware es, wenn wir vor einer speicherintensiven Operation priifen kdnnten, ob noch
genligend freier Speicher vorhanden ist. Die GrélRe des verfligbaren Speichers wird uns
jedoch von den meisten Betriebssystemen nicht mitgeteilt, oder wir erhalten nur eine grobe
Schatzung. Zur Verbesserung des Speichermanagements miissen wir uns selbst etwas
einfallen lassen. Um herauszufinden, ob der freie Speicher zu Ende geht, fordern wir beim
Programmstart einen groRen Block Reservespeicher an. Kann eine Speicheranforderung nicht
erfillt werden, geben wir den Reservespeicher frei und versuchen es erneut. Das Programm
kann solange weiterarbeiten, bis auch der Reservespeicher aufgebraucht ist.

Um die Handhabung des Reservespeichers zu vereinfachen, integrieren wir ihn in eine
Storeklasse. Kann der Store keinen neuen Speicher bereitstellen, gibt er die Reserve frei. Als
Anwender des Stores merken wir davon nichts. Die Methoden Alloc, Realloc und Free
arbeiten normal weiter. Die neue Abfragemethode HasReserve liefert aber den Wert false. Das
ist fir uns das Warnsignal. Nun dirfen wir nicht mehr viel Speicher anfordern. Stattdessen
sollten wir solange Speicher freigeben, bis der Reservespeicher wieder verfligbar ist. Nach
jeder Freigabe versucht der Store, den Reservespeicher erneut anzufordern. Gelingt es,
liefert HasReserve wieder den Wert true. Entwerfen wir eine Storeklasse mit Reservespeicher,
sollten die neuen Attribute und Methoden static deklariert werden, damit nicht jede Instanz
eine eigene Reserve anlegt.

class ct_SafeStore

{

static unsigned u_Reservelen;
static void * pv_Reserve;
pubTlic:
// Allgemeines Store-Interface
static void SetReservelen (unsigned u_reslen);

Spirick Tuning Tutorial Seite 79

static unsigned GetReservelen ();
static bool HasReserve ();

b

Mit dieser Technik muf nicht mehr jede einzelne Speicheranforderung geprift werden.
Stattdessen fragen wir punktuell, ob noch Reservespeicher vorhanden ist. Die Haufigkeit der
Abfragen mulR mit der GroRe des Reservespeichers Ubereinstimmen. Zwischen zwei
Abfragen darf nicht mehr Speicher angefordert werden, als wir in Reserve haben.
Beschranken wir uns zum Beispiel beim Laden einer Textdatei auf eine Zeilenldange von 64 K
Bytes, ist ein Reservespeicher von 65 K Bytes ausreichend. Die Abfrage mufd dann bei jeder
einzelnen Zeile erfolgen. Betrachten wir die geadnderte Definition der Methode ReadlLine.

ct TextFile:: et ErrorModes
ct TextFile:: ReadlLine (FILE * pco file, t Col1Ptr & ro_ptr)

{
static char ac_buffer [BUFFER SIZEJ;

. // Neue Zeile aus Datei in ac_buffer lesen
ro_ptr = pco_TextlLines-> AddPtrAfter (ro_ptr, new ct _String (ac_buffer));
if (GetGlobalStore ()-> HasReserve ())
return ec_0k;
else
return ec_OutOfMemory;

}

Ohne Reservespeicher ist es schwer, bei Speichermangel die Konsistenz der Daten zu
gewahrleisten. Mit der Storemethode Realloc kénnen wir einen dynamischen Block
vergroRern. Der Inhalt des kleineren Blocks wird dabei in den gréReren kopiert. Der
Ubergebene Zeiger auf den alten Block verliert seine Giiltigkeit. Der Rlickgabewert der
Methode ist der Zeiger auf den neuen Block. Reicht der Speicher zum VergréRern nicht aus,
liefert Realloc den Wert Null. Dann ist der alte Block nicht mehr verfligbar, und ein neuer
existiert nicht. Die Daten, die sich im Block befanden, sind verlorengegangen.

Ein Store mit Reservespeicher stellt sicher, dal3 elementare Operationen zu Ende geflihrt
werden koénnen. Reicht der Speicher zum VergroRern eines Blocks nicht aus, wird der
Reservespeicher freigegeben. Dieser sollte gro3 genug sein. Dann kann der gréRere Block
bereitgestellt und der alte Inhalt lbernommen werden. Diese Schritte laufen innerhalb der
Methode Realloc ab. Fir den Anwender der Stores bleiben sie verborgen. Er erhéalt einen
Zeiger auf den vergroRerten Block. Die nachste Abfrage der Methode HasReserve liefert aber
den Wert false.

2.5.2 Referenzzahler und sichere Zeiger

Zeiger, die ins Leere zeigen (Dangling Pointers), sind ein Alptraum jedes
Softwareentwicklers. Komplex strukturierte Daten enthalten zahlreiche Verweise von
Objekten auf andere. Die Konsistenz dieser Daten zu gewahrleisten, ist keine leichte
Aufgabe. Besonders schwierig ist das Verwalten von Objekten, die viele Abhangigkeiten
besitzen. Fallen alte weg oder kommen neue hinzu, verkiirzt oder verldngert sich die
Lebensdauer. Werden Objekte zu spat geldéscht, kann der Speicher tberlaufen. Werden sie
zu frih entfernt, entstehen Dangling Pointers.

Bei der Implementierung der Anwendungsklassen von OHelp haben wir Referenzzéhler
kennengelernt. Sie geben Auskunft tber die Anzahl der Verweise auf ein Objekt. Existieren
keine Verweise mehr, kann es geléscht werden. Der Referenzzahler der Klasse ct_Topic
enthalt die Anzahl der Hyperlinks auf dieses Thema. Es kann erst geléscht werden, wenn
keine zugehorigen Hyperlinks mehr existieren. In diesem Beispiel sind die Abhangigkeiten
einseitig. Ein Hyperlink zeigt auf ein Thema. Das Thema besitzt jedoch keinen Verweis zu
den referenzierenden Hyperlinks.

Spirick Tuning Tutorial Seite 80

In der Praxis treten oft mehrseitige Abhangigkeiten auf. Auch dafiir sind Referenzzahler
geeignet. Sie gelten dann sogar als alleiniges Existenzkriterium des Objekts. Wird eine
Referenz geldscht, und der Zahler erreicht den Wert Null, zerstort sich das Objekt selbst. Der
Destruktor entfernt Referenzen auf andere Objekte, die sich moéglicherweise auch zerstéren.
Bilden die Referenzen Zyklen, besteht die Gefahr der Entstehung isolierter Inseln. Beim
Léschen der letzten Referenz auf einen Zyklus verliert er die Verbindung zur Au3enwelt. Die
Objekte sind nicht mehr erreichbar. Sie kénnen auch nicht geléscht werden, denn ihre
Referenzzahler sind ungleich Null. In Abbildung 2-17 sehen wir die Entstehung einer
isolierten Insel. Die Zahlen in Klammern sind die Referenzzahler.

Verweis [—/A—> | Objekt(2) ——| Objekt (1) F——>| Objekt (1)

Verweis Objekt (1) —>| Objekt (1) —>| Objekt (1)

Abb. 2-17: Insel durch zyklische Referenzzéhler

Referenzzahler in Objekten sind oft eine ungenaue Modellbildung. In vielen Fallen sind sie
Zusatzinformationen, die keine Modelleigenschaften widerspiegeln. Ahnlich der Rundung
dynamischer Blocke gehoren sie in den Store, der die referenzierten Objekte verwaltet. Eine
Speicherverwaltung mit Referenzzahlern 1af3t sich leicht realisieren. Wir sagen dazu kurz
Refstore. Er ordnet jedem Block einen Referenzzahler zu und besitzt keine eigene
Blockverwaltung, sondern baut auf einem anderen Store auf. Dieser kann seine Blocke
dynamisch oder fest verwalten. Eine Refstore-Klasse (z. B. ct RefStore) enthélt neben dem
allgemeinen Store-Interface die Methoden IncRef, DecRef und GetRef. Diese erwarten als
Parameter einen gultigen logischen Zeiger und greifen damit auf den Referenzzahler des
Blocks zu.

Wird von einem Refstore neuer Speicher gefordert, beschafft er ihn vom darunter liegenden
Store und initialisiert den zugehérigen Referenzzahler. Unabhangig vom Objekt, das im Block
untergebracht wird, kann der Referenzzahler erh6ht und erniedrigt werden. Der Refstore
stellt sicher, dalR der logische Zeiger gliltig bleibt, solange noch Verweise auf den
Speicherblock existieren. Soll der Block freigegeben werden, und der Referenzzahler ist
ungleich Null, wird nur ein Flag gesetzt. Dieses kann mit den Methoden IsATloc und IsFree
abgefragt werden. Ein Zugriff auf den Block ist danach nicht mehr sinnvoll, und die
zugehorigen Verweise missen entfernt werden. Erst wenn der Referenzzahler den Wert Null
erreicht, wird der Speicher im anderen Store freigegeben, und der Zeiger verliert seine
Gultigkeit (siehe Beispiel weiter unten).

Ein Referenzzahler wird mit der Klasse ct _RefCount dargestellt. Diese enthalt zwei
Informationen. Der eigentliche Referenzzéhler ist eine nichtnegative ganze Zahl. Er kann mit
den Methoden IncRef und DecRef gedndert und mit GetRef abgefragt werden. Das zweite
Attribut ist ein Wahrheitswert und benétigt nur ein Bit. Es gibt Auskunft darliber, ob der
zugehorige Block im Refstore genutzt oder freigegeben ist. Mit den Methoden IsAlloc und
IsFree kann es abgefragt werden. Die Methode IsNull liefert den Wahrheitswert true, wenn
der Referenzzahler gleich Null und der Block frei ist. Das bedeutet, dal3 der Block im anderen
Store freigegeben werden kann. Abbildung 2-18 zeigt das Interface der Klassen ct_RefCount
und ct_RefStore.

Spirick Tuning Tutorial Seite 81

ct_RefCount ct_RefStore
o_RefCount o_Store
b_Alloc MaxAlloc
ot RefCount StorelnfoSize
" Alloc
Init
Realloc
IncRef Free
gz;;s;f 1 O.n operator []
AddrOf
IsAlloc
IncRef
SetAlloc
IsFree DecRef
GetRef
SetFree
IsAlloc
IsNull
IsFree

Abb. 2-18: Referenzzahler und Refstore

Fir die Referenzzahler ist keine eigene Verwaltung noétig. Sie kdnnen am Beginn des Blocks,
zu dem sie gehodren, untergebracht werden. Der Block vergréRRert sich dadurch. Beim Zugriff
auf den nutzbaren Speicher fragt der Refstore den darunter liegenden Store nach der
Adresse und addiert sizeof (ct RefCount) Bytes. Der Zugriff auf den Referenzzéhler erfolgt
mit der Anfangsadresse des Blocks (siehe Abbildung 2-19). Das ct_RefCount-Objekt und die
AdreRrechnung sind fir den Anwender nicht sichtbar. Sie verbergen sich hinter dem
Interface der Klasse ct RefStore.

Store:: AddrOf (o_ptr)

&

ct_RefCount | Nutzbarer Speicher

T T

IncRef (o_ptr) Refstore:: AddrOf (o_ptr)
DecRef (o_ptr)

GetRef (o_ptr)

IsAlloc (o_ptr)

IsFree (o_ptr)

Abb. 2-19: Ein Block im Refstore

Das folgende Prinzipbeispiel zeigt die Anwendung eines Refstores. Am Anfang werden drei
Objekte definiert, ein Refstore, ein logischer Zeiger und ein C + +-Zeiger (Zeilen 3 bis 5).
Dann werden vom Refstore 15 Bytes angefordert. Er erh6ht die GroRe um sizeof
(ct_RefCount) Bytes und gibt die Anforderung an den darunter liegenden Store weiter. Der
logische Zeiger des Blocks wird der Variablen o _ptr zugewiesen. Damit der logische Zeiger
gultig bleibt, erhéhen wir seinen Referenzzahler (Zeile 7). Wir sehen, dald der Speicher
verwendbar ist (Zeile 8), und kénnen seine Adresse berechnen (Zeile 9). In Zeile 10 wird der
Speicher im Refstore freigegeben. Der Referenzzahler ist ungleich Null. Deshalb wird nur das
Flag b_Alloc auf false gesetzt. Der logische Zeiger ist noch glltig, aber auf den Speicher
kann nicht mehr zugegriffen werden (Zeilen 11 und 12). Beim Verkleinern des
Referenzzahlers wird die Bedingung IsNull erflllt. Der Refstore gibt nun den Speicher
physisch frei (Zeile 13). Damit verliert der logische Zeiger seine Gliltigkeit und darf nicht
mehr verwendet werden (Zeile 14).

Spirick Tuning Tutorial Seite 82

void TestRefstore ()

1
2
3 ct_RefStore co_refStore;

4 ct RefStore:: t Pointer o ptr;

5 void * pv;

6 0 _ptr = co_refStore. Alloc (15);

7 co_refStore. IncRef (o ptr);

8 ASSERT (co_refStore. IsAlloc (o ptr));

9 pv = co_refStore. AddrOf (o_ptr);

10 co_refStore. Free (o _ptr);

11 ASSERT (co_refStore. IsFree (o ptr));

12 // pv = co_refStore. AddrOf (o_ptr): Nicht mehr erlaubt!
13 co_refStore. DecRef (o ptr);

14 o ptr = 0;

15 }

Ein Referenzzéhler mulR stets paarig erhéht und erniedrigt werden. Vergessen wir einmal das
Herunterzahlen, bleibt er standig groRer als Null, und der zugehorige Speicher kann nicht
freigegeben werden. Deshalb verpacken wir den logischen Zeiger in einem Klassenobjekt.
Die Zugriffsmethode SetPtr und der Destruktor verandern den Referenzzahler, auf den
gezeigt wird. Entsteht ein neuer Verweis, wird der zugehoérige Referenzzahler erhéht. Beim
Loschen eines Verweises wird er um eins erniedrigt. Vor dem Speicherzugriff fragen wir das
Zeigerobjekt mit der Methode CanAccess, ob es glltig ist. Wir nennen es einen sicheren
Zeiger, denn es sagt uns, wann es ins Leere zeigt.

Das folgende Programmfragment enthalt die Deklaration einer sicheren Zeigerklasse und die
Definition dreier wichtiger Methoden. In diesem Beispiel ist der Refstore nicht global
bekannt. Deshalb bendtigt der sichere Zeiger einen Verweis auf den zugehoérigen Refstore.
Die Zeigerklasse besitzt statt eines Standard-Konstruktors einen Konstruktor mit der Adresse
des Refstore-Objekts. Bei einer sicheren Zeigerklasse dirfen wir nicht vergessen, einen
Kopier-Konstruktor, Destruktor und Gleich-Operator zu definieren.

class ct_SafePtr

{

ct _RefStore * pco_RefStore;

ct RefStore:: t _Pointer o_Ptr;

pubTlic:

ct SafePtr (ct _RefStore * pco_refStore);
ct_SafePtr (const ct SafePtr & co_init);
~ct_SafePtr ();

ct _SafePtr & operator = (const ct_SafePtr & co_asgn);

ct _RefStore:: t Pointer GetPtr () const;

void SetPtr (ct_RefStore:: t Pointer o newPtr);

bool CanAccess () const;

void * GetAddr () const;

¥

void ct_SafePtr:: SetPtr (ct RefStore:: t Pointer o _newPtr)
{
if (o_Ptr != 0 _newPtr)
{
if (o Ptr !=0)
pco_RefStore-> DecRef (o _Ptr);
0_Ptr = o_newPtr:
if (o Ptr !=0)
pco_RefStore-> IncRef (o Ptr);
}
}

bool ct_SafePtr:: CanAccess () const

return (o Ptr != 0) && pco_RefStore-> IsAlloc (o Ptr);

Spirick Tuning Tutorial Seite 83

}

void * ct _SafePtr:: GetAddr () const

{
ASSERT (CanAccess ());
return pco_RefStore-> AddrOf (o Ptr);

}

2.5.3 Wem gehort was?

Mit Refstores und sicheren Zeigern ist das Problem isolierter Inseln noch nicht gelést. Aber
wir verfligen nun Uber die technischen Mittel fiir eine Losung. Der prinzipielle Fehler besteht
darin, Referenzzahler als alleiniges Existenzkriterium fir Objekte zu betrachten. Aus dem
Sachgebiet, das wir modellieren, kdnnen meist andere Kriterien abgeleitet werden. Wir
versuchen, jedem Objekt einen Eigentiimer zuzuordnen. Dieser 16scht das Objekt, wenn er
es nicht mehr bendtigt. Andere Objekte, die Verweise darauf besitzen, dirfen es nicht
I6schen.

Verbindungen mit sicheren Zeigern ermdglichen das Zerstéren von Objekten durch ihren
Eigentiimer. Ein Objekt kann auch geléscht werden, wenn noch Verweise darauf existieren.
Wird beim Prifen eines Verweises festgestellt, dal® er unglltig ist, mulR er entfernt werden.
Mit dem Entfernen des letzten Verweises wird automatisch der Speicher des geléschten
Objekts freigegeben (siehe Abbildung 2-20).

Eigentimer —//—> | Objekt(2) |{——— Verweis
Eigentimer Speicher (1) 4+ Verweis
Eigentimer Frei (0) Verweis

Abb. 2-20: Léschen eines Objekts durch den Eigentiimer

Enthalt ein Objekt abhangige Objekte, miissen die eigenen von den Objekten anderer
Eigentimer unterschieden werden. Fir das Loschen der eigenen Objekte ist das Objekt
selbst zustéandig. Wird ein Verweis zu einem anderen Objekt entfernt, darf nur der
Referenzzahler erniedrigt werden. Spatestens im Destruktor missen alle Verweise zu
abhangigen Objekten entfernt werden (siehe Abbildung 2-21).

Spirick Tuning Tutorial Seite 84

. Objekt (2) | F—— Verweis
Objekt Eigentimer +[>
(geldscht) . “ I;
Verweis Objekt (2) 47 Eigentimer
Speicher (1) 47 Verweis
Objekt (1) | ¢—— Eigentiimer

Abb. 2-21: Entfernen der Verweise im Destruktor

In einem gréRBeren Programm mit komplex strukturierten Daten kann maoglicherweise nicht
jedem Objekt ein Eigentiimer zugeordnet werden. Wir versuchen, auch diesen Objekten ein
Zuhause zu geben, und lassen sie nicht mit losen Verbindungen im Speicher herumirren,
sondern Ubergeben sie einem globalen Eigentiimer. Globale Objekte werden beim
Programmstart automatisch erzeugt und am Programmende zerstort. Sie sind zusammen mit
ihren abhangigen Objekten stets erreichbar und sorgen fiir einen ordnungsgemaRen
Programmabschlul3.

Objekte missen nicht wahrend ihrer gesamten Lebensdauer demselben Eigentiimer gehéren.
Ein Eigentumswechsel ist keine Gefahr fir die Konsistenz unserer Daten. Wir miissen jedoch
darauf achten, jeden angefangenen Eigentumsprozeld korrekt zu Ende zu fihren. Es ist
Ublich, fir bestimmte Objekttypen Erzeuger- und Entsorgerobjekte zu verwenden. Zum
Beispiel ist ein Store sowohl Erzeuger als auch Entsorger fiir rohe Speicherblécke. Die
Methode Alloc liefert einen Zeiger auf einen Block. Dieser geht in das Eigentum des
Aufrufers der Methode Uber. Bendtigt er den Speicher nicht mehr, gibt er ihn mit der
Methode Free an den Store zurlck.

Fir abhangige Objekte, die schon im statischen Modell eines Programms bekannt sind,
bietet die Programmiersprache C + + geeignete Darstellungsformen. Ein eigenes Objekt
gelangt als Attribut in die Klasse. Andere Objekte werden mit Zeigern referenziert. Zeiger auf
eigene Objekte sollten sparsam verwendet werden. Sie sind zum Beispiel ndtig, wenn ein
Objekt wahrend des Programmlaufs seinen Eigentiimer wechselt. Enthélt ein Objekt eine
Menge abhangiger Objekte, werden sie in einem Container oder einer Collection
zusammengefaldt. Ein Container ist nicht nur ein Mittel der Programmoptimierung. Er enthalt
seine Objekte physisch und sorgt somit flir saubere Eigentumsverhaltnisse. Von einer
Collection kénnen wir nur durch Zusatzwissen ermitteln, ob sie Eigentiimer der Objekte ist
oder nur Verweise darauf enthalt.

Zyklische Verweisketten sind keine Seltenheit. In unserem Beispielprogramm OHelp kann ein
Thema einen Verweis auf ein anderes Thema enthalten, das wiederum auf das ursprlingliche
verweist. Ein Thema kann programmtechnisch sogar auf sich selbst verweisen, auch wenn
der Verweis inhaltlich keinen Sinn ergibt. Bei diesen Verweisen herrschen saubere
Eigentumsverhaltnisse. Das Thema ist Eigentiimer seiner Hyperlinks. Ein Hyperlink ist jedoch
kein Eigentiimer des Themas, auf das es verweist.

Erlaubt das Design eines Programms eine zyklische Verweiskette, die nur aus Eigentiimern
besteht, kdnnen auch isolierte Inseln entstehen (siehe Abbildung 2-22). Dieser Designfehler
sollte unbedingt korrigiert werden. Eine einfache Losung bietet ein globaler Eigentimer. Die
Objekte der Verweiskette gehen in seinen Besitz Gber. Wird der letzte Verweis auf den
Zyklus entfernt, sind die Objekte immer noch Uber ihren Eigentimer erreichbar. Dieser
entscheidet, wann die Objekte geléscht werden.

Spirick Tuning Tutorial Seite 85

Verweis 4D Eigentimer (2) 4D Eigentimer (1)

t “
Eigentimer (1)

Verweis —— | Verweis 3) ——| Verweis (2)

[
Verweis (2)

ﬁx

Globaler Eigentumer

Abb. 2-22: Korrektur eines Designfehlers

In Abbildung 2-23 sehen wir die Auflésung einer zyklischen Verweiskette mit sauberen
Eigentumsverhaltnissen. Der Eigentiimer auRerhalb der Kette kann zum Beispiel ein
Hypertext sein. Im Zyklus befinden sich ein Thema und ein Hyperlink. Der auswartige
Eigentimer ruft den Destruktor des inneren Objekts auf. Dieses zerstdrt das Verweisobjekt,
das ihm gehort. Der Destruktor des Verweisobjekts erniedrigt den Referenzzahler des
Speicherblocks, auf den es verwies. Am Ende erreichen beide Referenzzahler den Wert Null,
und der belegte Speicher wird freigegeben. Die folgende Regel fal3t die wichtigsten
Erkenntnisse dieses Abschnitts zusammen.

Refstores und sichere Zeiger ermoglichen das Zerstéren von Objekten durch ihren
Eigentiimer. Attribute und Container sichern saubere Eigentumsverhaltnisse. Damit wird die
Entstehung isolierter Inseln verhindert.

Spirick Tuning Tutorial Seite 86

Eigentimer +D Eigentimer (2) 4D Verweis (1)

Eigentimer Speicher (1) +D Verweis (1)

ﬁ;

Eigentimer Speicher (1) Frei (0)
T y
77

Eigentimer Frei (0) Frei (0)

Abb. 2-23: Auflésung einer Insel

2.6 Einige Programmiertechniken

2.6.1 Operatoren new und delete

Bei der Implementierung eines Containers stehen wir vor einem technischen Problem: C+ +-
Objekte missen in selbst verwaltetem Speicher erzeugt und geléscht werden. Ein Container
enthalt seine Objekte nicht nur logisch, sondern auch physisch. Er verwaltet ihren Speicher
und ruft ihre Konstruktoren und Destruktoren auf. Wird ein neues Objekt in einen Container
eingefligt, stellt er den Speicherplatz zur Verfligung und initialisiert es mit dem Standard-
oder Kopierkonstruktor. Beim Entfernen eines Objekts wird zuerst der Destruktor aufgerufen
und dann der belegte Speicher freigegeben.

In der Programmiersprache C+ + existiert nur eine Maoglichkeit, ein Objekt in einem selbst
verwalteten Speicherblock zu initialisieren, das Definieren eines eigenen Operators new. Ein
direkter Konstruktoraufruf ist zum Erzeugen eines temporaren Objekts erlaubt. Mit einem
Zeiger, der auf einen rohen Speicherbereich verweist, kann jedoch kein Konstruktor
aufgerufen werden.

class ct_AnyClass
{
public:
ct_AnyClass ();
void AnyMethod ();

b

// Temp. Objekt erzeugen, AnyMethod aufrufen, temp. Objekt zerstoren
ct_AnyClass (). AnyMethod ();

// Speicher bereitstellen und Konstruktor aufrufen
void * pv = malloc (sizeof (ct_AnyClass));
ct_AnyClass * pco = ((ct_AnyClass *) pv)-> ct_AnyClass (): // Kein C++ !

Spirick Tuning Tutorial Seite 87

Die Operatoren new und delete weichen in Syntax und Semantik von anderen Operatoren ab.
Deshalb betrachten wir zunédchst einen normalen Operator. Er ist eine nichtstatische
Methode einer Klasse oder eine globale Funktion. Im folgenden Programmfragment sehen
wir eine Klasse mit einem Kleiner-Operator. Er kann auf zwei Arten aufgerufen werden, in
der Operatorschreibweise oder wie eine normale Methode der Klasse. Beide Aufrufsformen
sind semantisch identisch. Der Compiler fligt beim Aufruf eines Operators keine
unsichtbaren Anweisungen hinzu.

class ct_AnyClass

{

pubTic:
bool operator < (const ct_AnyClass & co_compare) const;
} co 0bjl, co 0bj2;

// Aufruf in Operatorschreibweise
if (co 0bjl < co 0bj2)

// Aufruf in Methodenschreibweise
if (co_Objl. operator < (co _0bj2))

Dieselbe Semantik erzielen wir mit einem globalen Kleiner-Operator. Er kann auf private
Attribute der Klasse nur zugreifen, wenn die Klasse eine entsprechende friend-Deklaration
enthalt. Der Aufruf in Operatorschreibweise gleicht syntaktisch dem vorigen Beispiel. Der
direkte Aufruf erfolgt mit seinem Namen und den aktuellen Parametern. Beide Aufrufe
stimmen semantisch mit dem Aufruf einer globalen Funktion Gberein. Auch hier fligt der
Compiler keine unsichtbaren Anweisungen hinzu.

class ct_AnyClass

{

friend bool operator < (const ct AnyClass &, const ct AnyClass &);
} co 0bjl, co 0bj2;

bool operator < (const ct_AnyClass & col, const ct AnyClass & co2);

// Aufruf in Operatorschreibweise
if (co 0bjl < co 0bj2)

// Aufruf in Funktionsschreibweise
if (operator < (co_Objl, co 0bj2))

Wir kdnnen die Operatoren new und delete global oder in einer Klasse definieren. Global
dirfen sie innerhalb eines Programms nur einmal definiert werden. Wollen wir einer Klasse
spezielle Operatoren zuordnen, missen wir sie als statische Methoden in die
Klassendeklaration aufnehmen. Sie kénnen keine normalen Methoden sein, denn sie werden
auf rohe Speicherbereiche angewendet, die kein gliltiges Objekt enthalten. new und delete
werden vom Compiler auch als statisch angesehen, wenn das Schllsselwort static fehlt.
Beide Operatoren haben feste Vorgaben fir Parameter und Rickgabewerte (siehe folgenden
Programmausschnitt). Ein Operator new erwartet die GroRRe des bereitzustellenden Speichers
und liefert die Adresse auf den Speicherblock oder Null, wenn kein Speicher zur Verfligung
steht. Ein Operator delete erwartet die Adresse des geldschten Objekts.

#include <stddef.h> // Fur globalen Typ size t

class ct_AnyClass
{

pubTlic:
static void * operator new (size t u_size);
static void operator delete (void * pv);

b

Spirick Tuning Tutorial Seite 88

Ein Aufruf von new und delete in Methodenschreibweise gleicht semantisch dem Aufruf

anderer statischer Methoden. Der Compiler fligt keine unsichtbaren Anweisungen hinzu.
Diese Aufrufe fihren nur zum Bereitstellen bzw. Freigeben von Speicher und nicht zum

Aufruf von Konstruktoren oder Destruktoren.

void * pv = ct AnyClass:: operator new (15);
ct_AnyClass:: operator delete (pv);

Verwenden wir new und delete in Operatorschreibweise, passiert im Unsichtbaren mehr, als
auf dem Papier steht. Der Ausdruck new ct_AnyClass entspricht einem Aufruf der unten
stehenden Methode CreateNewObject. Zuerst wird die Methode ct AnyClass:: operator new mit
der GroRRe der Klasse aufgerufen. Konnte der Speicher bereitgestellt werden, wird darin das
Objekt initialisiert. Der untypisierte Zeiger wird in einen typisierten umgewandelt und als
Ergebnis zurlickgegeben.

ct_AnyClass * ct_AnyClass:: CreateNewObject ()

ct_AnyClass * pco =

(ct_AnyClass *) ct AnyClass:: operator new (sizeof (ct_AnyClass));
if (pco !'=0)

pco-> ct_AnyClass (); // Kein C++ 1!
return pco;

}

Die Verwendung von delete in Operatorschreibweise, zum Beispiel delete pco_anyObject,
entspricht einem Aufruf der Methode DestroyObject im folgenden Pseudo-C + +. Zuerst wird
das Objekt mit seinem Destruktor zersort. Dann gibt die Methode operator delete den
Speicher frei. Der Compiler stellt sicher, dal3 Destruktor und delete-Operator
zusammenpassen. Besitzt das referenzierte Objekt einen virtuellen Destruktor, werden
Destruktor und delete-Operator der tatsachlichen Klasse ermittelt und aufgerufen. Die
Besonderheit besteht darin, dal3 der Operator delete eine statische Methode ist und nicht
virtuell sein kann. Der Compiler ermittelt die richtige delete-Methode mit Hilfe des
Destruktors.

void ct_AnyClass:: DestroyObject (ct AnyClass * pco)

if (pco = 0)

{
typedef classof (* pco) t trueClass; // Kein C++ !l

pco-> ~t_trueClass (); // Kein C++ I
t_trueClass:: operator delete (pco):

}
}

Mit new und delete kdnnen wir auch Arrays von Objekten erzeugen und lI6schen. Im neuesten
C+ +-Standard existieren dafiir die spezialisierten Operatoren new [] und delete []. Bei der
Arbeit mit dynamisch erzeugten C + +-Arrays missen wir darauf achten, ein mit new []
erzeugtes Array mit delete [] und nicht mit delete zu l6schen. Haben wir vergessen, fir eine
Klasse die Operatoren new [] und delete [] zu definieren, werden die globalen Aquivalente
genutzt, auch wenn die Klasse eigene Operatoren new und delete enthalt.

Die Operatormethoden new [] und delete [] besitzen dieselben Parameter und Riickgabewerte
wie new und delete. Sie wissen nicht, dalR sie den Speicher eines Arrays verwalten und wie
grold dieses Array ist. Das bedeutet, da? der Compiler noch mehr im Unsichtbaren tun muf3.
Wird delete [] in der Operatorschreibweise auf einen typisierten Zeiger angewendet, mufl3
der Compiler die GroRe des Arrays aus dem Array selbst ermitteln, um die korrekte Anzahl
Destruktoren aufzurufen. Beim Erzeugen eines dynamischen Arrays mit dem Operator new []
mul} also die GroRe des Arrays im Speicher hinterlegt werden. Sollen n Objekte vom Typ
ct_AnyClass erzeugt werden, fordert der Compiler n * sizeof (ct_AnyClass) + sizeof (size t)

Spirick Tuning Tutorial Seite 89

Bytes von der Methode new []. Er speichert die GroRe des Arrays und ruft anschlieRend n
mal den Konstruktor der Klasse ct_AnyClass auf.

Von den Sprachdesignern wird empfohlen, auch dynamische C + +-Arrays primitiver
Datentypen mit dem Operator new [] zu erzeugen. Zum Beispiel sollten wir new char [20] statt
malloc (20) verwenden. Zum Verwalten des Speichers werden stets die globalen
Operatorfunktionen new, new [, delete und delete [] aufgerufen. Primitive Datentypen
besitzen keine Konstruktoren und Destruktoren. Wird ein so erzeugtes Array mit delete []
geldscht, missen keine Destruktoren aufgerufen werden. Der Compiler bendtigt die implizit
gespeicherte Lédnge des Arrays in diesem Fall nicht. Sie stellt aber einen Speicheroverhead
dar. In den unsichtbaren Anweisungen zum Erzeugen eines Arrays mit new [] sollte der
Compiler also primitive Datentypen und Klassen unterschiedlich behandeln.

class ct_AnyClass
{

public:
static void * operator new (size t u_size);
static void * operator new [] (size t u size);
static void operator delete (void * pv);
static void operator delete [] (void * pv);

b

ct_AnyClass * pco Object = new ct_AnyClass; // ct_AnyClass:: new
ct_AnyClass * pco Objects = new ct AnyClass [10]; // ct_AnyClass:: new []
delete pco_Object; // ct_AnyClass:: delete

delete [] pco Objects; // ct _AnyClass:: delete []

char * pc_Char = new char; /1 i new
char * pc_Chars = new char [10]; // :: new []
delete pc_Char; /] i delete

delete [] pc_Chars; // :: delete []

Der Operator new kann mit zusatzlichen Parametern mehrfach tberladen werden. Beim Aufruf
in Operatorschreibweise wird der erste, implizite Parameter nicht angegeben, sondern nur
die folgenden. Die Parameter des Operators new diirfen nicht mit Konstruktorparametern des
zu erzeugenden Objekts verwechselt werden. Ein Uberladen des Operators delete ist nicht
moglich. Er existiert ahnlich wie ein Destruktor flr jede Klasse nur einmal.

class ct_AnyClass

{
public:

ct_AnyClass ();
ct_AnyClass (const char * pc);
~ct_AnyClass ();

static void * operator new (size t u_size);

static void * operator new (size t u_size, int 1);

static void operator delete (void * pv);

1%

int i _newParam = 5;
ct_AnyClass * pco = new (i_newParam) ct AnyClass ("ConstructorParam"):
delete pco;

Nun verfligen wir tber das nétige Detailwissen, um das anfangs gestellte Problem zu I6sen.
Ein C+ +-Objekt, zum Beispiel vom Typ ct _AnyClass, soll in selbst bereitgestelltem Speicher
erzeugt und geléscht werden. Die Klasse besitzt moglicherweise eigene Operatoren new und
delete. An der Klassendeklaration kénnen wir nachtraglich nichts dndern. Deshalb bendtigen
wir eine Hilfsklasse. Diese enthalt als einziges Attribut das zu erzeugende Objekt und als
einzige Methoden new und delete. Der Operator new besitzt als zweiten Parameter einen
untypisierten C+ +-Zeiger. Dieser verweist auf den auRerhalb bereitgestellten Speicher und
wird unverandert zurlickgegeben. Der Operator delete hat eine leere Definition. Ein Aufruf in

Spirick Tuning Tutorial Seite 90

Operatorschreibweise bewirkt nur das Zerstéren des Objekts mit seinem Destruktor. Der
Speicher wird aulRerhalb der delete-Methode freigegeben.

Mit dieser Technik kédnnen wir Objekte in beliebig bereitgestelltem Speicher erzeugen und
I6schen. Im folgenden Programmfragment sehen wir die Deklaration eines Klassentemplates.
Es erwartet als Parameter den Typ des Objekts. Die Hilfsklasse erbt nicht von der
Objektklasse, sondern enthélt sie als Attribut. Somit kdnnen wir das Template auch auf
primitive Datentypen anwenden. Unter der Templatedeklaration sehen wir die Einzelschritte,
mit denen ein Objekt erzeugt und geldéscht wird.

template <class ct part>
class gct_NewDel

{
ct_part co_part;
pubTic:
ct _part * GetObj () { return & co part; }

static void * operator new (size t, void * pv) { return pv; }
static void operator delete (void *) { }

s
ct_MyStore co_MyStore;

// Speicher anfordern
void * pv_mem =
co_MyStore. AddrOf (co MyStore. Alloc (sizeof (ct AnyClass)))

// Hilfsobjekt erzeugen
gct NewDel <ct AnyClass> * pco obj =
new (pv_mem) gct NewDel <ct AnyClass>;

// Auf das eigentliche Objekt zugreifen
pco_obj-> GetObj ()->;

// Hilfsobjekt zerstoren
delete pco_obj;

// Speicher freigeben
co_MyStore. Free (co MyStore. LogPtrOf (pco obj));

2.6.2 Jungle of Scopes

Store- und Containerklassen enthalten geschachtelte Datentypen, zum Beispiel t Pointer. In
C sind alle Typen global. Die Typdefinition innerhalb der Klassen und Methoden ist eine
Erweiterung von C+ +. Das von den Sprachdesignern entworfene Regelsystem fir
Glltigkeitsbereiche (Scopes) ist jedoch an einigen Stellen unibersichtlich. Fir eine bessere
Orientierung in diesem Regelwerk unternehmen wir nun einen kleinen Spaziergang durch den
Jungle of Scopes.

AuRerhalb jeder Klasse und Funktion befinden wir uns im Gultigkeitsbereich der Dateien,
dem File Scope. Besser verstandlich ist die Bezeichnung globaler Scope. Alle Namen, die
darin deklariert werden, sind global glltig. Er kann die Deklaration von Datentypen,
Konstanten, Variablen, Funktionen und Templates enthalten. Die Scopes der globalen
Funktionen und Klassen sind dem globalen Gultigkeitsbereich direkt untergeordnet (siehe
Abbildung 2-24).

Spirick Tuning Tutorial Seite 91

Globaler Scope

Globale Typen (typedef, enum, class)
Globale Konstanten (z. B. true und false)
Globale Variable (z. B. co_GlobalStore)
Globale Funktionen (z. B. malloc und free)
Templates

Scope einer globalen Funktion

Scope einer globalen Klasse

Abb. 2-24: Globaler Scope

Die Definition einer globalen Funktion oder einer Methode (Klassen-Funktion) setzt sich aus
Verbundanweisungen zusammen. Eine Verbundanweisung wird durch geschweifte
Klammern begrenzt und tragt auch die Bezeichnung Block. Der duRRerste Block hat eine
besondere Bedeutung. Ihm werden die formalen Parameter der Methode zugeordnet. Jede
Verbundanweisung bildet einen Scope. Seine genaue Bezeichnung lautet Local Scope. Darin
kénnen sich Typen, Konstanten, Variable und weitere Verbundanweisungen befinden. Der
auRerste Block mit seinen Unterblocken ergibt den Function Scope. Er ist ausschlieBlich fir
Sprungmarken relevant. Alle anderen Namen gelten nur innerhalb des Blocks, in dem sie
deklariert werden, und seinen Teilblocken (siehe Abbildung 2-25).

Scope einer Funktion oder Methode

Sprungmarken
AuRerste Verbundanweisung
(einschlieRlich Parameter)

Scope einer Verbundanw.

Lokale Typen

Lokale Konstanten

Lokale Variable

Innere Verbundanweisungen

Scope einer lokalen Klasse

Scope einer Verbundanw.

Abb. 2-25: Methoden- und lokaler Scope

Auch eine Klasse besitzt einen Scope. Neben Attributen und Methoden kénnen darin
Datentypen, zum Beispiel Klassen, deklariert werden. Zur Unterscheidung von lokalen

Spirick Tuning Tutorial Seite 92

Klassen in Verbundanweisungen werden sie geschachtelte Klassen (Nested Classes)
genannt. Sie sind ein Strukturierungsmittel fir Gultigkeitsbereiche. Ihre Attribute und
Methoden sind kein Bestandteil der duReren Klasse (siehe Abbildung 2-26).

Scope einer Klasse

Geschachtelte Typen
Attribute
Methoden

Scope einer Methode

Scope einer geschachtelten Klasse

Abb. 2-26: Klassenscope

C+ + erlaubt das mehrfache Schachteln von Scopes. In einem inneren diirfen Namen des
umfassenden Scopes neu definiert werden. Der innerste Scope hat die hdchste Prioritéat.
Dort werden Namen zuerst gesucht. Ist ein Name unbekannt, wird die Suche schrittweise
nach aul3en fortgesetzt. Eine Ausnahme bilden abgeleitete Klassen. Das folgende
Programmfragment zeigt die Deklaration zweier Klassen mit geschachtelten Datentypen.

typedef char tl;
typedef char t2;
typedef char t3;

class ct_Base

{

pubTlic:
typedef short ti1;
typedef short t2;

b

class ct_Derived: public ct Base

{

public:
typedef long t1;
void Method ();

b
void ct Derived:: Method ()

tl * pol; // Entspricht long * pol; oder ct Derived:: tl * pol;
t2 * po2; // Entspricht short * po2; oder ct Base:: t2 * po2;
t3 * po3; // Entspricht char * po3; oder ::t3 * po3;

}

Beide Klassen sind von auBen betrachtet direkt dem globalen Scope untergeordnet. Ware
der Scope der abgeleiteten Klasse der Basisklasse untergeordnet, miften wir mit ct Base::
ct Derived:: Method auf die Methode zugreifen. Der Zugriff erfolgt aber mit ct Derived: :
Method. Befinden wir uns jedoch /innerhalb des Scopes der abgeleiteten Klasse, sind wir dem
Scope der Basisklasse untergeordnet. Die Suche von Namen erfolgt in der Reihenfolge:
Abgeleitete Klasse, Basisklasse, globaler Scope (siehe Abbildung 2-27).

Spirick Tuning Tutorial Seite 93

Sicht von AulRen Sicht von Innen

Globaler Scope Globaler Scope

Klassenscope ct_Base Klassenscope ct_Base

Klassenscope ct_Derived
Klassenscope ct_Derived

Methodenscope

Methodenscope

Abb. 2-27: AuBere und innere Sicht eines Klassenscopes

Nach diesen allgemeinen Betrachtungen wenden wir uns wieder den Stores und Containern
zu. Sie setzen flir Parameter und Riickgabewerte ihrer Methoden geschachtelte Typen ein.
Wollen wir einen geschachtelten Typ aul3erhalb der Klasse verwenden, missen wir seinen
Scope angeben, zum Beispiel ct_AnyStore:: t Pointer. Die Definition einer Methode wird
entweder in der Klassendeklaration oder im globalen Scope plaziert. Das Inline-Definieren
innerhalb der Klassendeklaration wollen wir aber vermeiden, um die Lesbarkeit zu erhéhen.

Die Definition einer Methode beginnt mit dem Riickgabewert. Dieser gehort genau
genommen in den Scope der Methode. Der Methodenname ist an dieser Stelle aber noch
nicht bekannt. Deshalb mufl3 bei Riickgabewert und Methodenname die zugehorige Klasse
angegeben werden. Die Liste der formalen Parameter steht hinter dem Methodennamen.
Dort kann der Compiler den korrekten Scope ermitteln. Der Methodenscope ist dem
Klassenscope untergeordnet. Deshalb sind geschachtelte Typen in der Parameterliste
bekannt und bendétigen keine explizite Scopeangabe (siehe Abbildung 2-28).

ct_AnyStore:: t_Pointer ct_AnyStore:: Alloc (t Size o _size) { }

1] L] J
Rickgabewert Methodenname Parameter und Anweisungen
(Im globalen Scope) (Im globalen Scope) (Im Scope der Methode)

Abb. 2-28: Scopes in einer Methodendefinition

Geschachtelte Datentypen erhéhen wesentlich die Flexibilitat einer Klassenbibliothek. Wir
werden nicht darauf verzichten und gewohnen uns lieber an die umstéandliche
Methodendefinition. Bei einer globalen Klasse wie in Abbildung 2-28 ist der Schreibaufwand
akzeptabel. Etwas mehr missen wir fir ein Klassentemplate investieren. Dort setzt sich der
Scope aus dem Templatenamen und den Templateparametern zusammen. Diese
Schreibweise ist so unleserlich, daR sogar einige Compiler darliber ins stolpern geraten.

template <class t obj>
class gct_AnyContainer

{

public:
typedef void * t_Pointer;
t Pointer Next (t Pointer o ptr) const;

b

Spirick Tuning Tutorial Seite 94

template <class t_obj>
gct_AnyContainer <t obj>:: t Pointer
gct_AnyContainer <t obj>:: Next (t Pointer o ptr) const

{

Der Spaziergang durch den Jungle of Scopes soll nicht ausarten. Fir Dschungelfreunde
unternehmen wir aber noch einen kleinen Abstecher in die Tiefe. Wollen wir einen Zeiger
oder eine Referenz auf eine Klasse deklarieren, bendtigen wir nicht ihre vollstdndige, sondern
nur eine Vorwartsdeklaration. In C+ + existieren daflir zwei Mdglichkeiten. Eine reine
Vorwaértsdeklaration enthéalt nur das Schliisselwort (class, struct, union) und den Namen. In
einer gemischten wird noch ein anderer Name deklariert oder definiert.

Befinden wir uns in einem lokalen oder Klassenscope, verhélt sich eine reine
Vorwartsdeklaration anders als eine gemischte. Eine reine erzeugt stets einen neuen
Klassennamen im inneren Scope. Bei einer gemischten Vorwartsdeklaration wird zuerst
gepriift, ob der angegebene Name schon in einem auReren Scope existiert. Ist er unbekannt,
wird er im inneren Scope deklariert. Das folgende Programmfragment zeigt einige Beispiele
fur Vorwartsdeklarationen von Klassen.

class ctl; // Reine Vorwdrtsdekl. globale Klasse ctl
class ct2 * pco2; // Gem. Vorwdrtsdekl. globale Klasse ct2

class ct_Global

{
ctl * pcol; // Verwendung globale Klasse ctl

class ct2 * pco2; // Verwendung globale Klasse ct2

class ct3 * pcod; // Gem. Vorwdrtsdekl. geschachtelte Klasse ct3
class ctl; // Reine Vorwdrtsdekl. geschachtelte Klasse ctl
ctl * pco4; // Verwendung geschachtelte Klasse ctl

:o ctl * pcob; // Verwendung globale Klasse ctl

)
Die friend-Deklaration einer Klasse hat syntaktische Ahnlichkeit mit einer reinen
Vorwartsdeklaration. Semantisch dhnelt sie einer gemischten. De facto ist sie weder das
eine noch das andere. Ist der Name der friend-Klasse bekannt, wird die bekannte Klasse wie
bei einer gemischten Vorwartsdeklaration verwendet. Ist der Name noch unbekannt, wird er
im umfassenden Scope deklariert (nicht im inneren!). Enthalt zum Beispiel eine globale
Klasse eine unbekannte friend-Deklaration, wird die neue Klasse dem globalen Scope
zugeordnet.

class ctl; // Reine Vorwdrtsdekl. globale Klasse ctl

class ct_Global

{

friend class ctl; // Verwendung globale Klasse ctl
friend class ct2; // Friend-Vorwdrtsdekl. globale Klasse ct2

1%

Spirick Tuning Tutorial Seite 95

3 G+ +-Bausteine fiir High-Performance-
Programme

Im zweiten Teil des Buchs haben wir zahlreiche Konzepte zur Verbesserung der Performance
eines Programms kennengelernt. Der dritte Teil enthalt ihre Implementierung. Sie ist ein
wichtiger Bestandteil programmtechnischer Konzepte. Das beste Konzept ist wertlos, wenn
es nicht sachgerecht in die Praxis umgesetzt wird. C+ + bietet mehr
Optimierungsmoglichkeiten als andere objektorientierte Sprachen. Wir werden versuchen,
viele dieser Méglichkeiten fiir unser Performance-Tuning einzusetzen.

3.1 Beginn beim Fundament

3.1.1 Dynamische Stores

Das Fundament der Verwaltungshierarchie eines Programms bildet die Speicherverwaltung.
Darauf bauen die Objektverwaltung und das eigentliche Anwendungsprogramm auf.
Innerhalb der Speicherverwaltung bilden auch die Stores eine Hierarchie. Auf der untersten
Stufe stehen ein oder mehrere Stores in direkter Verbindung zur C-Laufzeitbibliothek oder
zum Betriebssystem.

Die Speicherverwaltung konkreter Betriebssysteme wollen wir nicht betrachten. Stattdessen
nutzen wir die systemunabhangige Schnittstelle der C-Standardbibliothek. Die darauf
aufbauende Storeklasse nennen wir ct_StdStore. Sie besitzt keine neue Funktionalitat,
sondern hllt die Standardfunktionen malloc, realloc und free in ein objektorientiertes
Gewand. Leider erfahren wir von der Standardbibliothek nicht, wieviele Bytes konstanten
Verwaltungsspeicher (ohne Rundung) sie pro Block bendétigt. Wir miissen also vom
Durchschnittswert Vier ausgehen (siehe Abschnitt 1.6.3). Die Methoden der Storeklasse
sind so einfach, dal} wir sie inline definieren kénnen. Das folgende Programmfragment
enthalt die Deklaration der Klasse und die Definition dreier Methoden.

class ct_StdStore
{

public:
typedef unsigned t Size;
typedef void * t_Pointer;
inline unsigned long MaxAlloc () const:
inTine unsigned StoreInfoSize () const:
inline t_Pointer Alloc (t_Size o size);
inTine t _Pointer Realloc (t_Pointer o ptr, t Size o size);
inTine void Free (t_Pointer o _ptr);:
inTine void * AddrOf (t_Pointer o_ptr) const;
inTine t _Pointer LogPtrOf (void * pv_adr) const;

b

inTine unsigned ct_StdStore:: StorelInfoSize () const

{

return 4;

Spirick Tuning Tutorial Seite 96

}

inTine ct_StdStore:: t Pointer ct StdStore:: Alloc (t _Size o_size)

return malloc (o_size);

}
inline void * ct_StdStore:: AddrOf (t Pointer o _ptr) const
{
return o_ptr;
}

Die Rundung der BlockgroRRe ist eine erste Erweiterung der Standardfunktionalitét. Die neue
Storeklasse nennen wir ct_RndStore. Sie baut auf dem Standardstore auf und nutzt seine
Methoden. Die globale Speicherverwaltung der C-Standardbibliothek ist in einem Programm
nur einmal enthalten. Deshalb nehmen wir die Klasse ct_StdStore als statisches Attribut in
den Roundstore auf. Fir die Rundung verwenden wir ein Verfahren mit MinimalgréRe und
variabler Schrittlange (siehe Abschnitt 2.3.2). Die Schrittlange wird Gber einen Schritt-Teiler
gesteuert. Der Roundstore verfligt weiterhin tiber einen Reservespeicher variabler GroRe
(siehe Abschnitt 2.5.1). Im folgenden Programmausschnitt sehen wir die vollstandige
Deklaration der Klasse ct_RndStore.

class ct_RndStore
{
public:
typedef ct StdStore::
typedef ct StdStore::
private:
static t_Size
static t_Pointer

t Size t Size;
t_Pointer t_Pointer;

0_Reservelen;
0_ReservePtr;

// Ldnge des Reservespeichers
// Zeiger auf den Reservespeicher

static ct_StdStore co_Store; // Statischer Standardstore
t Size 0 MinSize; // MinimalgroBe
unsigned u_StepDiv; // Schritt-Teiler
unsigned u_StepDivLog; // HilfsgroBe
t Size Round (t_Size o size);
pubTlic:

ct_RndStore ():

unsigned long

MaxAlloc () const;

unsigned StorelnfoSize () const;

t _Pointer ATToc (t_Size o_size);

t_Pointer Realloc (t_Pointer o ptr, t Size o _size);
void Free (t_Pointer o ptr);

inTine void * AddrOf (t_Pointer o_ptr) const;
inTine t_Pointer LogPtrOf (void * pv_adr) const;
static void SetReservelen (t Size o reslen):
static t_Size GetReservelen ();

static bool HasReserve ();

void SetMinSize (t_Size o minSize);
inTline t _Size GetMinSize () const;

void SetStepDiv (unsigned u_stepDiv);
inline unsigned GetStepDiv () const;

b

Der Roundstore besitzt keine eigene Speicherverwaltung. Er wirkt wie ein Nachbrenner zu
einer vorhandenen. Zum Verandern der GroRe eines Blocks mit der Methode Realloc wird die
urspriingliche GréRe bendtigt. Der darunter liegende Store gibt aber keine Auskunft Gber die
GrolRRe seiner Blocke. Deshalb mufd der Roundstore zu jedem Block die gerundete GréRRe
speichern. Er verfahrt dabei dhnlich wie ein Refstore. Der Block wird um sizeof (t Size)
Bytes vergroRert und die gerundete GroRe am Anfang des Blocks untergebracht.

Spirick Tuning Tutorial Seite 97

Die Methode AddrOf eines Refstores berechnet die Speicheradresse eines logischen Zeigers.
Dabei werden zur Blockadresse des darunter liegenden Stores sizeof (ct _RefCount) Bytes
addiert (siehe die Abschnitte 2.5.2 und 3.2.3). Beim Roundstore kénnen wir diese
Adrel3irechnung vereinfachen. Der Zeigertyp des darunterliegenden Stores ist bekannt. Der
Standardstore verwendet untypisierte C + +-Zeiger. Dazu kénnen wir schon beim Anfordern
des Speichers sizeof (t _Size) Bytes addieren. Die Methode Alloc des Roundstores liefert also
einen untypisierten C + +-Zeiger auf den nutzbaren Bereich des Blocks. Realloc und Free
verarbeiten ebenfalls diese Zeiger (siehe Abbildung 3-1). In der Methode AddrOf ist keine
AdreRrechnung mehr nétig. Damit beschleunigt sich der Zugriff auf den vom Roundstore
verwalteten Speicher.

inTine void * ct _RndStore:: AddrOf (t_Pointer o ptr) const
{

return o_ptr;

}

o_RoundedSize | Nutzbarer Speicher
ct_StdStore:: Alloc (o_size) ct_RndStore:: Alloc (o_size)
ct_StdStore:: Realloc (o_ptr, o_size) ct_RndStore:: Realloc (o_ptr, o_size)
ct_StdStore:: Free (o_ptr) ct_RndStore:: Free (o_ptr)
ct_StdStore:: AddrOf (o_ptr) ct_RndStore:: AddrOf (o_ptr)

Abb. 3-1: Logische Zeiger im Roundstore

Mehrere Methoden des Roundstores sind an der Verwaltung des Reservespeichers beteiligt.
Betrachten wir als Beispiel die Implementierung von Realloc. Nach Uberpriifung der
Spezialfalle o_ptr == 0 und o_size == 0 wird der Zeiger auf die alte, gerundete GréRRe ermittelt
(po_ol1dSize). AnschlieBend berechnen wir die neue gerundete GréRRe (o newSize) und
vergleichen sie mit der alten. Sind beide gleich, befindet sich die GréRenanderung innerhalb
der Schrittweite, und wir geben den unspriinglichen Zeiger zurlick. Andernfalls versuchen
wir, vom Standardstore einen Block der neuen, gerundeten GroRe anzufordern. Gelingt es
nicht, geben wir den Reservespeicher frei und versuchen es erneut. Steht nun der neue
Speicher zur Verfligung, kopieren wir den Inhalt des alten Blocks in den neuen und tragen an
dessen Beginn die gerundete GrofRe ein. AbschlieRend wird der alte Block freigegeben und
der Riickgabewert berechnet.

ct_RndStore:: t_Pointer
ct_RndStore:: Realloc (t_Pointer o ptr, t Size o_size)
{
if (o ptr == 0)
return Alloc (o size);
else
if (o_size == 0)
{
Free (o ptr);
return 0;

}

else
{
t Size * po_oldSize = (t_Size *) o ptr - 1;
t Size o0 _newSize = Round (o_size);
if (0 newSize == * po_oldSize)
return o_ptr;
else

{

Spirick Tuning Tutorial Seite 98

t Size * po_newSize = (t _Size *) co_Store. Alloc (o_newSize):
if ((po_newSize == 0) && (o_ReservePtr !=0))

{

co_Store. Free (o0 _ReservePtr);

0_ReservePtr = 0;

po_newSize = (t_Size *) co Store. Alloc (o newSize);

}
if (po_newSize != 0)

{

memcpy (po_newSize, po oldSize,

0 newSize < * po_0l1dSize ? o newSize : * po_oldSize);
* po_newSize = 0 _newSize;

Free (o _ptr);
return po newSize !'= 0 ? po newSize + 1 : 0;
}
}
}

Die private Methode Round berechnet zu einer gegebenen BlockgroRe den gerundeten Wert.
Sie wird bei jedem Aufruf der Methoden Alloc und Realloc verwendet, ist also zeitkritisch.
Das Attribut u_StepDivLog dient der Beschleunigung der Berechnung. Es enthélt den um eins
vergréRerten Zweierlogarithmus des Schritt-Teilers u_StepDiv. In unserem
Rundungsalgorithmus missen Minimalgréf3e und Schritt-Teiler Zweierpotenzen sein. Diese
Bedingung prifen wir mit der Formel ((X & - X) == X). Sie beruht auf der Eigenschaft
moderner Computer, negative Zahlen im Basiskomplement und nicht im Zweierkomplement
darzustellen. Die Methode SetStepDiv stellt weiterhin sicher, dal3 der Schritt-Teiler nicht
groRer als die Minimalgré3e werden kann.

void ct_RndStore:: SetStepDiv (unsigned u_stepDiv)
{
ASSERT (u_stepDiv != 0);
ASSERT ((u_stepDiv & - u_stepDiv) == u_stepDiv);
u_StepDiv = u_stepDiv;
if (u_StepDiv > o _MinSize)
u_StepDiv = o_MinSize;
unsigned u = u_StepDiv;
u_StepDivLog = 0
while (u > 0)
{
u >>= 1:
u_StepDivLog ++;
}
}

Beim Runden missen wir die StorelnfoSize des Standardstores berlicksichtigen. Am Anfang
addieren wir sie und sizeof (t _Size) zur BlockgroRRe. Dann vergleichen wir die Blockgrofe mit
der Minimalgrofe. Ist sie kleiner, geben wir die um die StoreInfoSize verminderte
MinimalgroRRe zuriick. Andernfalls berechnen wir die Schrittweite o_stepWidth. Dazu
verwenden wir die Hilfsvariable o_shiftedSize. Sie ist gleich der durch 2 * u_StepDiv geteilten
BlockgroRRe. Mit dem Attribut u_StepDivLog kénnen wir die Division durch eine schnellere
Shiftoperation ersetzen. Die Schrittweite ist nun die zu o_shiftedSize nachstgréRere
Zweierpotenz. Der Anfangswert dieser Zwischenrechnung ist o MinSize. Damit stellen wir
sicher, dal® die Schrittweite nicht kleiner als die MinimalgréRe werden kann. Mit der Formel
(0_size & - o_stepWidth) wird die BlockgrofR3e auf das nachstkleinere Vielfache der Schrittweite
abgerundet. Dazu addieren wir die Schrittweite und subtrahieren abschlieRend die
StoreInfoSize des Standardstores. Dieser Algorithmus ist sehr schnell, erfordert aber, da3 wir
die BlockgréRe am Anfang um eins vermindern.

ct_RndStore:: t Size ct RndStore:: Round (t_Size o_size)
{

Spirick Tuning Tutorial Seite 99

0 size += sizeof (t_Size) + co_Store. StorelnfoSize () - 1:
if (o_size < o MinSize)

return o MinSize - co Store. StorelnfoSize ();
else

{
register t Size o _stepWidth = o MinSize;
register t Size o_shiftedSize = o_size >> u_StepDivLog;
while (o0 _stepWidth <= o shiftedSize)
0_stepWidth <<= 1;
return (o_size & - o_stepWidth) + o _stepWidth -
co_Store. StorelnfoSize ();

}
}

Zur Veranschaulichung fihren wir nun ein Rechenbeispiel durch. Schritt-Teiler und sizeof
(t_Size) seien gleich vier. Der um eins vergrof3erte Zweierlogarithmus von vier ist gleich drei.
Die BlockgroRe betrage 184 Bytes. Am Anfang zahlen wir 4 + 4 - 1 dazu und erhalten 191.
Die Hilfsvariable o _shiftedSize erhalt den Wert 191 > > 3 gleich 23. In der while-Schleife
wird die nachstgroRere Zweierpotenz berechnet. Wir erhalten die Schrittweite 32. Mit (191
& - 32) wird die BlockgroRe auf 160 abgerundet. Wir addieren 32 und subtrahieren die
StorelInfoSize. Das Ergebnis lautet 188.

Ein Block dieser GrofRe wird vom Standardstore angefordert. Die interne GroRe
(einschlieBlich StoreInfoSize) betragt 192 Bytes und ist, wie erhofft, eine runde Zahl (6 *
32). Der Roundstore nutzt die ersten vier der 188 Bytes flr die Speicherung der Blockgréf3e.
Nutzbar bleiben 184 Bytes. Mit dem Anfangswert 185 liefert die Methode Round den Wert
220. Davon sind 216 Bytes nutzbar.

Die dynamischen Storeklassen ct_StdStore und ct _RndStore bilden die Grundlage unserer
Speicherverwaltung. Alle anderen Stores, die wir kennen lernen werden, bauen darauf auf.
Abbildung 3-2 fal3t die Attribute und Methoden beider Klassen zusammen. Ein statisches
Attribut ist kein echter Teil eines Objekts. Es gehort allen Instanzen gemeinsam. Deshalb
erscheint die Beziehung zwischen Standard- und Roundstore als Objekt-Verbindung
(durchgehende Linie) und nicht als Teil-Ganzes-Beziehung (Dreieck).

ct_RndStore

o_ReservelLen
o_ReservePtr
co_Store
o_MinSize

MaxAlloc
StorelnfoSize
Alloc

Realloc

Free

AddrOf
LogPtrOf

ct_StdStore

u_StepDiv

ct_RndStore
MaxAlloc

1 StorelnfoSize
Alloc

Realloc

Free

AddrOf
LogPtrOf
SetReservelLen
GetReservelen
HasReserve
SetMinSize
GetMinSize
SetStepDiv
GetStepDiv

u_StepDivLog

Spirick Tuning

Tutorial

Seite 100

Abb. 3-2: Standard- und Roundstore

3.1.2 Globale Stores

Logische Zeiger und Stores sind eine Verallgemeinerung vorhandener Programmiertechniken.
Eine feste Speicherverwaltung wird durch ein C+ +-Array realisiert. Indizes sind nur /oka/ im
zugehorigen Array glltig. Fir dynamische Speicheranforderungen nutzten wir bisher die C-
Standardbibliothek. C + +-Zeiger, die durch malloc bereitgestellt wurden, besitzen eine
globale Glltigkeit. Analog dazu sind Stores mit einer festen Speicherverwaltung meist
Bestandteil eines einzelnen Objekts, zum Beispiel eines Containers. Sie besitzen nur einen
lokalen Gultigkeitsbereich. Dynamische Storeklassen werden hingegen als globale Objekte
verwendet.

Wollen wir zum Beispiel eine spezialisierte dynamische Speicherverwaltung fir eine
Stringklasse einsetzen, sollte nicht jedes Stringobjekt (iber einen eigenen Store verfligen.
Sinnvoller ist die Definition eines globalen Storeobjekts, das alle Instanzen der Stringklasse
gemeinsam nutzen. Ein Stringobjekt kann auf zwei Arten mit dem globalen Store verbunden
werden. Entweder enthalt jeder String einen Zeiger auf den Store, oder die Stringklasse ist
ein generischer Datentyp (ein Template) und besitzt den Store als Parameter. Im ersten Fall
muissen wir einigen Overhead inkauf nehmen. Jedes Stringobjekt wird um einen C+ +-
Zeiger vergroRert. Zum Kombinieren der Stringklasse mit verschiedenen Storeklassen mufte
sie auf eine abstrakte Storebasisklasse mit virtuellen Methoden verweisen.

Die Verwendung einer Storeklasse als Templateparameter fihrt zu einer besseren
Performance. Dabei stehen wir jedoch vor einem technischen Problem. Als Parameter fir
C+ +-Templates sind weder Methoden noch globale Objekte zugelassen. Mdéglich sind nur
Datentypen und primitive Konstanten (Zahlen und Adressen). Ein globales Storeobjekt kann
nicht als Parameter dienen, sondern nur seine Adresse. Der direkte Zugriff auf ein Objekt mit
einem Zeiger widerspricht jedoch dem Konzept der Datenkapselung. In dynamisch gelinkten
Bibliotheken kann es sogar zu einem Fehlverhalten des Programms fihren. Auf globale
Objekte und statische Attribute der Klassen sollte stets mit Nicht-Inline-Methoden
zugegriffen werden.

C+ + ist eine umfangreiche Programmiersprache. Sie enthélt hardwarenahe Techniken (zum
Beispiel die Zeigerarithmetik) und komfortable Konzepte (zum Beispiel virtuelle Basisklassen).
Beim Parametrisieren eines Klassentemplates mit einem globalen Objekt 14t sie uns jedoch
im Strich. Zum Gllck verfiigt jeder C+ +-Compiler Giber einen Praprozessor. Durch diese
Hintertlir kénnen wir das Problem elegant |6sen. Praprozessormakros enthalten einfache
Textoperationen, die vor dem eigentlichen C + +-Compiler ausgefthrt werden. Der ##-
Operator ist sogar die einzige Mdéglichkeit zur Bildung neuer Namen.

Benodtigt wird eine Methodenschnittstelle flr den indirekten Zugriff auf ein globales Objekt.
Wir wollen die Schnittstelle als Templateparameter nutzen und verpacken sie in einer Klasse.
Dieser geben wir das allgemeine Store-Interface, denn sie mappt die Funktionalitat eines
Storeobjekts. Die Klasse besitzt keine Attribute. Dennoch ist ihre GréRe ungleich Null. Der

C + +-Standard besagt, daf jedes Objekt eine eindeutige Adresse besitzen muR3. Einer
Klasse ohne Attribute und virtuelle Tabellenzeiger weist der Compiler die GréRRe ein Byte zu.
Da die Methoden auf keine Attribute zugreifen, kdnnen wir sie static deklarieren. Der Aufruf
einer statischen Methode ist geringfligig schneller, denn sie enthalt keinen this-Zeiger. Zum
Erzeugen der Klasse definieren wir zwei Makros. In GLOBAL_STORE DCL wird die Klasse
deklariert. GLOBAL STORE DEF enthélt die Definition ihrer Methoden.

#define GLOBAL STORE DCL(t store, Obj, Size, t size)
class ct_ ## Obj ## Size ## Store

{
pubTic:

- -

Spirick Tuning Tutorial Seite 101

typedef t_size t Size; \
typedef t_store:: t Pointer t Pointer; \
static unsigned long MaxAlloc (): \
static unsigned StorelnfoSize (); \
static t_Pointer Alloc (t_Size); \
static t_Pointer Realloc (t_Pointer, t Size); \
static void Free (t _Pointer); \
void * AddrOf (t_Pointer o p) const { return o p; } \
t Pointer LogPtrOf (void * pv) const { return pv: } \
static t_store * GetStore (); \
b
#define GLOBAL_STORE DEF(t store, Obj, Size) \
unsigned Tong ct_ ## ObJj ## Size ## Store:: MaxAlloc () \
{ return co_ ## Obj ## Store. MaxAlloc (); } \
unsigned ct_ ## Obj ## Size ## Store:: StorelnfoSize () \
{ return co_ ## Obj ## Store. StorelnfoSize (): } \
ct_ ## Obj ## Size ## Store:: t_Pointer \
ct_ ## Obj ## Size ## Store:: Alloc (t_Size 0.s) \
{ return co_ ## Obj ## Store. Alloc (0_s); } \
ct_ ## Obj ## Size ## Store:: t_Pointer \
ct_ ## Obj ## Size ## Store:: Realloc (t Pointer o p, t Size 0.s) \
{ return co_ ## ObJ ## Store. Realloc (o p, 0.5); } \
void ct_ ## Obj ## Size ## Store:: Free (t_Pointer o p) \
{ co_ ## Obj ## Store. Free (o p);: } \
t_store * ct_ ## Obj ## Size ## Store:: GetStore () \

{ return & co_ ## Obj ## Store; }

Der Parameter t_store bezeichnet die Storeklasse, zum Beispiel ct_StdStore oder ct_RndStore.
Obj enthalt eine Identitat fir das globale Objekt. Sie muf3 bei jedem Objekt anders gewahlt
werden. Zum Beispiel wird aus der Identitat String das globale Objekt co_StringStore
generiert. Zu einem globalen Store kdnnen mehrere Klassen erzeugt werden. Diese
unterscheiden sich durch ihren Namen und den geschachtelten Datentyp t Size. Der
Makroparameter Size enthélt eine Kurzbezeichnung zur Namensbildung, t size den
entsprechenden C+ +-Typ. Size und t_size muUssen inhaltlich zusammenpassen, zum
Beispiel Char und unsigned char

Die Methode AddrOf eines Stores ist zeitkritisch. Sie wird bei jedem Zugriff auf einen
Speicherblock aufgerufen. In den Klassen ct_StdStore und ct _RndStore ist ein logischer Zeiger
gleich der Adresse des Blocks. Die daraus generierten Klassen nutzen diese Eigenschaft und
definieren die Methoden AddrOf und LogPtrOf inline. Verwenden wir die Makros
GLOBAL_STORE_DCL und GLOBAL_STORE_DEF fir andere Storeklassen, miissen wir auf die Bedingung
0_ptr == AddrOf (o _ptr) achten.

Eine generierte Storeklasse enthalt nur das normale Interface. Fir Erweiterungen wie die
MinimalgroRe bendtigen wir das globale Objekt. Dazu dient die Methode GetStore. Zum
Beispiel wird im Makro GLOBAL STORE DCL (ct RndStore, String, Int, unsigned int) die Klasse
ct_StringIntStore deklariert. Verwenden wir ein Objekt dieser Klasse (zum Beispiel co_store),
kénnen wir die Methode SetMinSize nicht direkt aufrufen. GetStore liefert aber den Verweis
auf das globale Objekt von Typ ct RndStore. Die MinimalgréRe kénnen wir mit dem Aufruf
co_store. GetStore ()-> SetMinSize (32) andern. Das expandierte Makro zur Deklaration der
Klasse ct_StringIntStore enthélt den folgenden Text.

class ct_StringIntStore
{

pubTlic:
typedef unsigned int t Size;
typedef ct RndStore:: t Pointer t Pointer;
static unsigned long MaxAlloc ();:
static unsigned StorelnfoSize ();
static t_Pointer AlToc (t_Size);

Spirick Tuning Tutorial Seite 102

static t_Pointer Realloc (t_Pointer, t_Size):

static void Free (t_Pointer);

void * AddrOf (t_Pointer o_p) const { return o p; }
t Pointer LogPtrOf (void * pv) const { return pv: }
static ct_RndStore * GetStore ();

b

Zur Definition der Methoden einer generierten Klasse bendtigen wir den Makroparameter
t_size nicht. Die Kurzbezeichnung Size ist jedoch zur Namensbildung weiterhin erforderlich.
Im Makro GLOBAL_STORE_DEF (ct_StdStore. Std. Char) werden die Methoden der Klasse
ct_StdCharStore definiert. Sie greifen auf das globale Objekt co_StdStore zu.

unsigned Tong ct_StdCharStore:: MaxAlloc ()
{ return co_StdStore. MaxAlloc (); }
unsigned ct_StdCharStore:: StorelnfoSize ()
{ return co_StdStore. StorelInfoSize (); }
ct_StdCharStore:: t_Pointer
ct_StdCharStore:: Alloc (t_Size o0_s)
{ return co_StdStore. Alloc (0_S); }

ct_StdStore * ct _StdCharStore:: GetStore ()
{ return & co_StdStore; }

Als Datentyp t Size einer Storeklasse kdénnen die vorzeichenlosen Versionen von int, char,
short und Tlong eingesetzt werden. Zum Generieren der entsprechenden Klassen eines
globalen Stores verwenden wir wieder zwei Makros. In GLOBAL_STORE_DCLS werden die vier
Klassen und eine globale Funktion deklariert, mit der wir auf das Objekt zugreifen kénnen.
GLOBAL_STORE_DEFS enthélt die Definitionen des globales Objekts und der Methoden der
generierten Klassen.

#define GLOBAL STORE _DCLS(t store, 0bj) \
t_store * Get ## Obj # Store (); \
GLOBAL_STORE DCL (t_store, Obj, Int, unsigned int) \
GLOBAL_STORE_DCL (t_store, Obj. Char. unsigned char) \
GLOBAL_STORE_DCL (t_store, Obj, Short, unsigned short) \
GLOBAL_STORE_DCL (t_store, Obj, Long, unsigned long)

#define GLOBAL STORE _DEFS(t store, 0bj)
t_store co_ ## ObJ ## Store:
t_store * Get ## Obj ## Store ()

{ return & co_ ## Obj ## Store; }
GLOBAL_STORE_DEF (t_store, Obj, Int)
GLOBAL_STORE_DEF (t_store, Obj. Char)
GLOBAL_STORE DEF (t_store, Obj. Short)
GLOBAL_STORE DEF (t_store, Obj. Long)

P

Zur Erleichterung der Anwendung generieren wir fiir die dynamischen Storeklassen
ct_StdStore und ct_RndStore je ein globales Objekt der Identitat Std bzw. Rnd. Das Generieren
weiterer Objekte, zum Beispiel flr eine spezialisierte Stringklasse, bleibt dem Anwender
Uberlassen. Die Deklaration der Klasse ct_StdStore ergdnzen wir um das Makro
GLOBAL_STORE_DCLS (ct_StdStore, Std). Darin wird der folgende Text erzeugt.

ct_StdStore * GetStdStore (); // Zugriffsfunktion auf globales Objekt
class ct_StdIntStore { }:; // Globale Klasse mit t Size == u. int
class ct_StdCharStore { }:; // Globale Klasse mit t Size == u. char
class ct_StdShortStore { }; // Globale Klasse mit t Size == u. short
class ct_StdlongStore { }:; // Globale Klasse mit t Size == u. Tong

e

Analog verfahren wir mit dem Roundstore. In der Headerdatei plazieren wir das
Deklarationsmakro GLOBAL STORE DCLS (ct RndStore, Rnd). Das folgende Programmfragment

Spirick Tuning Tutorial Seite 103

zeigt das expandierte Definitionsmakro GLOBAL STORE DEFS (ct RndStore, Rnd), das sich in der
Implementierungsdatei befindet.

ct_RndStore co RndStore;

ct_RndStore * GetRndStore ()
{ return & co_RndStore; }

unsigned Tong ct RndIntStore:: MaxAlloc ()
{ return co RndStore. MaxAlloc (); }

unsigned Tong ct RndCharStore:: MaxAlloc ()
{ return co RndStore. MaxAlloc (); }

unsigned Tong ct RndShortStore:: MaxAlloc ()
{ return co_RndStore. MaxAlloc (); }

unsigned Tong ct RndLongStore:: MaxAlloc ()
{ return co_RndStore. MaxAlloc (); }

Wir kdnnen die generierten Klassen leicht von der eigentlichen Storeklasse ct RndStore
unterscheiden. Sie enthalten im Namen die Kurzbezeichnung ihres GroRentyps, zum Beispiel
ct_RndShortStore. In der Anwendung dirfen wir sie nicht miteinander verwechseln. Die Klasse
ct_RndStore besitzt eigene Attribute, zum Beispiel o MinSize. Die generierten Klassen besitzen
keine Attribute. Sie mappen die Funktionalitat eines globalen Objekts und verfiigen nur Gber
das allgemeine Store-Interface. Diesen Unterschied kénnen wir in einem Designdiagramm
gut erkennen (siehe Abbildung 3-3).

ct_RndIntStore ct_ RndCharStore
ct_RndStore = —
o ReservelLen MaxAlloc MaxAlloc
o_Res ervePtr StorelnfoSize StorelnfoSize
ca Store Alloc Alloc
o K/IinSize Realloc Realloc
u_StepDiv Free Free
u_StepDivLog AddrOf AddrOf
—_— LogPtrOf LogPtrOf
ct_RndStore GetStore GetStore
MaxAlloc 0o,n 1
StorelnfoSize [1
Alloc
Realloc o.n
Free o,n K
AddrOf
LogPtrOf 5 ct_RndShortStore ct_RndLongStore
n
SetReserveLen MaxAlloc MaxAlloc
GetReservelen . .
HasReserve StorelnfoSize StorelnfoSize
o Alloc Alloc
SetMinSize
GetMinSize Realloc Realloc
. Free Free
(Ssitgt‘zZDD'i‘\’/ Addrof Addrof
LogPtrOf LogPtrOf
GetStore GetStore
Abb. 3-3: Globale Klassen des Roundstores

Im Designdiagramm besitzen die globalen Klassen eine Objekt-Verbindung zur Klasse
ct_RndStore. Die genaue Art der Verbindung kénnen wir dem Diagramm jedoch nicht
entnehmen. In Abbildung 3-4 wird eine andere Darstellungsform gewahlt. Dort sehen wir,
dal die Verbindung der Klassen (ber ein globales Objekt erfolgt.

Spirick Tuning Tutorial Seite 104

Globale Storeklasse
ct_RndIntStore

Dynamische Storeklasse ct_RndStore

j;lnstanz von Alloc () Globale Storeklasse
Realloc () ct_RndCharStore

Globales Objekt co_RndStore 4 Free 0

Globale Storeklasse
ct_RndShortStore

Globale Storeklasse
ct_RndLongStore

Abb. 3-4: Andere Darstellung der Klassen

3.1.3 Globale C + + -Speicherverwaltung

Wollen wir einen Store fiir die globale C + +-Speicherverwaltung einsetzen, missen wir die
vorgegebenen Operatoren new und delete neu definieren. Der Store mulR3 den folgenden
beiden Anforderungen geniigen: Der Typ t Size ist als unsigned int oder unsigned Tong
definiert. Eine Adresse behalt solange ihre Giltigkeit, bis sie mit Realloc oder Free gedndert
wird. Die Klassen ct _StdStore und ct_RndStore erflllen diese Bedingungen. Beim Einsatz eines
Stores flr die globalen Operatoren new und delete miissen wird darauf achten, alle mit new
angeforderten Blécke mit delete und nicht mit der Standardfunktion free freizugegeben.
Umgekehrt missen wir alle mit malloc bereitgestellten Zeiger mit free an die
Speicherverwaltung der Standardbibliothek zuriickgeben.

Der folgende Programmausschnitt enthalt die flr eine eigene globale Speicherverwaltung
notigen Definitionen. Die Umrechnung von logischen Zeigern in Adressen und umgekehrt
kann bei Standard- und Roundstores entfallen, denn fir sie gilt o _ptr == AddrOf (o _ptr). Fur
einen korrekten Programmierstil sollten die Zeiger dennoch umgerechnet werden. Die
Methoden AddrOf und LogPtrOf sind inline definiert. Sie geben die Zeiger unverandert weiter
und belasten nicht die Rechenzeit.

#include <stddef.h> // Fur globalen Typ size t
void * operator new (size t u_size)

return GetRndStore ()-> AddrOf (GetRndStore ()-> Alloc (u_size));

}
void * operator new [] (size t u_ size)
{
return GetRndStore ()-> AddrOf (GetRndStore ()-> Alloc (u_size));
}
void operator delete (void * pv)
{
GetRndStore ()-> Free (GetRndStore ()-> LogPtrOf (pv));
}
void operator delete [] (void * pv)
{

GetRndStore ()-> Free (GetRndStore ()-> LogPtrOf (pv));

Spirick Tuning Tutorial Seite 105

}

int main ()

char * pcl = new char [30];
char * pc2 = new char [25];

déiéte [1 pcl; // OK
free (pc2); // Crash !!
}

3.1.4 Dynamischer Speicherblock

In vielen Klassen eines Programms, zum Beispiel Strings und Arraycontainern, wird ein
Speicherblock dynamischer Lange bendtigt. Der Speicher wird von einem Store angefordert.
Fir den spateren Zugriff mul® ein Verweis in einem Objekt gehalten werden. Dieses
Zugriffsobjekt nennen wir im folgenden kurz Block. Es enthélt einen Zeiger auf den
Speicherbereich und dessen Léange (siehe Abbildung 3-5).

Block

GroRe

Zeiger —[} Speicherbereich

Abb. 3-5: Blockkonzept

Der Block stellt keine umfangreiche Funktionalitdt zur Verfliigung, ist aber ein allgemeines,
wiederverwendbares Konzept. Analog zu den Stores und Containern definieren wir dafir
keine abstrakte Basisklasse, sonden nur ein Interface. Die GroRe des dynamischen
Speicherbereichs mul? abgefragt und neu gesetzt werden kénnen. Fir den Zugriff auf die
darin enthaltenen Daten wird seine Adresse bendtigt. Sie kann als void * oder char *
abgefragt werden. Beide Formen werden haufig verlangt. Der Datentyp fir die GroRe kann
sich von Block zu Block unterscheiden. Er ist als geschachtelter Typ in der Blockklasse
enthalten.

class ct_AnyBlock
{

public:
typedef unsigned int t_Size;
t Size GetSize () const;
void SetSize (t _Size o newSize);
void * GetAddr () const;
char * GetCharAddr () const;

1%

Haufig werden Blockklassen bendtigt, die ihren Speicher von einem gobalen Store anfordern.
Daflr definieren wir ein Klassentemplate. Es ist eine erste Anwendung der generierten
Storeklassen. Uber das normale Blockinterface hinaus besitzt es weitere Methoden. Zum
Beispiel erhalten wir mit GetPtr den logischen Zeiger des Speicherbereichs. Die Methoden
des Blocktemplates sind so einfach, dal® alle inline definiert werden kénnen. Im folgenden

Spirick Tuning Tutorial Seite 106

Programmausschnitt sehen wir die Deklaration des Klassentemplates und die
Implementierung dreier Methoden.

template <class t_store>
class gct Block
{
pubTic:
typedef t store:: t Size t Size;
typedef t store:: t Pointer t Pointer;

protected:
t Size 0 Size;
t_Pointer 0 _Ptr;
static t_store 0 _Store;
pubTlic:
inTine gct Block ();
inTine gct Block (const gct Block & co_init);
inTine ~gct _Block ();
inline gct Block & operator = (const gct Block & co_asgn);
inTine t_Size GetSize () const;
inline void SetSize (t_Size o newSize);
inline t_Pointer GetPtr () const;
inline void * GetAddr () const;
inline char * GetCharAddr () const:
inline t_store * GetStore () const;
s

template <class t_store>
inline void gct Block <t store>:: SetSize (t _Size o newSize)

{
0 Size = 0_newSize;
0 Ptr = o _Store. Realloc (o _Ptr, o Size);

}

template <class t_store>
inTine gct Block <t _store>:: t Pointer
gct Block <t_store>:: GetPtr () const
{

return o _Ptr;

}

template <class t_store>
inTine void * gct Block <t store>:: GetAddr () const

{
return o_Store. AddrOf (o Ptr);

}

Vom Templateparameter t_store wird das Attribut o Store gebildet. Es stellt die
Funktionalitat eines globalen Storeobjekts zur Verfigung und ist fir alle Instanzen der
Blockklasse gleich. Da die GréRRe eines C + +-Objekts ungleich Null sein mul3, wirde o Store
das Blockobjekt um ein Dummy-Byte vergréRern. Deshalb deklarieren wir es static. Die
Verwendung statischer Attribute in inline-Methoden (siehe SetSize und GetAddr) kann in
dynamisch gelinkten Bibliotheken zu einem Fehlverhalten des Programms fiihren. Bei einer
Instanz einer globalen Storeklasse besteht diese Gefahr nicht, denn das Objekt enthalt nur
ein Dummy-Byte und statische Methoden.

Der Konstruktor des Blocks initialisiert die Attribute 0 Size und o Ptr auf Null. Der Destruktor
gibt den angeforderten Speicher an den Store zuriick. Kopier-Konstruktor und Gleich-
Operator Gbernehmen nur die Gréf3e des zu kopierenden Blocks, nicht den Inhalt des
Speicherbereichs. Die Kopiersemantik kann sehr unterschiedlich sein und mufl3 vom
Blockanwender implementiert werden. Ein String kopiert die Zeichenkette binar. In einem
Arraycontainer missen die Objekte einzeln kopiert werden.

Spirick Tuning Tutorial Seite 107

template <class t_store>
inTine gct Block <t _store>:: gct Block (const gct Block & co_init)

{
0 Size = co_init. o Size;
0 Ptr = o Store. Alloc (co init. o Size);

}

template <class t_store>
inline gct Block <t store> &
gct Block <t _store>:: operator = (const gct Block & co_asgn)

{
SetSize (co_asgn. o Size);
return * this;

}

Ein C+ +-Template besitzt Ahnlichkeit mit einem Praprozessormakro. Ersetzen wir im
Templatetext die formalen durch die aktuellen Parameter, erhalten wir eine normale Klasse.
Werden zusatzlich die geschachtelten Typen der Storeklasse aufgeldst, ergibt sich fir die
Blockklasse gct Block <ct RndCharStore> die folgende Deklaration.

class gct Block <ct RndCharStore>

{
public:
typedef unsigned char t Size;
typedef void * t_Pointer;
protected:
t Size 0 Size; // Ein Byte
t Pointer o Ptr; // Vier Bytes
static ct_RndCharStore o_Store;
pubTic:

inline ct_RndCharStore * GetStore () const; // Liefert Adr. von o_Store

}i

Wir kénnen Instanzen dieser Blockklasse bilden, zum Beispiel co block. Das Objekt umfaf3t
funf Bytes. Die GrolRe des Speicherbereichs ist durch den Datentyp unsigned char begrenzt
und kann maximal 255 Bytes betragen. Im Normalfall greifen wir mit der Funktion
GetRndStore auf den zugehdérigen globalen Store co RndStore zu. Verwenden wir mehrere
globale Roundstores, ist nicht immer der Store bekannt, von dem ein Block seinen Speicher
anfordert. Wir erreichen ihn auch tGber den Block. Die Blockmethode GetStore liefert die
Adresse des Attributs o Store. Mit der Methode GetStore dieses Attributs erhalten wir einen
Zeiger auf das globale Storeobjekt. Zum Verandern der MinimalgréRe des zugehdrigen
Roundstores ist die folgende Anweisung erforderlich.

co_block. GetStore ()-> GetStore ()-> SetMinSize (32);

3.1.5 Eine Blockanwendung - String

Als erste Anwendung des Blockkonzepts lernen wir ein Stringtemplate kennen. Es wird mit
einer Blockklasse parametrisiert und verwendet nur das normale Blockinterface. Eine Klasse
mit der erweiterten Funktionalitdt des Templates gct Block kann auch als Parameter
Ubergeben werden. Die Stringklasse besitzt keine eigenen Attribute. Auf Lange und
Speicherbereich greift sie tber das Blockinterface zu. Ebenso bendtigt sie keinen Destruktor.
Die Basisklasse gibt am Ende den belegten Speicher frei. Die Methodenschnittstelle
Ubernehmen wir von der Stringklasse unseres Beispielprogramms OHelp. Fiir Ldngenangaben
wird der lokale Typ t Size des Blocks verwendet. Der folgende Programmausschnitt enthalt
die Deklaration des Klassentemplates und die Implementierung zweier Methoden.

template <class t_block>

Spirick Tuning Tutorial Seite 108

class gct_String: private t _block

protected:
inline void Setlen (t_Size o_len);

public:
inline gct String ();
inline gct_String (const char * pc_init);
inline gct String (const gct String & co_init);
gct String & operator = (const char * pc_asgn);
gct _String & operator = (const gct String & co_asgn);
inline t Size GetLen () const;
inTine const char * GetStr (t_Size o_pos = 0) const;
void Insert (t_Size o _pos, const char * pc_ins);
void Delete (t _Size o pos, t Size o len);
inTline char & operator [] (t_Size o _pos) const;
inline const t block * GetConstBlock () const;
b

template <class t_block>
inTine void gct _String <t block>:: SetLen (t_Size o _len)
{

SetSize (o_len + 1);

}

template <class t_block>
void gct String <t block>:: Insert (t Size o pos, const char * pc_ins)

{
ASSERT (0_pos <= GetlLen ());

ASSERT (pc_ins != 0);
t_Size o_inslen = (t_Size) strlen (pc_ins):
if (o_inslen > 0)
{
Setlen (GetlLen () + o_inslen):
memmove (GetCharAddr () + o _pos + o_inslen, GetCharAddr () + o_pos,
GetlLen () - o pos - o_inslen + 1);
memcpy (GetCharAddr () + o_pos, pc_ins, o_inslen);

}
}

Solange die Bedingung Getlen () == strlen (GetStr ()) gilt, befindet sich ein Stringobjekt in
einem konsistenten Zustand. Um die Konsistenz zu gewahrleisten, werden verandernde
Blockmethoden, zum Beispiel SetSize, nur innerhalb der Stringmethoden aufgerufen. Einem
Stringanwender dlrfen sie nicht zuganglich sein. Deshalb erbt die Stringklasse privat von der
Ubergebenen Blockklasse. Mit der Methode GetConstBlock werden dem Anwender des Strings
eventuelle Erweiterungen des Blocks zuganglich gemacht. Sie liefert einen Zeiger auf die
konstante Basisklasse.

template <class t_block>
inTine const t block * gct String <t block>:: GetConstBlock () const

{

return this;

}

Eine bessere Losung fir dieses Problem ware eine konstante Vererbung. Dabei kénnte ein
Anwender der abgeleiteten Klasse nur konstante Methoden der Basisklasse aufrufen. Die
Programmiersprache C+ + bietet daflir aber keine Mdglichkeit.

template <class t_block>
class gct_String: const public t_block // Hilfreich, aber kein C++

[

Spirick Tuning Tutorial Seite 109

Ebenso zahlreich wie die Blockklassen sind die mdglichen Stringklassen. Zum Beispiel fordert
die Templateklasse gct String <gct Block <ct RndShortStore> > ihren Speicher vom globalen
Objekt co_RndStore an. Ein Stringobjekt bendtigt insgesamt sechs Bytes, vier Bytes fir den
Zeiger (void *) und zwei Bytes fir die Lange (unsigned short). Die Zeichenkette kann maximal
65535 Bytes enthalten. Wir kénnen den Speicher auch aus einem Roundstore anfordern, der
andere Werte fur MinimalgréRe und Schritt-Teiler als das vordefinierte Objekt co RndStore
besitzt. Das folgende Programmfragment demonstriert die erforderlichen Schritte.

// In einer Headerdatei plazieren

GLOBAL_STORE_DCLS (ct RndStore, String)

typedef gct Block <ct StringIntStore> t StringBlock;
typedef gct String <t StringBlock> t String;

// In einer Implementierungsdatei plazieren
GLOBAL_STORE_DEFS (ct RndStore, String)

int main ()

GetStringStore ()-> SetMinSize (32);
GetStringStore ()-> SetStepDiv (2);
t String o_string;

Die Makros generieren das globale Objekt co _StringStore und die zugehdérigen Storeklassen.
Mit ct_StringIntStore parametrisieren wir eine Blockklasse und nennen sie t StringBlock. Sie
dient als Parameter des Stringtemplates. Zur Abkirzung wird auch die Stringklasse per
Typdefinition in t_String umbenannt. Am Programmbeginn stellen wir Minimalgréf3e und
Schritt-Teiler des globalen Objekts co StringStore ein. Danach kénnen wir Instanzen der
Stringklasse bilden, zum Beispiel 0_string. In Abbildung 3-6 sehen wir die wichtigsten
Klassen, von denen t_String abhangt.

Spirick Tuning Tutorial Seite 110

ct_StringIntStore gct_Block <ct_StringIntStore>
MaxAlloc 0_Size
StorelnfoSize o_Ptr
Alloc o_Store
Realloc gct_Block <ct_StringIntStore>
Free gct_Block <ct_StringIntStore>
AddrOf 0.n ~gct_Block <ct_StringIntStore>
LogPtrOf operator =
GetStore GetSize
SetSize
1 GetPtr
GetAddr
on GetCharAddr

S— GetStore

ct_RndStore i

o_ReservelLen

o_ReservePtr

co_Store ’

o_MinSize gct_String <t_StringBlock>

u_StepDiv - -

u_StepDivLog gct_Str!ng <t_Str!ngBIock>
—_— gct_String <t_StringBlock>

ct_RndStore gct_String <t_StringBlock>

MaxAlloc operator =

StorelnfoSize operator =

Alloc GetLen

Realloc GetStr

Free Insert

AddrOf Delete

LogPtrOf operator []

SetReservelen GetConstBlock

GetReservelLen

HasReserve

SetMinSize

GetMinSize

SetStepDiv

GetStepDiv

Abb. 3-6: An t _String beteiligte Klassen

Der dynamische Speicherblock eines Strings umfal3t mindestens ein Zeichen, das
abschlieBende Nullzeichen. Es wird bei der Lange nicht mitgerechnet, ist aber im
zugrundeliegenden Block enthalten. Es wird schon im Konstruktor initialisiert.

template <class t_block>
inTine gct String <t block>:: gct String ()

SetlLen (0);
* GetCharAddr () = "\0"';
}

In Tabelle 3-1 sehen wird die Methodenaufrufe zum Anfordern dieses einen Bytes. Der
Konstruktor (Schritt 1) ruft die Methode Setlen auf (Schritt 2). Sie erhéht den Gbergebenen
Wert um eins und gibt ihn an die Blockmethode SetSize weiter (Schritt 3). Die Blockklasse
verwendet ihr statisches Attribut o_Store zum Veréndern der GréRRe (Schritt 4). Die globale
Storeklasse gibt den Methodenaufruf an das zugehodrige Objekt co_StringStore weiter (Schritt
5). Da der Uibergebene Zeiger gleich Null ist, ruft Realloc die Methode Alloc auf (Schritt 6).
Diese rundet die GréRe (Schritt 7) und fordert vom statischen Attribut co_Store den Speicher
an (Schritt 8). Der Standardstore mappt die Anforderung auf die Standardfunktion malloc
(Schritt 9).

Spirick Tuning Tutorial Seite 111

Schritt Objekt Methode

1 o_string t_String:: t_String ()

2 o_string t_String:: SetlLen (0O)

3 o_string t_StringBlock:: SetSize (1)

4 t_StringBlock:: o_Store ct_StringIntStore:: Realloc (0, 1)
5 co_StringStore ct_RndStore:: Realloc (O, 1)

6 co_StringStore ct_RndStore:: Alloc (1)

7 co_StringStore ct_RndStore:: Round (1)

8 ct_RndStore:: co_Store ct_StdStore:: Alloc (28)

9 malloc (28)

Tab. 3-1: Speicheranforderung im Stringkonstruktor

Nachdem der Speicher angefordert wurde, mul3 das erste Byte mit dem Wert Null initialisiert
werden. Die fir den Zugriff nétigen Schritte sehen wir in Tabelle 3-2. Der Konstruktor ruft
die Blockmethode GetCharAddr auf. Diese ruft Uber das statische Attribut o Store die Methode
ct_StringIntStore:: AddrOf (o _Ptr) auf. Beide Methoden sind inline definiert und enthalten
keine Berechnungen. Der Zugriff ist genauso schnell wie Gber einen C+ +-Zeiger.

Schritt Objekt Methode

1 o_string t_String:: t_String ()

2 o_string t_StringBlock:: GetCharAddr ()

3 t_StringBlock:: o_Store ct_StringIntStore:: AddrOf (o_Ptr)

Tab. 3-2: Speicherzugriff im Stringkonstruktor

3.2 Speicher nach MaR

3.2.1 Fester Store im Block

Eine einfache feste Speicherverwaltung wird mit Hilfe eines Blocks realisiert. Wir nennen sie
kurz Blockstore. Fir eine gute Performance definieren wir auch dafir ein Klassentemplate.
Es wird mit einer Blockklasse parametrisiert. Ein weiterer Parameter ist die Gré3e der Blécke,
die bereitgestellt werden sollen. Eine Speicherung der GréfR3e als Attribut ergibt wenig Sinn,
denn es ist eine Konstante. Sie mifte mit dem Konstruktor initialisiert werden und wirde
sich spater nicht mehr andern, aber Speicher belegen. Eine bessere Lésung ist die Ubergabe
als Templateparameter. Im folgenden Programmausschnitt sehen wir die Deklaration des
Klassentemplates fiir einen Blockstore.

template <class t block, unsigned u_fixSize>
class gct _BlockStore: private t _block
{
public:
typedef t block:: t Size t Size;
typedef t block:: t Size t Pointer;
private:

Spirick Tuning Tutorial Seite 112

t Pointer 0 FirstFree:

inline t Pointer * IdxAddrOf (t Pointer o _ptr) const;

pubTic:
inline gct BlockStore ();
inline unsigned long MaxAlloc () const;
inline unsigned StorelnfoSize () const;
t_Pointer AlToc (t_Size o0 _size);
t Pointer Realloc (t Pointer o ptr, t Size o size);
void Free (t_Pointer o ptr);
inline void * AddrOf (t_Pointer o_ptr) const;
inTine t_Pointer LogPtrOf (void * pv_adr) const;
inTine t Pointer LastIdx () const:
inTine bool HasFree () const;
inTine const t block * GetConstBlock () const;
i

Um dem Anwender eventuelle Erweiterungen des Blocks zuganglich zu machen, enthalt
auch der Blockstore eine Methode GetConstBlock. Der GroRentyp t Size wird vom Block
Ubernommen. In einem Blockstore ist der Zeigertyp t Pointer gleich dem GréRentyp. Die
verwalteten Speicherblocke werden aufsteigend numeriert. Die fortlaufende Nummer
innerhalb des umfassenden Blocks ergibt den logischen Zeiger. Die Zahlung beginnt mit dem
Wert Eins, denn der Zeigerwert Null ist per Definition ungdltig.

Die Methode MaxAlloc liefert als Resultat den Templateparameter u_fixSize. GroRere
Speicherbereiche kann ein Blockstore nicht zur Verfliigung stellen. Die StoreInfoSize betragt
null Bytes. Das verdeutlicht die hohe Speicherauslastung. LastIdx berechnet den grofRten
gultigen Zeigerwert des Blockstores. HasFree gibt Auskunft dartiber, ob Elemente in der
Freiliste enthalten sind. Die Methode AddrOf liefert die zu einem logischen Zeiger (einem
Index) gehérende Speicheradresse. Der um eins verminderte Index wird mit u_fixSize
multipliziert. Wir erhalten die Byteposition innerhalb des umfassenden Blocks. Diese wird zur
Anfangsadresse addiert. Der logische Nullzeiger wird gesondert behandelt.

template <class t block, unsigned u_fixSize>
inTine gct BlockStore <t block, u_fixSize>:: t Pointer
gct _BlockStore <t _block, u_fixSize>:: Lastldx () const
{

return GetSize () / u_fixSize;

}

template <class t _block, unsigned u_fixSize>
inline void *
gct _BlockStore <t block, u_fixSize>:: AddrOf (t _Pointer o ptr) const

if (o_ptr == 0)
return 0;
else

{
ASSERT (o ptr <= Lastldx ());
return GetCharAddr () + (unsigned) (o _ptr - 1) * u fixSize;

}
}

In einem Blockstore verursacht die Implementierung der Freiliste den groRten Aufwand. Der
Freispeicher verwaltet sich wie in einem dynamischen Store selbst. Die freien Blocke bilden
eine einfach verkettete Liste. Jedes Element enthélt den logischen Zeiger des Nachfolgers.
Deshalb muf3 fir einen Blockstore die Bedingung u_fixSize >= sizeof (t_Pointer) gelten. Eine
unsortierte Freiliste ist einfach zu handhaben. Dabei ist aber die Wahrscheinlichkeit gering,
dalR am physischen Ende des umfassenden Blocks etwas frei wird und dieser verkleinert
werden kann.

Spirick Tuning Tutorial Seite 113

Die private Methode IdxAddrOf dient der Verwaltung der Freiliste. Sie wandelt den
untypisierten C+ +-Zeiger der Methode AddrOf in einen typisierten um. Enthalt der logische
Zeiger o_ptr den Index eines Elements der Freiliste, erhalten wir mit * IdxAddrOf (o _ptr) den
Index des Nachfolgers.

Unsere Implementierung des Blockstores verfiigt Gber eine sortierte Freiliste. Das Attribut

o _FirstFree verweist auf das Freielement mit dem kleinsten Index. Jedes Element der
Freiliste enthalt den Index des nachstgrofReren. Die Methode Alloc versucht, das erste
Element aus der Freiliste zu entnehmen. Ist die Freiliste leer, wird der Block um u_fixSize
Bytes vergréfRert und der Index des letzten Elements zuriickgegeben. Beim Vergrdéfiern kann
ein Uberlauf eintreten. Ist zum Beispiel der GréRentyp gleich unsigned char, u_fixSize gleich
zehn und die BlockgréRe gleich 250 Bytes, ergibt (unsigned char) 250 + 10 den Wert Vier.

template <class t block, unsigned u_fixSize>
gct _BlockStore <t block, u_fixSize>:: t Pointer
gct _BlockStore <t _block, u_fixSize>:: Alloc (t _Size o_size)

ASSERT (o0_size <= u_fixSize);
if (o_size == 0)
return 0;
else
if (o_FirstFree !=0)
{
t_Pointer o _ptr = o _FirstFree;
0 _FirstFree = * IdxAddrOf (o_FirstFree);
return o_ptr;
}
else
if (GetSize () + (t_Size) u fixSize < u_fixSize)
return 0; // Uberlauf

else
SetSize (GetSize () + u_fixSize);
ASSERT (GetAddr () '=0);

return LastIdx ();

}
}

Die Implementierung von Realloc wird auf Alloc und Free zurlickgeflhrt. Die Definition der
Methode Free ist sehr umfangreich und wird hier nicht abgebildet. Das freizugebende
Element wird in die Liste einsortiert. Befindet es sich am physischen Ende des umfassenden
Blocks, wird dieser verkleinert. Dabei mul3 geprift werden, ob sich unmittelbar davor
weitere freie Elemente befinden.

Unser Blockstoretemplate verwendet nur das normale Interface eines Blocks. Es kann mit
beliebigen Blockklassen parametrisiert werden. Die Klasse gct BlockStore <10, gct Block
<ct_StdCharStore> > fordert ihren Speicher vom globalen Objekt co StdStore an. Ein Objekt
dieser Blockstoreklasse umfal3t sechs Bytes. Der dynamische Block kann bis zu 255 Bytes
enthalten. Das entspricht 25 internen Blocken der GroRe 10 Bytes. Beim Anfordern des 26.
Elements tritt der Uberlauf ein.

Bei der Anwendung eines Blockstores miissen wir beachten, dal3 die Adresse eines
bereitgestellten Blocks nur solange glltig bleibt, wie sich am Store nichts &ndert. Fordern
wir mit Alloc einen neuen Block an, und die Freiliste ist leer, mufd der umfassende Block
vergréRert werden. Dabei kann die Schrittweite des darunterliegenden globalen Stores
Uberschritten werden. Der umfassende Block wird mit seinem gesamten Inhalt an eine
andere Stelle im Speicher kopiert. Die Adressen der inneren Blocke andern sich, ihre
logischen Zeiger behalten jedoch ihre Gultigkeit.

Spirick Tuning Tutorial Seite 114

3.2.2 Ein Anwendungsbeispiel

Homogene Container sind typische Anwendungen des Blockstores. Wir werden sie einige
Abschnitte spater kennenlernen. Ein Blockstore kann auch fir andere Zwecke eingesetzt
werden, zum Beispiel eine spezialisierte Stringklasse. Treten in einem Programm viele
Zeichenketten auf, die nicht langer als acht Zeichen werden (einschlieBlich Nullzeichen), ist
eine dynamische Speicherverwaltung ungeeignet. Mit unseren bisherigen Mitteln wiirden wir
dafur die Klasse gct _String <gct Block <ct StdCharStore> > verwenden. Sie bendtigt vier Bytes
far den Zeiger (void *) und ein Byte fir die Lange (unsigned char), also insgesamt finf Bytes.
Die Zeichenkette wird vom globalen Objekt co_StdStore angefordert und belegt 16 Bytes. Das
ist die interne MinimalgréfRe der dynamischen Speicherverwaltung.

Eine bessere Speicherauslastung erzielen wir mit einem Blockstore. Zum Generieren des
globalen Storeobjekts und der zugehérigen Klassen kénnen wir die bekannten Makros nicht
einsetzen. Logische Zeiger eines Blockstores sind Indizes, und es gilt o ptr != AddrOf (o_ptr).
Wir verwenden leicht gednderte Makros mit dem Suffix STATIC. Sie unterscheiden sich von
den bekannten dadurch, dalR die Methoden AddrOf und LogPtrOf nicht inline, sondern static
definiert werden.

typedef gct Block <ct RndShortStore> t RndShortBlock;
typedef gct BlockStore <t RndShortBlock, 8> t Fix8Store;
GLOBAL_STORE_DCLS STATIC (t_Fix8Store, Fix8)
GLOBAL_STORE_DEFS STATIC (t Fix8Store, Fix8)

In diesen Makros wird das globale Objekt co Fix8Store generiert. Es verwaltet Blécke der
festen GrélRRe acht Bytes. Der umfassende Block wird vom globalen Objekt co RndStore
angefordert. Die BlockgréRe ist durch den Datentyp unsigned short auf 65535 Bytes
begrenzt. Der globale Blockstore kann also maximal 8191 Acht-Byte-Blocke bereitstellen.
Seine logischen Zeiger sind ebenfalls vom Typ unsigned short.

Zum globalen Store werden vier Klassen generiert. Sie unterscheiden sich durch ihren
geschachtelten Typ t _Size. Sinnvoll ist nur der GrofRentyp unsigned char, denn es kénnen
nicht mehr als acht Bytes angefordert werden. Mit dieser globalen Storeklasse kénnen wir
einen Block und damit einen String parametrisieren.

typedef gct Block <ct Fix8CharStore> t Block8;
typedef gct String <t Block8> t String8;

t String8 o_string8;

Ein Objekt der Klasse t String8 umfalt nur drei Bytes. Der Zeiger ist ein Index des globalen
Blockstores und benétigt zwei Bytes. Die GroRenangabe des Strings erfordert ein weiteres
Byte. Die eigentliche Zeichenkette belegt acht Bytes im Blockstore (siehe Abbildung 3-7).
Damit haben wir den Gesamtspeicherbedarf gegeniiber der oben erwahnten Stringklasse auf
etwa die Halfte reduziert. Fir ein einzelnes Stringobjekt lohnt sich dieser Aufwand nicht.
Enthalt aber eine Klasse zum Beispiel zehn Stringattribute, belegen sie mit der Stringklasse
t_String8 nur 30 Bytes.

Spirick Tuning Tutorial Seite 115

— Basisklasse t_RndShortBlock
— unsigned short o_Size

void * o_Ptr

-

Acht-Byte-Block

— Basisklasse t_Block8
unsigned char o_Size

— unsigned short o_Ptr —D Acht-Byte-Block

Objekt vom Typ t_String8 Globales Objekt co_Fix8Store

Abb. 3-7: Speicherlayout der Objekte o _string8 und co_Fix8Store

Die gute Speicherauslastung missen wir mit einer Verlangsamung des Zugriffs bezahlen.
Nachdem im Konstruktor des Objekts o string8 ein neuer Acht-Byte-Block bereitgestellt
wurde, muld dem ersten Byte der Wert Null zugewiesen werden. In Tabelle 3-3 sehen wir die
Teilschritte des Speicherzugriffs. Im Konstruktor (Schritt 1) wird die Blockmethode
GetCharAddr aufgerufen (Schritt 2). Sie verwendet das statische Attribut o Store (Schritt 3).
Diesmal ist die Methode AddrOf der globalen Storeklasse nicht inline definiert. Sie gibt den
Aufruf an das globale Objekt co Fix8Store weiter (Schritt 4). Der globale Blockstore ruft die
Methode GetCharAddr seiner Basisklasse t RndShortBlock auf (Schritt 5). Die letzte Methode in
dieser Folge ist ct_RndShortStore:: AddrOf (Schritt 6). Sie ist inline definiert und gibt den
ibergebenen Zeiger ohne Anderung zuriick. Dieser Speicherzugriff sieht sehr aufwendig aus.
Die meisten Methoden sind aber inline definiert. In der Summe ist er nicht viel langsamer als
der Zugriff auf ein C+ +-Array mit einem Index.

Schritt Objekt Methode

1 o_string8 t_String8:: t_String8 ()

2 o _string8 t Block8:: GetCharAddr ()

3 t Block8:: o_Store ct Fix8CharStore:: AddrOf (o_Ptr)
4 co_Fix8Store t_Fix8Store:: AddrOf (o_ptr)

5 co_Fix8Store t RndShortBlock:: GetCharAddr ()
6 t_RndShortBlock:: o_Store ct_RndShortStore:: AddrOf (o_Ptr)

Tab. 3-3: Speicherzugriff im Stringkonstruktor

Einem neuen Objekt der Klasse t _String8 wird im Konstruktor ein Block im globalen
co_Fix8Store zugeordnet. Da die GréRe des dynamischen Blocks nur zwischen ein und acht
Bytes schwanken kann, behéalt das Objekt denselben logischen Zeiger bis zu seinem
Destruktor. Dann wird der belegte Speicher freigegeben. Der globale Blockstore andert sich
also, wenn ein String erzeugt oder geléscht wird. Wahrend der Arbeit mit den Strings
(Insert, Delete usw.) bleibt sein Aufbau konstant.

Die Methode GetStr liefert einen C+ +-Zeiger auf die Zeichenkette. Wir miissen beachten,
dal’ dieser bei der Klasse t _String8 nur solange gultig bleibt, wie am Blockstore nichts
geandert wurde. Nach dem Erzeugen oder Léschen eines Strings sind alle vorher
abgefragten C+ +-Zeiger nicht mehr gultig. Zum Beispiel dirfen wir den Konstruktor
gct_String (const char * pc) nicht mit einem Rickgabewert von GetStr verwenden. Beim

Spirick Tuning Tutorial Seite 116

Kopierkonstruktor tritt dieses Problem nicht auf, denn die Zeichenkette des zu kopierenden
Strings wird erst abgefragt, nachdem der Block fir das neue Objekt bereitgestellt wurde.

t String8 o_string8l (o _string8); // 0K
t String8 o string82 (o_string8. GetStr ()); // Crash !!

Eine Stringklasse mit fester Obergrenze der Lange ist keine typische Anwendung des
Blockstores. Es ist ein Prinzipbeispiel, an dem wir die Funktionsweise eines Blockstores
studieren kénnen. Fir das Stringproblem existiert eine noch effizientere Lésung. Der
Speicherbereich fester GroRe kann als Attribut direkt im Block untergebracht werden. Dafir
definieren wir das folgende Klassentemplate.

template <class t _size, unsigned u_fixSize>
class gct_FixBlock

{
public:
typedef t _size t Size;
protected:
t Size 0 Size;
char ac_Block [u fixSizel;
public:
inline gct FixBlock ();
inTine gct FixBlock (const gct FixBlock & co_init);
inline gct FixBlock & operator = (const gct FixBlock & co_asgn);
inline t _Size GetSize () const;
inline void SetSize (t_Size o newSize);
inTine void * GetAddr () const;
inline char * GetCharAddr () const;
b

template <class t _size, unsigned u_fixSize>
inTine void gct FixBlock <t size, u_fixSize>::
SetSize (t_Size o newSize)

ASSERT (o0 _newSize <= u_fixSize);
0 Size = 0_newSize;

}

template <class t_size, unsigned u_fixSize>
inTine void * gct FixBlock <t size, u_fixSize>:: GetAddr () const

if (0 _Size == 0)
return 0;
else
return (void *) ac_Block;

}

Dieses Template wird mit dem GroRentyp und der maximalen BlockgroRe parametrisiert.
Eine Storeklasse mufl3 nicht angegeben werden, denn der Speicherblock ist als Attribut im
Blockobjekt enthalten und wird mit diesem erzeugt und geloscht. Das Template gct_FixBlock
stellt das normale Blockinterface zur Verfigung und kann als Parameter anderer Templates,
die eine Blockklasse erwarten, dienen. Im folgenden Programmfragment wird mit den
Parametern unsigned char und 8 die Blockklasse t FixBlock8 und damit die Stringklasse

t FixString8 definiert. Ein Stringobjekt (zum Beispiel o_fixString8) umfaldt 9 Bytes.

typedef gct FixBlock <unsigned char, 8> t FixBlock8;
typedef gct String <t FixBlock8> t FixString8;

t FixString8 o _fixString8;

Spirick Tuning Tutorial Seite 117

3.2.3 Store mit Referenzzahlern

Ein Refstore realisiert eine Speicherverwaltung, die jedem Block einen Referenzzahler
zuordnet. Daflr wird die Klasse ct_RefCount verwendet. Sie enthalt neben dem
Referenzzéhler o_RefCount den Wahrheitswert b_Alloc. Die maximale Grof3e des
Referenzzahlers ist durch den Datentyp t RefCount bestimmt. Wir definieren ihn fest auf
unsigned short. Werden in einem Programm Referenzzahler unterschiedlicher GroRe benotigt,
muf3 die Klasse ct RefCount als Template definiert werden, das den primitiven Datentyp fur
den Referenzzéhler als Parameter erwartet. Das boolesche Attribut b Alloc gibt Auskunft
darlber, ob der Block im Refstore belegt oder frei ist. Erreicht der Referenzzahler den Wert
Null und ist b_Alloc false, wird die Bedingung IsNull erfdllt.

Fir eine optimale Speicherauslastung definieren wir beide Attribute der Klasse ct_RefCount
als Bitfeld. Der eigentliche Referenzzahler o RefCount umfaldt 15 Bit und kann Werte bis
32767 annehmen. Das ist fir die meisten Anwendungen ausreichend. Im folgenden
Programmausschnitt sehen wir die Deklaration der Klasse ct RefCount und die Definition der
Methoden DecRef und IsNull. Die Methoden enthalten nur ein oder zwei Anweisungen und
sind inline definiert.

typedef unsigned short t RefCount;

class ct_RefCount

{
t_RefCount 0 RefCount: sizeof (t_RefCount) * 8 - 1;
bool b Alloc: 1;
public:
inline ct_RefCount ();
inline void Init (O);
inline void IncRef ();
inline void DecRef ()
inTine t RefCount GetRef () const:
inline bool IsAlloc () const;
inline void SetAlloc ();
inline bool IsFree () const;
inline void SetFree ();
inline bool IsNull ()const;
b
inTine void ct _RefCount:: DecRef ()
{
ASSERT (o _RefCount > 0);
o_RefCount --;
}
inTine bool ct RefCount:: IsNull ()const
{
return (o RefCount == 0) && (! b _Alloc);
}

Fir eine hohe Flexibilitat und Performance definieren wir den Refstore als ein
Klassentemplate. Einziger Parameter ist der zugrunde gelegte Store. Von ihm werden die
geschachtelten Typen t Size und t_Pointer Gbernommen. Der Refstore nutzt die
Funktionalitat der bergebenen Storeklasse, erweitert sie aber nicht im Sinne einer Is-A-
Relation. Deshalb erbt er nicht, sondern enthalt sie als Attribut o Store. Mit der Methode
GetStore kénnen wir darauf zugreifen. Im folgenden Programmfragment sehen wir die
Deklaration des Klassentemplates. Die Methoden sind sehr einfach und kénnen fast alle
inline definiert werden, zum Beispiel MaxATloc und StoreInfoSize.

template <class t_store>
class gct_RefStore

Spirick Tuning Tutorial Seite 118

{
pubTic:
typedef t store:: t Size t Size;
typedef t store:: t Pointer t Pointer;
protected:
t store 0 _Store;

inline ct RefCount * RefPtr (t_Pointer o ptr) const;

pubTic:
inline unsigned long MaxAlloc () const;
inTine unsigned StorelnfoSize () const:
t _Pointer Alloc (t_Size o_size);
t_Pointer Realloc (t_Pointer o ptr, t Size o size);
inTine void Free (t_Pointer o ptr);
inTline void * AddrOf (t_Pointer o _ptr) const;
inTine t Pointer LogPtrOf (void * pv_adr) const;
inTine void IncRef (t_Pointer o _ptr);
inline void DecRef (t_Pointer o ptr);
inline t RefCount GetRef (t_Pointer o_ptr) const;
inTine bool IsAlloc (t_Pointer o _ptr) const;
inTine bool IsFree (t_Pointer o _ptr) const;
inline t_store * GetStore ();
}

template <class t_store>
inline unsigned Tong gct RefStore <t store>:: MaxAlloc () const

{

return o_Store. MaxAlloc () - sizeof (ct_RefCount);

}

template <class t_store>
inline unsigned gct RefStore <t store>:: StorelnfoSize () const

return o_Store. StorelnfoSize () + sizeof (ct_RefCount):

}

Die private Methode RefPtr wandelt die untypisierte Anfangsadresse des Blocks in einen
typisierten Zeiger um. Damit kénnen wir auf das ct _RefCount-Objekt zugreifen. Zum Beispiel
wird in der Refstoremethode DecRef die Methode ct RefCount:: DecRef aufgerufen. Liefert
anschlieBend die Methode IsNull den Wert true, gibt der Refstore den Block an den
darunterliegenden Store zurlick. Addieren wir zum Riickgabewert von RefPtr mit der C+ +-
Zeigerarithmetik den Wert Eins, erhalten wir die Adresse des nutzbaren Bereichs des Blocks.
Sie wird in der Methode AddrOf ermittelt.

Die AdreRRrechnung kann nicht wie beim Roundstore (siehe Abschnitt 3.1.1) in der Methode
Alloc erfolgen, denn ein Zeiger des Refstores ist nicht unbedingt eine Speicheradresse. Die
Refstoremethode Alloc muld den logischen Zeiger unverandert weitergeben. Im folgenden
Abschnitt lernen wir einen Block-Refstore kennen. Seine Zeiger gehéren zu einem
vorzeichenlosen Zahlentyp, zum Beispiel unsigned short. Die Blocke werden wie in einem
Blockstore mit eins beginnend aufsteigend numeriert (siehe Abbildung im folgenden
Abschnitt). Addieren wir zum logischen Zeiger Eins die Gré3e des ct_RefCount-Objekts,
erhalten wir nicht die Position des nutzbaren Bereichs im Block Eins, sondern den logischen
Zeiger Drei.

template <class t_store>
inline ct RefCount *
gct RefStore <t _store>:: RefPtr (t Pointer o ptr) const

{
ASSERT (o _ptr !=0);
return (ct_RefCount *) o_Store. AddrOf (o_ptr):

}

Spirick Tuning Tutorial Seite 119

template <class t_store>
inTine void gct RefStore <t store>:: DecRef (t_Pointer o ptr)
{
RefPtr (o_ptr)-> DecRef ():
if (RefPtr (o_ptr)-> IsNull ())
0 _Store. Free (o_ptr);

}

template <class t _store>
inTine void * gct RefStore <t store>:: AddrOf (t_Pointer o ptr) const

{

if (o _ptr == 0)
return 0;

else
{
ASSERT (IsAlloc (o_ptr));
return RefPtr (o_ptr) + 1;
}

}

Wird von einem Refstore Speicher angefordert, erhdht er die GréRe um sizeof (ct RefCount)
Bytes und gibt die Anforderung an den darunterliegenden Store weiter. Kann dieser den
Speicher bereitstellen, initialisiert der Refstore das ct _RefCount-Objekt und liefert den
logischen Zeiger zuriick. Beim Freigeben eines Blocks wird mit der Methode ct RefCount: :
SetFree das Attribut b Alloc auf false gesetzt. Danach erfolgt wie bei DecRef die Priifung der
Bedingung IsNull. Ist sie erflllt, wird der Block im darunterliegenden Store freigegeben.

template <class t _store>
gct_RefStore <t store>:: t Pointer
gct RefStore <t _store>:: Alloc (t_Size o size)
{
if (0_size == 0)
return 0;
else
{
t_Pointer o_ptr = o Store. Alloc (o_size + sizeof (ct_RefCount));
if (o _ptr == 0)
return 0;
else
{
RefPtr (o_ptr)-> Init ();
return o_ptr;
1
1
1

template <class t_store>
inTine void gct RefStore <t store>:: Free (t_Pointer o ptr)
{
if (o_ptr !=0)
{
RefPtr (o_ptr)-> SetFree ();
if (RefPtr (o_ptr)-> IsNull ())
0 _Store. Free (o _ptr);
}
}

Spirick Tuning Tutorial Seite 120

3.2.4 Konkrete Refstores

Parametrisieren wir das Refstoretemplate mit einer Storeklasse, erhalten wir einen konkreten
Refstore. Zum Beispiel ist gct_RefStore <ct_StdStore> ein Refstore, der auf dem Standardstore
aufbaut. Mehr Flexibilitat erreichen wir mit den globalen Stores, die im Makro

GLOBAL STORE_DCLS deklariert werden. Sie nutzen ein globales Storeobjekt und existieren in vier
Versionen, die sich durch den geschachtelten Typ t Size unterscheiden. Die globalen
Storeklassen enthalten keine eigenen Attribute und besitzen die GréRe ein Byte. Ubergeben
wir sie als Parameter an das Refstoretemplate, umfalRt auch der erzeugte Refstore ein Byte.

Die Klasse gct RefStore <ct _RndIntStore> erweitert die Funktionalitét einer globalen
Roundstoreklasse um die Referenzzahler. Wir missen beachten, dal3 fir sie o _ptr != AddrOf
(o_ptr) gilt. Setzen wir sie fur die globale C+ +-Speicherverwaltung ein, missen wir in den
Operatoren new und delete logische Zeiger und Speicheradressen ineinander umrechnen.
Diese Umrechnung kann bei einem Standard- oder Roundstore entfallen. Wollen wir auf den
Referenzzéhler eines Blocks zugreifen, missen wir die Speicheradresse umwandeln, denn
die Refstoremethoden erwarten als Parameter einen logischen Zeiger.

#include <stddef.h> // Fur globalen Typ size t
gct_RefStore <ct RndIntStore> co_GlobalStore;

void * operator new (size t u_size)

{
return co_GlobalStore. AddrOf (co_GlobalStore. Alloc (u_size));

}

void operator delete (void * pv)

co_GlobalStore. Free (co_GlobalStore. LogPtrOf (pv));
1

// operator new [] und operator delete [] analog

int main ()

{

char * pc = new char [20];
co_GlobalStore. IncRef (co GlobalStore. LogPtrOf (pc));

Ein Round-Refstore rundet die GréRe und ordnet jedem Block einen Referenzzéahler zu.
Diesen Komfort missen wir mit einem erhdéhten Speicherbedarf bezahlen. Am Beginn jedes
Blocks speichert der Roundstore die gerundete GréRe. Daran schlieRen sich das ct_RefCount-
Objekt und der nutzbare Bereich des Blocks an (siehe Abbildung 3-8).

o_RoundedSize | ct_RefCount | Nutzbarer Speicher

T T T

ct_StdStore:: AddrOf (o_ptr) ct_RndStore:: AddrOf (o_ptr) gct_RefStore:: AddrOf (o_ptr)

Abb. 3-8: Ein Block im Round-Refstore

Eine andere Art Refstores erhalten wir, wenn wir eine Blockstoreklasse als Parameter
Ubergeben. Beim Festlegen der BlockgréfRe missen wir den Referenzzahler berlcksichtigen.
Bendtigen wir zum Beispiel einen Block-Refstore mit acht Bytes nutzbarem Speicher pro

Spirick Tuning Tutorial Seite 121

Block, tibergeben wir dem Blockstoretemplate 8 + sizeof (ct RefCount) als feste Blockgréfie.
Im folgenden Programmfragment sehen wir die dazu nétigen Definitionen. Abbildung 3-9
veranschaulicht den Aufbau eines Block-Refstores.

typedef gct Block <ct RndShortStore> t RndShortBlock;

typedef gct BlockStore <t RndShortBlock, 8 + sizeof (ct_RefCount)>
t Fix8PTusStore;

typedef gct RefStore <t Fix8PlusStore> t Fix8RefStore;

Block-Refstore-Objekt

<

2 8 2 8 2 8
RefCount | Nutzbar | RefCount | Nutzbar - RefCount | Nutzbar

Logischer Zeiger: 1 2 n

Abb. 3-9: Aufbau eines Block-Refstores

3.3 Neue Container braucht das Land

3.3.1 Array

Fir die Implementierung der Container haben wir im Abschnitt 2.4.1 drei Vorgaben
erarbeitet:

¢ Containerklassen erben nicht von einer abstrakten Basisklasse.
¢ Container werden mit Templates implementiert.
¢ Container enthalten die verwalteten Objekte physisch.

Die erste Bedingung ermdglicht es uns, Containerklassen ohne virtuelle Methoden zu
implementieren. Damit beschleunigen sich das Iterieren und der Zugriff auf die Objekte.
Container enthalten viele kleine Methoden, die inline definiert werden kénnen. Bei
nichtvirtuellen Inline-Methoden ist die Wahrscheinlichkeit grol3, dal® sie an der
Verwendungsstelle vom Compiler inline expandiert werden. Die zweite Vorgabe sorgt fir
eine hohe Flexibilitat. Die verwalteten Objekte missen nicht von einer gemeinsamen
Basisklasse erben. Container kdnnen somit auch fir primitive Datentypen eingesetzt werden.
Die dritte Bedingung ermdglicht eine optimale Speicherauslastung.

Jeder Container wird als ein Template implementiert und erwartet als ersten Parameter den
Typ der Objekte, die er verwalten soll. Ein Arraycontainer kann nicht direkt auf einem Store
aufbauen, denn zwischen Arrays und Stores gibt es einen wesentlichen Unterschied. In
einem Store muld ein logischer Zeiger so lange seine Gliltigkeit behalten, bis er mit Realloc
oder Free geandert wird. Ein Array ist auf einen minimalen Speicherbedarf ausgelegt. Wird
an einer bestimmten Stelle ein Objekt eingefligt oder geléscht, werden alle nachfolgenden
Objekte verschoben. Damit andern sich deren logische Zeiger. Statt eines Stores nutzen wir
einen Block als Basis fur die Implementierung. Die Blockklasse wird als zweiter Parameter an
das Arraytemplate Ubergeben.

Ein Listencontainer benétigt fir jeden Eintrag ein Node. Darin befinden sich neben dem
Objekt die Verweise auf Vorganger und Nachfolger. In einem Array stehen die Objekte direkt
hintereinander. Zum Verbinden der Eintrage ist kein Node erforderlich. Wir bendétigen jedoch

Spirick Tuning Tutorial Seite 122

eine Hilfsklasse fir das Erzeugen und Léschen der Objekte. Wir nennen das Hilfstemplate
gct_ArrayNode und Ubergeben ihm dieselben Parameter wie dem Array. Es ist nur fir den
internen Gebrauch bestimmt. Alle Deklarationen sind privat, und die Arrayklasse wird als
friend deklariert.

Ein Objekt wird in einem Container mit seinem Standard- oder Kopier-Konstruktor erzeugt.
Fir beide Falle besitzt das Template gct_ArrayNode einen Konstruktor. Der Operator new
erwartet als zweiten Parameter die Adresse des aulRerhalb bereitgestellten Speichers und
gibt diese unverandert weiter. Er wird zum Beispiel in der Methode AddObjAfter aufgerufen
(siehe unten). Der Operator delete besitzt eine leere Definition. Ein Aufruf in
Operatorschreibweise fihrt nur zum Zerstdéren des Objekts mit seinem Desktruktor (siehe
Methode Del0bj). Die Methodenko6rper sind mit Ausnahme von operator new leer. Deshalb
stehen sie ausnahmsweise in der Klassendeklaration.

template <class t obj, class t_block>
class gct_ArrayNode

{
friend class gct_Array <t _obj, t block>;

t obj 0 0bj:
inline gct_ArrayNode () { }
inTine gct_ArrayNode (const t obj & o_obj):

0 0bj (o obj) { }
static inline void * operator new (size t, void * pv) { return pv; }
static inline void operator delete (void *) { }

b

Neben den Implementierungsvorgaben haben wir im Abschnitt 2.4.1 auch das Interface fir
Container erarbeitet. Wir erweitern den Arraycontainer um die drei privaten Methoden Node,
CopyFrom und DelObjects. Die Methode Node ermittelt die Adresse des Arraynodes zu einem
logischen Zeiger. Sie priift den Ubergebenen Zeigerwert mit zwei ASSERT-Makros und erspart
uns diese Priifungen an anderen Stellen, zum Beispiel in AddObjAfter und Del0bj. CopyFrom und
DelObjects enthalten die Anweisungen, die im Kopier-Konstruktor, Destruktor und Gleich-
Operator gemeinsam genutzt werden. CopyFrom Gbernimmt die Objekte des Gibergebenen
Arrays mit dem Kopier-Konstruktor. DelObjects ruft die Destruktoren aller enthaltenen
Objekte auf. Unser Arraytemplate erbt dhnlich wie String und Blockstore privat von der
Ubergebenen Blockklasse. Mit der Methode GetConstBlock kénnen wir auf konstante
Methoden der Basisklasse zugreifen.

Das Arraytemplate bendtigt keine eigenen Attribute. Auf den dynamischen Speicherblock
und dessen GroRe greift es Uber das Blockinterface zu. Die geschachtelten Typen t_Length
und t_Pointer richten sich nach dem GréRentyp der Basisklasse. Wie in der Arraycollection
von OHelp werden auch im Arraycontainer die Elemente mit eins beginnend aufsteigend
numeriert. Im folgenden Programmausschnitt sehen wir die Deklaration des Arraytemplates
und die Definition der Methoden Node und operator =.

template <class t obj, class t _block>
class gct_Array: private t _block
{
public:
typedef t block:: t Size t Length;
typedef t block:: t Size t Pointer;

typedef t obj t Object;
private:
inline gct ArrayNode <t obj, t block> * Node (t Pointer o ptr) const;
void CopyFrom (const gct Array & co_copy);
void DelObjects ();
pubTic:
inTine gct_Array ():

Spirick Tuning Tutorial Seite 123

inTine gct_Array (const gct Array & co_init);

inline ~gct_Array ();

inline gct Array & operator = (const gct Array & co_asgn);
inline t_Length GetLen () const;

inline t_Pointer First () const;

inline t_Pointer Next (t_Pointer o ptr) const;

inline t _Object * GetObj (t_Pointer o _ptr) const;
inline t_Pointer AddObj (const t Object * po obj = 0);

t Pointer AddObjCond (const t Object * po obj);
t Pointer AddObjAfter (t_Pointer o _ptr,
const t _Object * po obj = 0);
t _Pointer DelObj (t_Pointer o ptr);
inline const t block * GetConstBlock () const;
s

template <class t_obj. class t block>
inTine gct_ArrayNode <t obj, t block> *
gct Array <t obj, t_block>:: Node (t_Pointer o ptr) const

{

ASSERT (o_ptr !=0);

ASSERT (o_ptr <= GetlLen ());

return (gct ArrayNode <t obj, t block> *) GetAddr () +
(unsigned) (o_ptr - 1);

}

template <class t obj, class t block>
inline gct Array <t obj, t_block> &
gct Array <t obj, t _block>:: operator = (const gct Array & co_asgn)
{
if (& co_asgn != this)

DelObjects ();
CopyFrom (co_asgn);

}

return * this:

}

Mit der Methode AddObjAfter kénnen wir ein neues Objekt in den Arraycontainer einfligen.
Nach dem VergroRern des Blocks wird mit der Methode Node die Adresse des freien
Blockbereichs ermittelt. Befinden sich dahinter weitere Objekte, werden sie mit der
Standardfunktion memmove verschoben. Dann kann das neue Objekt erzeugt werden. Dem
Operator new unseres Hilfstemplates gct ArrayNode wird die freie Adresse libergeben.
Verweist der zweite Parameter der Methode AddObjAfter auf ein zu kopierendes Objekt, wird
der Konstruktor gct ArrayNode (const t obj & o _obj) aufgerufen. Andernfalls wird das Objekt
mit seinem Standard-Konstruktor initialisiert. Am Ende wird der um eins vergroRRerte logische
Zeiger zurlickgegeben.

template <class t obj, class t _block>
gct_Array <t obj, t_block>:: t _Pointer
gct Array <t obj, t block>:: AddObjAfter
(t_Pointer o_ptr, const t Object * po_obj)

SetSize (GetSize () + sizeof (gct ArrayNode <t obj, t block>));
gct_ArrayNode <t obj, t block> * pco node = Node (o _ptr + 1);
if (o _ptr < Getlen () - 1)

memmove (pco_node + 1, pco node, (unsigned) (GetSize () -

(o ptr + 1) * sizeof (gct ArrayNode <t obj, t block>)));

if (po_obj !=0)

new (pco_node) gct ArrayNode <t obj, t block> (* po obj);
else

new (pco_node) gct ArrayNode <t obj, t block>;
return o_ptr + 1;

}

Spirick Tuning Tutorial Seite 124

Die Methode Del0bj I6scht ein Objekt aus dem Arraycontainer. Mit der Methode Node wird die
Adresse des zu lI6schenden Nodes ermittelt. Darauf wird der delete-Operator des
Hilfstemplates gct_ArrayNode angewendet. Befinden sich dahinter weitere Objekte, werden sie
um eine Position verschoben. AnschlieRend wird der Block verkleinert und der logische
Zeiger des Nachfolgers zurlickgegeben.

template <class t obj, class t block>
gct Array <t obj, t _block>:: t Pointer
gct_Array <t obj, t block>:: DelObj (t _Pointer o ptr)

gct_ArrayNode <t _obj, t block> * pco_node = Node (o_ptr);
deTete pco_node;
if (o_ptr < GetlLen ())
memmove (pco_node, pco node + 1, (unsigned) (GetSize () -
0 _ptr * sizeof (gct ArrayNode <t obj, t block>)));
SetSize (GetSize () - sizeof (gct_ArrayNode <t obj, t_block>));
return Next (o _ptr - 1);

}

Das Speicherlayout eines Arraycontainers hangt vor allem vom Templateparameter t block
ab. Im einfachsten Fall nutzen wir eine Blockklasse, die ihren Speicher von einem globalen
Store anfordert. In Abbildung 3-10 sehen wir das Layout einer Instanz des Typs gct_Array
<ct_AnyClass, gct Block <ct_StdShortStore> >.

ct_AnyClass
— Basisklasse gct_Block
— unsigned short o_Size
E void * o_Ptr —[) ct_AnyClass
Objekt vom Typ gct_Array Speicher-Block

Abb. 3-10: Speicherlayout eines Arraycontainers

3.3.2 DList

Unser Listencontainer stellt die Funktionalitat einer doppelt verketteten Liste zur Verfigung.
Fir jeden Eintrag bendtigt er ein Node. Dieses Ubt eine doppelte Funktion aus. Zum einen
enthalt es die Verweise auf Vorganger und Nachfolger. Zum anderen besitzt es eigene
Operatoren new und delete, mit deren Hilfe das Objekt erzeugt und geléscht wird. Als
Parameter werden dem Template gct DListNode der Objekt- und der Zeigertyp tbergeben. In
einer Blockliste (siehe folgenden Abschnitt) wird das Node zum Parametrisieren des
Storetemplates bendtigt. Die Storeklasse ist dem Node nicht bekannt und somit auch nicht
der genaue Listentyp, zu dem es gehort. Die Liste kann nicht als friend deklariert werden.
Folglich miissen alle Deklarationen public sein.

template <class t_obj, class t ptr>
class gct DListNode

{

pubTic:
t ptr 0 _Prev;
t ptr 0 _Next:
t obj 0 0bj;

Spirick Tuning Tutorial Seite 125

inline
inline

static inline void *
static inline void

b

gct DListNode () { }
gct DListNode (const t obj & o obj):
0 0bj (o obj) { }
operator new (size t, void * pv) { return pv; }
operator delete (void *) { }

Der Listencontainer gct DList baut direkt auf einem Store auf. Die Storeklasse wird als
zweiter Templateparameter (bergeben. Von ihr werden Langen- und Zeigertyp Gbernommen,
und sie ist als Attribut im Listenobjekt enthalten. Auf das Attribut o Store kénnen wir mit der
Methode GetStore zugreifen. Neben dem allgemeinen Containerinterface enthalt das
Listentemplate einige private Methoden. Node liefert zu einem logischen Zeiger die Adresse
des Nodes. Die Methode NewNode erzeugt ein neues Node und aktualisiert die Verweise der
benachbarten Nodes. CopyFrom kopiert alle Nodes einer anderen Liste und ClearList I6scht alle
Nodes. Im folgenden Programmausschnitt sehen wir die Deklaration des Listentemplates und
die Definition der Methoden Node und operator =.

template <class t obj. class t_store>

class gct DList

{
public:

typedef t store:: t Size t Length;
typedef t_store:: t Pointer t Pointer;

typedef t obj
protected:
t_Length
t_Pointer
t_store

inline gct DListNode

t Pointer
void
void

pubTic:
inTine
inline
inTine
inTine gct DList &
inline t_Length
inTine t_Pointer
inline t_Pointer
inTine t Object *
inline t_Pointer
t_Pointer
t_Pointer

t_Pointer
inline t_store *

b

t Object;

0_Length;
0 First;
0 _Store;

<t _Object, t _Pointer> *

Node (t_Pointer o ptr) const;

NewNode (t Pointer, t Pointer, const t obj *);
CopyFrom (const gct DList & co_copy);
ClearList ();

gct DList ();
gct DList (const gct DList & co_init);
~gct DList ();
operator = (const gct DList & co_asgn);
GetLen () const;
First () const;
Next (t_Pointer o ptr) const;
GetObj (t_Pointer o _ptr) const;
AddObj (const t _Object * po obj = 0);
AddObjCond (const t _Object * po_obj);
AddObjAfter (t_Pointer o ptr,

const t _Object * po_obj = 0);
Del0Obj (t Pointer o ptr);
GetStore ();

template <class t obj, class t store>
inline gct DListNode <t obj, gct DList <t obj, t store>:: t Pointer> *
gct DList <t obj, t_store>:: Node (t_Pointer o ptr) const

{
ASSERT (0 _ptr = 0);

return (gct DListNode <t obj, t Pointer> *) o Store. AddrOf (o ptr);

}

template <class t _obj, class t_store>
inline gct DList <t obj, t_store> &
gct DList <t obj, t store>:: operator = (const gct DList & co_asgn)

{

Spirick Tuning Tutorial Seite 126

if (& co_asgn != this)

ClearList ();
CopyFrom (co_asgn);
1

return * this:

}

Der Methode NewNode werden drei Parameter (ibergeben: Die logischen Zeiger des Vorgéangers
und Nachfolgers und ein C + +-Zeiger auf das zu kopierende Objekt. Am Anfang wird vom
Store der Speicher fir ein neues Node angefordert. Der logische Zeiger wird in eine Adresse
umgewandelt und dem Operator new der Nodeklasse (ibergeben. In Abhangigkeit vom Wert
des Parameters po_obj wird das neue Objekt im Node mit seinem Kopier- oder Standard-
Konstruktor erzeugt. Danach wird das neue Node mit seinem Vorgénger und Nachfolger
verbunden. Ist die Liste leer, sind Vorgénger- und Nachfolgerzeiger gleich Null. In diesem Fall
mufd es mit sich selbst verbunden werden. Der logische Zeiger des neuen Nodes ist zugleich
der Rickgabewert der Methode NewNode.

template <class t obj, class t_store>
gct DList <t obj, t_store>:: t Pointer
gct DList <t obj, t_store>:: NewNode
(t_Pointer o_prev, t Pointer o next, const t obj * po_obj)
{
gct DListNode <t Object, t Pointer> * pco_node;
t Pointer o_new =
0 Store. Alloc (sizeof (gct DListNode <t Object, t Pointer>));:
ASSERT (o _new != 0);
void * pv = o Store. AddrOf (o_new);
if (po_obj !'=0)
pco_node = new (pv) gct DListNode <t Object, t Pointer> (* po obj);
else
pco node = new (pv) gct DListNode <t Object, t Pointer>;
if (o_prev !=0)
{
pco_node-> 0 Prev = 0 _prev;
pco_node-> o Next = o0 _next;
Node (o_prev)-> o_Next = o0_new;
Node (o0_next)-> o Prev = 0 new;
}
else
pco_node-> 0 Prev = pco_node-> o Next = 0 _new;
return o_new;

}

Die Methode AddObjAfter eines Containers mufd fir beide Parameter den Wert Null
akzeptieren. Ist der logische Zeiger des Objekts, hinter dem eingefiigt werden soll, gleich
Null, wird das neue Objekt an den Anfang des Containers gestellt. Der Algorithmus in

gct Array:: AddObjAfter arbeitet auch fur den Zeigerwert Null korrekt. Im Listencontainer muf3
dieser Fall gesondert behandelt werden. Eine weitere Fallunterscheidung ist flr eine leere
Liste notig.

template <class t obj, class t store>
gct DList <t obj, t_store>:: t Pointer
gct DList <t obj, t store>:: AddObjAfter
(t_Pointer o_ptr, const t Object * po_obj)

{
0_Length ++;
if (o _ptr !=0)
return NewNode (o ptr, Node (o _ptr)-> o Next, po_obj);
else
if (0 First 1= 0)

return

Spirick Tuning Tutorial Seite 127

0 _First = NewNode (Node (o First)-> o Prev, o First, po_obj);
else
return o_First = NewNode (0, 0, po obj):
}

Die Methode DelObj aktualisiert die Attribute o_Length und o First. Danach wird der Zeiger
auf das zu léschende Node ermittelt. Es wird aus der Verweiskette der Liste herausgeldst,
indem Vorganger und Nachfolger miteinander verbunden werden. AnschlieBend wird mit
dem Operator delete der Destruktor des Nodes aufgerufen und mit der Storemethode Free
der belegte Speicher freigegeben.

template <class t _obj, class t_store>
gct DList <t obj, t_store>:: t Pointer
gct DList <t obj, t store>:: DelObj (t_Pointer o ptr)

{
ASSERT (o_ptr !=0);
ASSERT (o _Length != 0);
0_Length --;
t Pointer o _next = Next (o _ptr);
if (o_ptr == o0 First)
0 First = o_next;
gct DListNode <t Object, t Pointer> * po node = Node (o_ptr);
Node (po_node-> o Prev)-> o _Next = po_node-> o_Next:
Node (po_node-> o Next)-> o _Prev = po node-> o Prev;
delete po_node;
0 Store. Free (o ptr);
return o _next;

}

Das Speicherlayout eines Listencontainers hangt vor allem von der ibergebenen Storeklasse
ab. Im einfachsten Fall nutzen wir fir den Templateparameter t _store eine globale
Storeklasse. In Abbildung 3-11 sehen wir das Layout einer Instanz des Typs gct DList
<ct_AnyClass, ct_StdShortStore>. Das Listenobjekt umfal3t sieben Bytes. Die Storeklasse ist
mit einem Dummybyte an der GroRe des Objekts beteiligt.

— unsigned short o_Length void * o_Prev

E void * o_First —[) E void * o_Next

ct_StdShortStore o_Store ct_AnyClass o_Obj
T
! o~

void * o_Prev

void * o_Next

ct_AnyClass o_Obj

Objekt vom Typ gct_DList Objekte vom Typ gct_DListNode

Abb. 3-11: Speicherlayout eines Listencontainers

Ein Listencontainer stellt sicher, dal® die /ogischen Zeiger der enthaltenen Objekte ihre

Gultigkeit behalten. Im allgemeinen bleibt jedoch die Adresse eines Objekts nicht konstant.
Der Container kann es an eine andere Stelle im Speicher verschieben. Die Gltigkeitsdauer
der Adressen in einem Listencontainer hangt von der (ibergebenen Storeklasse ab. Nutzen

Spirick Tuning Tutorial Seite 128

wir eine globale Storeklasse (wie oben), bleiben auch die Adressen der Objekte konstant.
Die Speicherauslastung ist dabei nicht so gut, denn jedes Node beansprucht einen eigenen
Block der dynamischen Speicherverwaltung.

3.3.3 Block- und Reflisten

Eine bessere Speicherauslastung erzielen wir mit einem Listencontainer, der auf einem
Blockstore aufbaut. Eine Blockliste speichert alle Nodes in einem einzigen Block. Dadurch
wird die dynamische Speicherverwaltung entlastet. Den Speicherbedarf kdnnen wir mit
geeigneten Zeigertypen reduzieren. Jedes Node enthalt zwei Zeiger. Verwenden wir statt
unsigned Tong den Zeigertyp unsigned short, beanspruchen die Zeiger nur noch halb so viel
Speicher (siehe Abbildung 3-12). Bei der Arbeit mit Blocklisten miissen wir beachten, dal3
sich die Adressen der Objekte dndern kénnen, sobald ein Objekt eingefligt oder geléscht
wird.

— gct_DListNode

— unsigned short o_Length - unsigned shorto_Prev | — -

— unsigned short o_First - unsigned short o_Next |

— gct_BlockStore o_Store
— Basisklasse gct_Block ct_AnyClass o_Obj
— unsigned short o_Size

H *
void * o_Ptr l> — gct_DListNode o

— unsigned short o_Prev [~ - 4

— unsigned short o_FirstFree

— unsigned short o_Next

ct_AnyClass o_Obj

Objekt vom Typ gct_DList Speicher-Block

Abb. 3-12: Speicherlayout einer Blockliste

Zum Definieren einer Blockliste sind mehrere Schritte erforderlich. Als Grundlage bendtigen
wir eine Blockklasse. Mit der Objektklasse und dem GréRentyp der Blockklasse kénnen wir
das Listennode parametrisieren und seine GréRe berechnen. Diese wird als zweiter
Parameter an das Blockstoretemplate Ubergeben. Mit der Objektklasse und der Storeklasse
kénnen wir nun die Containerklasse erzeugen. Das Speicherlayout der Blockliste, die im
folgenden Programmfragment definiert wird, stimmt mit Abbildung 3-12 (berein.

typedef gct Block <ct StdShortStore> t StdShortBlock;
const int i FixSize =
sizeof (gct DListNode <ct AnyClass, t StdShortBlock:: t Size>);
typedef gct BlockStore <t StdShortBlock, i FixSize> t StdShortBlockStore;
typedef gct DList <ct AnyClass, t_StdShortBlockStore> t StdShortBlockList;

Parametrisieren wir das Listentemplate mit einem Refstore, wird jedem Node ein
Referenzzahler zugeordnet. Eine Refliste kann Uberall dort eingesetzt werden, wo Eintrage
der Liste von aulRerhalb referenziert werden. Diese Referenzen werden bei Veranderungen
der Liste keine Dangling Pointers. Vor einem Zugriff kann die Liste mit der Methode IsAlloc
gefragt werden, ob sie den Eintrag noch besitzt. Wurde er inzwischen geléscht, sollte die
externe Referenz den Referenzzahler verkleinern, damit der Speicher des Listeneintrags
freigegeben werden kann.

Spirick Tuning Tutorial Seite 129

Der Zugriff auf die Referenzzahler erfolgt Gber das Storeobjekt der Liste. Dazu mif3te
jedesmal die Methode GetStore aufgerufen werden. Zur Vereinfachung definieren wir das
Template gct RefDList. Es erweitert das Listeninterface um die Zugriffsmethoden auf den
Referenzzéhler. Der Templateparameter t_store mulR eine Refstoreklasse sein.

template <class t obj, class t_store>
class gct RefDList: public gct DList <t obj, t store>

{
pubTic:

inTline void IncRef (t_Pointer o ptr);

inline void DecRef (t_Pointer o ptr);

inTine t RefCount GetRef (t_Pointer o_ptr) const;
inline bool IsATToc (t_Pointer o ptr) const;
inTine bool IsFree (t_Pointer o _ptr) const;
b

template <class t obj, class t_store>
inline bool
gct RefDList <t obj, t store>:: IsAlloc (t Pointer o ptr) const
{

return o_Store. IsAlloc (o ptr);

}

Im folgenden Programmfragment wird eine Refliste definiert und in einem Prinzipbeispiel
angewendet. Sie fordert den Speicher ihrer Nodes vom globalen Standardstore an. Ihr
Langentyp ist unsigned short und ihr Zeigertyp void *. Jedes Node belegt einen eigenen
Speicherblock. Folglich bleiben die Adressen der enthaltenen Objekte konstant. Das
Speicherlayout dieser Liste ist in Abbildung 3-13 zu sehen.

typedef gct RefDList <ct AnyClass, gct RefStore <ct StdShortStore> >
t_StdShortRefList;
t_StdShortReflList co Tist;
t_StdShortReflList:: t Pointer o ptr = co list. AddObj ();
co_list. IncRef (o _ptr);
if (co_list. IsAlloc (o_ptr))
co_list. GetObj (o_ptr)->; // Wird ausgefuhrt
co_Tist. DelObj (o ptr);
if (co_list. IsAlloc (o ptr))
co_list. GetObj (o _ptr)->; // Wird nicht ausgefihrt
else
{
co_list. DecRef (o _ptr); // Wird ausgefihrt
o ptr =0;
}

Spirick Tuning Tutorial Seite 130

Basisklasse gct_DList

unsigned short o_Length ~ ot _RefCount

— gct_DListNode
void * o_First —|> — void * o_Prev

gct_RefStore o_Store void * o_Next

ct_AnyClass o_Obj
T

. e
% |

— ct_RefCount

— gct_DListNode
— void * o_Prev

void * o_Next

ct_AnyClass o_Obj

Objekt vom Typ gct_RefDList Objekte vom Typ gct_DListNode

Abb. 3-13: Speicherlayout einer Refliste

Eine Block-Refliste verbindet die Sicherheit einer Refliste mit der guten Speicherauslastung
einer Blockliste. Der Listentyp wird dhnlich wie eine Blockliste definiert. Bei der festen
BlockgréRe mul das ct RefCount-Objekt beriicksichtigt werden, das jedem Block zugeordnet
wird. Abbildung 3-14 zeigt das Speicherlayout der Block-Refliste, die im folgenden
Programmfragment definiert wird.

typedef gct Block <ct_StdShortStore> t StdShortBlock:
const int i FixSize = sizeof (ct _RefCount) +
sizeof (gct DListNode <ct AnyClass, t StdShortBlock:: t Size>);
typedef gct BlockStore <t StdShortBlock, i FixSize> t StdShortBlockStore;
typedef gct RefDList <ct AnyClass, gct RefStore <t StdShortBlockStore> >
t_StdShortBlockRefList;

Spirick Tuning Tutorial Seite 131

Abb. 3-14:

— Basisklasse gct_DList
— unsigned short o_Length

— ct_RefCount

— unsigned short o_First

— gct_DListNode
— unsigned short o_Prev

— gct_RefStore o_Store

— gct_BlockStore o_Store

— Basisklasse gct_Block

— unsigned short o_Size

— unsigned short o_Next

ct_AnyClass o_Obj

E void * o_Ptr

— unsigned short o_FirstFree

— ct_RefCount

Objekt vom Typ gct_RefDList

— gct_DListNode
— unsigned short o_Prev

— unsigned short o_Next

ct_AnyClass o_Obj

Speicher-Block

Speicherlayout einer Block-Refliste

Diese Block-Refliste ist die komplizierteste Klasse, die wir bisher kennengelernt haben.
Wirden wir keine zuséatzlichen Typdefinitionen verwenden, mif3ten wir schreiben:

gct RefDList <ct_AnyClass, gct RefStore <gct BlockStore <gct Block <ct StdShortStore>, sizeof
(ct_RefCount) + sizeof (gct DListNode <ct AnyClass, gct Block <ct StdShortStore>:: t Size>)> > >,
Abbildung 3-15 bringt Ubersicht in diesen Dschungel geschachtelter Templates. Das
Designdiagramm enthélt alle beteiligten Klassen mit ihren wichtigsten Verbindungen. Um die
Namen der Templateklassen nicht zu lang werden zu lassen, werden gegenliber dem
Programmfragment die folgenden Abkilrzungen verwendet.

L]

i_Size statt i_FixSize

ct Cls statt ct_AnyClass

t_ShBIk statt t_StdShortBlock

t ShBIkSize statt t StdShortBlock:: t_Size
t_ShBIkSt statt t_StdShortBlockStore

t ShBIkRefSt

statt gct RefStore <t StdShortBlockStore >

Spirick Tuning

Tutorial Seite 132

ct_StdStore ct_StdShortStore gct_Block <ct_StdShortStore>
MaxAlloc MaxAlloc o_Size
StorelnfoSize StorelnfoSize o_Ptr
Alloc Alloc o_Store
Realloc on 1 || Realloc gct_Block <ct_StdShortStore>
Free Free gct_Block <ct_StdShortStore>
AddrOf AddrOf ~gct_Block <ct_StdShortStore>
LogPtrOf LogPtrOf o.n operator =
GetStore GetSize

SetSize

GetPtr

GetAddr

GetCharAddr

GetStore

7

— gct_RefStore <t_ShBIkSt>
ct_RefCount o Store 1
o RefCount = gct_BlockStore <t_ShBIK, i_Size>
b_AIIoc MaxAlloc .
R StorelnfoSize o_FirstFree
ct_RefCount Alloc gct_BlockStore <t_ShBIk, i_Size>
Init Realloc MaxAlloc
IncRef Free StorelnfoSize
DecRef AddrOf 1—<]—1 Alloc
GetRef 10 || LogPtrOf Realloc
IsAlloc IncRef Free
SetAlloc DecRef AddrOf
IsFree GetRef LogPtrOf
SetFree IsAlloc Lastldx
IsNull IsFree HasFree
——— GetStore GetConstBlock
1
1
gct DList <ct_Cls, t_ShBIkRefSt>
o_Length
o_First
o_Store
gct_DList <ct_Cls, t_ShBIkRefSt>
get_DList <ct_Cls, t_ShBIkRefSt>
~gct_DList <ct_Cls, t_ShBIkRefSt>
operator =
SG‘LG“ gct_DListNode <ct_Cls, t_ShBIkSize>
irst
Next o_Prev
GetObj 0_Next
AddObj on 0_Obj
AddObjCond gct_DListNode <ct_Cls, t_ShBIkSize>
AddObjAfter gct_DListNode <ct_Cls, t_ShBIkSize>
DelObj operator new
GetStore operator delete
gct_RefDList <ct_Cls, t_ShBIkRefSt>
IncRef
DecRef
GetRef
IsAlloc
IsFree
Abb. 3-15: Verwendete Klassen der Block-Refliste

Im Designdiagramm erscheinen nichtstatische Attribute als Teil-Ganzes-Beziehung (Dreieck).
Andere Abhangigkeiten zwischen Objekten werden als Objekt-Verbindung dargestellt
(durchgehende Linie). Das Fundament bildet die Klasse ct_StdStore. Von ihr werden in den
GLOBAL_STORE-Makros eine globale Instanz und vier globale Klassen generiert, darunter

Spirick Tuning Tutorial Seite 133

ct_StdShortStore. Alle Instanzen dieser Storeklasse greifen auf denselben globalen
Standardstore zu. ct_StdShortStore ist als statisches Attribut in t StdShortBlock enthalten. Der
Blockstore erbt von der Blockklasse und ist Teil des Refstores. Der Refstore verwaltet null
bis n ct_RefCount-Objekte und ist als Attribut o _Store in der Liste enthalten. Diese verwaltet
null bis n Nodes, in denen sich je ein ct AnyClass-Objekt befindet. Als letzte Klasse in dieser
Reihe erbt die Refliste von der normalen Liste.

Am Ende des Abschnitts 2.4.1 haben wir verschiedene Containerarten in bezug auf die
Glltigkeitsdauer ihrer logischen Zeiger und der Adressen ihrer Objekte miteinander
verglichen. Inzwischen hat sich das Spektrum der Container erweitert. In Tabelle 3-4 sind
die wichtigsten Arten zusammengefal3t. Reflisten und Block-Reflisten betrachten wir in
diesem Zusammenhang nicht. Sie verhalten sich bezlglich der Gliltigkeitsdauer wie die
Basislisten, von denen sie erben.

Containerart Beispiel

Objekt-Array gct_Array <float, gct Block <ct_StdShortStore> >
Zeiger-Array gct_Array <float *, gct_Block <ct_StdShortStore> >
Objekt-Liste gct DList <float, ct_StdShortStore>

Zeiger-Liste gct DList <float *, ct_StdShortStore>
Objekt-Blockliste gct DList <float, t_StdShortBlockStore>
Zeiger-Blockliste gct DList <float *, t StdShortBlockStore>

Tab. 3-4: Containerarten

In Tabelle 3-5 sind diese Containerarten nach der Gultigkeitsdauer der logischen Zeiger und
Adressen geordnet. Die erste Spalte enthalt Container, deren logische Zeiger nach einer
Anderung (Einfligen oder Léschen von Elementen) ungltig werden kénnen. Dazu zahlen nur
Arraycontainer. In der zweiten Spalte finden wir ausschlie3lich Listencontainer. Die obere
Zeile der Tabelle enthélt Container, die ihre Objekte im Speicher verschieben. Dabei dndern
sich zwar die Adressen der Objekte, der belegte Speicher wird jedoch optimal ausgelastet. In
der unteren Zeile befinden sich Container, deren Objekte stets an derselben Stelle bleiben.
Diese Container bendtigen mehr Speicher.

Logischer Zeiger ungliltig Logischer Zeiger gliltig
Adresse unglltig Objekt-Array Objekt-Blockliste
Adresse glltig Zeiger-Array Objekt-L., Zeiger-L., Zeiger-Blockl.

Tab. 3-5: Logische Zeiger und Adressen in Containern

3.3.4 Test der Container

Container und Collections miissen wir sorgfaltig testen. Sie werden an zahlreichen Stellen
eingesetzt. Tritt in einem Programm ein Fehler auf, vermuten wir ihn zunéchst in den
eigenen Klassen. Von den fundamentalen Klassen erwarten wir Korrektheit und Robustheit.
Bei Containern ist der Testaufwand héher als bei Collections. Neben den Methoden zum
Einfligen, Loschen und Iterieren missen wir auch priifen, ob die Konstruktoren und
Destruktoren der enthaltenen Objekte korrekt aufgerufen werden. Zu diesem Zweck
verwenden wir die folgende Testklasse. Sie enthalt alle Methoden, die in einem Container
direkt oder indirekt aufgerufen werden. Jede Methode protokolliert eine entsprechende
Meldung auf die Standardausgabe.

Spirick Tuning Tutorial Seite 134

class ct_Int: public ct_Object

{
int i Value;
public:
ct_Int ();
ct_Int (int);
ct_Int (const ct_Int & co_int);
virtual ~ct_Int (O);
ct Int & operator = (int 1);
ct_Int & operator = (const ct_Int & co_int);
virtual const char * GetTypeName () const;
bool operator == (const ct_Int & co_int);
int GetValue () const { return i Value; }
b
ct Int:: ct_Int (const ct_Int & co_int)
{

i Value = co_int. i Value;
printf ("ct_Int (const ct_Int & co_int = Zd)\n", i Value);
}

ct Int & ct Int:: operator = (int 1)
{

i Value = 1;
printf ("operator = (int i = Zd)\n", i _Value);
return * this;

}

Container erben nicht von einer gemeinsamen Basisklasse. Zum Protokollieren ihres Inhalts
kénnen wir keine normale Funktion verwenden. Stattdessen definieren wir das folgende
Funktionstemplate. Es erwartet als Funktionsparameter einen Zeiger auf einen unbekannten
Container, der ct_Int-Objekte enthalt. Von jedem Eintrag wird der logische Zeiger und der
Wert ausgegeben.

template <class t_container>
void PrintContainer (t_container * po _cont)

printf ("Container:");

for (t_container:: t Pointer o _ptr = po_cont-> First ();
o ptr 1= 0;
0_ptr = po_cont-> Next (o_ptr))

{
printf (" Entry[%1d]=%d",
(Tong) o ptr, po_cont-> GetObj (o ptr)-> GetValue ());

1
printf ("\n");

}

Das folgende Programmfragment enthalt einige wichtige Tests flir Container. Es erhebt
keinen Anspruch auf Vollstéandigkeit, ist aber eine gute Grundlage fir ein umfangreicheres
Testprogramm. Am Anfang wird die Methode AddObjCond geprift. Beim zweiten Aufruf mit
demselben Objekt darf sie es nicht noch einmal einfiigen. Danach wird die Methode
AddObjAfter mit logischen Zeigern ungleich und gleich Null aufgerufen. Als Ergebnis missen
sich drei Objekte mit den Werten O, 1 und 2 (in dieser Reihenfolge) im Container befinden.
Der nachste Abschnitt prift den Kopier-Konstruktor, Gleich-Operator und Destruktor eines
kompletten Containers. Ein zweiter Container wird erzeugt. Nach dem Zuweisen eines neuen
Inhalts wird er wieder zerstért. Am Ende werden aus dem urspriinglichen Container zwei
Objekte geldscht, und auch dieser wird zerstort.

typedef <ct_Int> t _container;
ct_Int co_int (1);

Spirick Tuning Tutorial Seite 135

t _container * po_cont = new t_container;

PrintContainer (po_cont);

t _container:: t_Pointer o 1 = po_cont-> AddObjCond (& co_int);
po_cont-> AddObjCond (& co_int);

PrintContainer (po_cont);

co_int = 2;

0.1 = po_cont-> AddObjAfter (o 1, & co_int);
PrintContainer (po_cont);

co_int = 0;

po_cont-> AddObjAfter (0, & co_int);
PrintContainer (po_cont);

printf ("Beginn zweiter Container\n");

t _container * po_cont2 = new t_container (* po_cont);
PrintContainer (po_cont2);

* po_cont = * po_contZ;

PrintContainer (po_cont);

delete po_cont?;

printf ("Ende zweiter Container\n");

po_cont-> DelObj (o 1);

PrintContainer (po_cont);

po_cont-> DelObj (po_cont-> First ());
PrintContainer (po_cont);

delete po_cont;

Das Protokoll des Testprogramms mul fir alle Container gleich sein. Nur die logischen
Zeiger durfen sich unterscheiden. Bei der Analyse des folgenden Textes missen wir
beachten, dal3 die Variable co_int am Anfang erzeugt und am Ende zerstdrt wird. Die
Zusatze in C+ +-Kommentarform stammen vom Autor.

ct_Int (int i =1) // co_int (1)
Container:

ct_Int (const ct_Int & co_int
Container: Entry[1]=1
operator = (int i = 2) // co_int =2
ct_Int (const ct Int & co_int = 2) // AddObjAfter
Container: Entry[1]=1 Entry[2]=2

operator = (int i = 0) // co_int =0
ct_Int (const ct_Int & co_int = 0) // AddObjAfter
Container: Entry[3]=0 Entry[1]=1 Entry[2]=2

Beginn zweiter Container

1) // AddObjCond

ct_Int (const ct Int & co_int = 0) \
ct_Int (const ct_Int & co_int = 1) > // Kopier-Konstruktor
ct_Int (const ct Int & co_int = 2) /

Container: Entry[1]=0 Entry[2]=1 Entry[3]=2
\

~ct_Int (0)

~ct_Int (1) \

~ct_Int (2) \ // Gleich-Operator
ct_Int (const ct Int & co_int = 0) /// des Containers
ct_Int (const ct Int & co_int = 1) /

ct_Int (const ct Int & co_int = 2) /

Container: Entry[1]=0 Entry[2]=1 Entry[3]=2

~ct_Int (0) \

~ct_Int (1) > // Destruktor
~ct_Int (2) /

Ende zweiter Container

~ct_Int (1) // DelObj
Container: Entry[1]=0 Entry[3]=2

~ct_Int (0) // Del0bj
Container: Entry[3]=2

~ct_Int (2) // Destruktor

Spirick Tuning Tutorial Seite 136

~ct_Int (0) // co_int

Wer das Buch aufmerksam gelesen hat, sieht auf den ersten Blick, daf eine Blockliste
getestet wurde. Die logischen Zeiger besitzen die Werte 1, 2 und 3. Daflir kommen nur
Arrays und Blocklisten infrage. Beim Durchlaufen des Containers nach AddObjAfter erscheinen
sie in der Reihenfolge 3, 1 und 2. Damit ist ein Array ausgeschlossen. Im folgenden Text
sehen wir dieselbe Zeile aus dem Protokoll eines Arrays und einer normalen Liste.

// Array

Container: Entry[1]=0 Entry[2]=1 Entry[3]=2

// Normale Liste

Container: Entry[898367494]1=0 Entry[898105350]=1 Entry[898236422]=2

3.4 Griff ins Regal

Die Implementierung der Container mit Hilfe von Templates flihrt nicht nur zu einer guten
Performance, sondern auch zu einer hohen Flexibilitdt. Containertemplates lassen sich an ein
breites Spektrum von Rahmenbedingungen anpassen. Wir lernten bisher vier konkrete
Listencontainer kennen, die ein unterschiedliches Speicher- und Rechenzeitverhalten
aufweisen. Sie wurden aus einem einzigen Listentemplate generiert und besitzen dasselbe
Interface. Damit ist ihre Handhabung einfach. Ein Container 1aRt sich leicht durch einen
anderen ersetzen.

Zum Definieren einer Containerklasse sind jedoch mehrere Schritte erforderlich. Diese
Teilschritte, zum Beispiel das Berechnen der GroRRe eines Listennodes, sind fir den
Anwender beschwerlich und fehleranfallig. Um die Handhabung zu vereinfachen, werden im
folgenden einige /Instanzen vordefiniert. Diese ersparen umstandliche Typdefinitionen und
ermdoglichen es, mit einem einzigen Griff ins Regal den passenden Container zu finden.

3.4.1 Vordefinierte Stores und Blocke

Container werden auf der Grundlage von Stores und Blécken gebildet. Bevor wir mit den
Containern beginnen, generieren wir Instanzen der Speicherverwaltungsklassen. Dabei
orientieren wir uns an den globalen Stores (siehe Abschnitt 3.1.2). Diese werden in
Praprozessormakros deklariert und besitzen generierte Namen. Das Makro GLOBAL_STORE_DCL
deklariert eine Storeklasse fir einen bestimmten GréRentyp. Im Makro GLOBAL STORE DCLS
werden Storeklassen flir vier GréRentypen gebildet.

GLOBAL_STORE_DCL besitzt vier Parameter. t_store bezeichnet die Storeklasse, von der eine
globale Instanz gebildet werden soll, zum Beispiel ct_StdStore oder ct RndStore. Der
Parameter Obj enthalt eine Identitat flr das globale Objekt. Vordefiniert sind die
Objektidentitdten Std und Rnd. Daraus werden die globalen Storeobjekte co StdStore und
co_RndStore generiert. Der dritte Parameter Size enthélt eine Kurzbezeichnung des
geschachtelten GroRentyps t Size. Sie wird fir die Namensbildung bendétigt. Es steht Int far
unsigned int, Char fir unsigned char usw. Der letzte Parameter t _size enthalt den zugehdrigen
C+ +-Typ. Zum Beispiel wird in GLOBAL STORE DCL (ct_StdStore, Std, Long, unsigned long) die
globale Storeklasse ct StdLongStore mit dem geschachtelten GroRentyp unsigned Tong
deklariert.

Fir vordefinierte Instanzen des Blocktemplates bendtigen wir nur die Parameter Obj und Size.
Zur Vereinfachung erwartet das Makro BLOCK _DCL beide Angaben als einen
zusammenhéngenden Bezeichner mit dem Préafix ct . Zum Beispiel wird in BLOCK DCL

Spirick Tuning Tutorial Seite 137

(ct_StdLong) die Blockklasse ct_StdLongBlock deklariert. Sie enthalt den GréRentyp unsigned
Tong und fordert ihren Speicher vom globalen Storeobjekt co StdStore an.

#define BLOCK DCL(StoreSpec) \
class StoreSpec ## Block: \
public gct Block <StoreSpec ## Store> { };

// Beispiel: BLOCK DCL (ct StdLong) expandiert zu
class ct_StdLongBlock:
public gct Block <ct StdLongStore> { };

Das Blockstoretemplate besitzt zwei Parameter, die Blockklasse t block und die feste GréRe
der Blécke u_fixSize. Der zweite Parameter bleibt auch bei vordefinierten Instanzen variabel.
Diese sind also keine Klassen, sondern wieder Templates. Sie besitzen aber nur noch den
Parameter u_fixSize. FUr jeden GréRentyp werden zwei Blockstoretemplates gebildet. Das
zweite ist ein Block-Refstore. Die GréRe des ct RefCount-Objekts wird im Makro
bertcksichtigt.

Das Makro BLOCK_STORE _DCL erwartet einen Parameter in derselben Form wie BLOCK DCL. Das
darin erzeugte Blockstoretemplate verwendet eine generierte Blockklasse. Zum Beispiel wird
in BLOCK_STORE DCL (ct_RndShort) das Template gct RndShortBlockStore generiert. Es verwendet
die Klasse ct_RndShortBlock. Das Block-Refstoretemplate baut auf dem im selben Makro
erzeugten Blockstoretemplate auf.

#define BLOCK STORE DCL(StoreSpec)
template <unsigned u_fixSize>
class g ## StoreSpec #t BlockStore:
public gct BlockStore <StoreSpec ## Block, u fixSize> { };
template <unsigned u_fixSize>
class g ## StoreSpec ## BlockRefStore:
public gct RefStore <g ## StoreSpec ## BlockStore
<u_fixSize + sizeof (ct RefCount)> > { };

P

// Beispiel: BLOCK_STORE DCL (ct RndShort) expandiert zu
template <unsigned u_fixSize>
class gct_RndShortBlockStore:
public gct BlockStore <ct RndShortBlock, u fixSize> { };
template <unsigned u_fixSize>
class gct_RndShortBlockRefStore:
public gct RefStore <ct RndShortBlockStore
<u_fixSize + sizeof (ct_RefCount)> > { };

Das allgemeine Refstoretemplate gct RefStore erwartet ahnlich wie das Blocktemplate als
Parameter eine Storeklasse. Das Makro REF_STORE DCL erzeugt einen vordefinierten Refstore
und ahnelt dem Makro BLOCK DCL. In REF_STORE DCL (ct_StdChar) wird die Klasse
ct_StdCharRefStore deklariert. Sie erweitert den globalen Store ct StdCharStore um die
Referenzzahler.

#define REF_STORE DCL(StoreSpec) \
class StoreSpec ## RefStore: \
public gct RefStore <StoreSpec ## Store> { };

// Beispiel: REF_STORE_DCL (ct StdChar) expandiert zu
class ct_StdCharRefStore:
public gct RefStore <ct StdCharStore> { };

Blocke, Blockstores und Refstores werden etwa genauso haufig verwendet wie die globalen
Stores. Deshalb generieren wir sie gemeinsam. Wir ergdnzen das Makro GLOBAL_STORE DCL um
die drei Makroverwendungen BLOCK_DCL, BLOCK_STORE DCL und REF_STORE DCL. In diesem
erweiterten Makro werden die folgenden Klassen und Templates generiert:

Spirick Tuning Tutorial Seite 138

¢ eine globale Storeklasse,

¢ eine Blockklasse,

¢ ein Blockstoretemplate,

¢ ein Block-Refstoretemplate und
e eine globale Refstoreklasse.

#define GLOBAL STORE DCL(t store, Obj, Size, t_size) \
class ct_ ## Obj ## Size ## Store \

{ \

i \
BLOCK_DCL (ct_ ## Obj ## Size) \
BLOCK_STORE_DCL (ct_ ## Obj ## Size) \

REF_STORE DCL (ct_ ## Obj ## Size)

// Beispiel: GLOBAL _STORE DCL (ct RndStore, Rnd, Int, unsigned int)
// expandiert zu

class ct_RndIntStore { ... };

class ct_RndIntBlock: public;

template <unsigned u_fixSize> gct RndIntBlockStore: public;
template <unsigned u_fixSize> gct RndIntBlockRefStore: public;
class ct_RndIntRefStore: public;

Unter der Deklaration der dynamischen Storeklasse ct StdStore werden im Makro
GLOBAL_STORE_DCLS (ct_StdStore, Std) die vordefinierten Instanzen der vier GréRentypen
unsigned int, u. char, u. short und u. lTong erzeugt. Abbildung 3-16 zeigt das Regal fir Stores
und Blécke, die vom Standardstore gebildet werden. Ein &hnliches Regal existiert noch
einmal fir den Roundstore. Jede Box aulder der ersten enthélt vier Klassen oder Templates,
von denen in der Abbildung die obersten beiden zu sehen sind. Sie unterscheiden sich
jeweils durch ihren GroRentyp.

class ct_StdStore
{

b

GLOBAL_STORE_DCLS (ct_StdStore, Std)

Spirick Tuning Tutorial Seite 139

ct_StdintBlock
of_StdStore ct_StdCharBlock
Dynamischer Store Blocke

ct_StdIntStore gct_StdintBlockStore
ct_StdCharStore gct_StdCharBlockStore

Globale Stores Blockstores
ct_StdIntRefStore gct_StdIntBlockRefStore
ct_StdCharRefStore gct_StdCharBlockRefStore

Globale Refstores Block-Refstores

Abb. 3-16: Regal fiir Stores und Blécke

3.4.2 Vordefinierte Strings und Container

Beim Generieren der Stringinstanzen stehen wir vor einem technischen Problem. Das
Stringtemplate besitzt Gberladene Konstruktoren und Gleich-Operatoren. Diese werden nicht
vererbt und stehen in einer abgeleiteten Klasse nicht zur Verfligung. Die im folgenden
Programmfragment deklarierte Klasse verfiigt tber die vom Compiler generierten Methoden
Standard-Konstruktor, Kopier-Konstruktor, Destruktor und Gleich-Operator. Der (iberladene
Konstruktor und der Gleich-Operator mit dem Parametertyp const char * fehlen jedoch.

class ct_StdShortString: public gct String <ct StdShortBlock> { };

Eine Ausweichlésung ware die Verwendung einer Typdefinition statt einer Klasse.
Typdefinitionen werden aber vom Compiler an jeder Verwendungsstelle aufgeldst. Ist im Typ
ein Template enthalten, verlangsamt sich das Ubersetzen des Programms spurbar.

typedef gct String <ct_StdShortBlock> t StdShortString;

Eine befriedigende Losung erhalten wir nur durch eine Klasse, in der die nicht vererbten
Methoden neu definiert werden. Diese Methoden mappen die Funktionalitdt der Basisklasse.
Sie konnen inline definiert werden und belasten nicht die Rechenzeit. Die Definition des
Konstruktors und des Gleich-Operators mit dem Parametertyp const char * reicht nicht aus.
Wourde ein eigener Konstruktor definiert, generiert der Compiler keine anderen Konstruktoren
mehr. Wir missen also samtliche Konstruktoren und Gleich-Operatoren in die abgeleitete
Klasse aufnehmen.

#define STRING DCL(StoreSpec) \
class StoreSpec ## String: \
public gct String <StoreSpec ## Block> \

Spirick Tuning Tutorial Seite 140

{
pubTic:
inline StoreSpec ## String ();
inline StoreSpec ## String (const char * pc_init);
inline StoreSpec ## String (const StoreSpec ## String & co_init);
inline StoreSpec ## String & operator = (const char * pc_asgn);
inline StoreSpec ## String & operator =
(const StoreSpec ## String & co_asgn);
b
inline StoreSpec ## String:: StoreSpec ## String () { }
inline StoreSpec ## String:: StoreSpec ## String
(const char * pc_init):
gct String <StoreSpec ## Block> (pc_init) { }

P gl A

inline StoreSpec ## String & StoreSpec ## String::
operator = (const StoreSpec ## String & co_asgn)
{
gct_String <StoreSpec ## Block>:: operator = (co_asgn);
return * this;

}

// Beispiel: STRING _DCL (ct_StdShort) expandiert zu
class ct_StdShortString:
public gct _String <ct StdShortBlock>

{

pubTlic:
inline ct_StdShortString ();
1%

inline ct_StdShortString & ct_StdShortString::
operator = (const ct StdShortString & co_asgn)

— -~

gct_String <ct_StdShortBlock>:: operator = (co_asgn);
return * this;

}

Im Makro STRING DCL wird eine einzelne Stringklasse generiert. Zum Erzeugen der Klassen
aller vier GroRBentypen nutzen wir das Makro STRING DCLS. Es verwendet dhnlich wie
GLOBAL_STORE_DCLS viermal das Makro fir einen einzelnen GréRentyp. Analoge Makros mit den
Namen ARRAY_DCLS und DLIST DCLS werden auch fir die Container definiert.

#define STRING DCLS(Obj) \
STRING_DCL (ct_ ## Obj ## Int) \
STRING_DCL (ct_ ## Obj ## Char) \
STRING_DCL (ct_ ## Obj ## Short) \
STRING_DCL (ct_ ## Obj ## Long)

// Beispiel: STRING DCLS (Rnd) expandiert zu
class ct_RndIntString: public;

class ct_RndCharString: public;

class ct_RndShortString: public;

class ct_RndLongString: public;

Das Arraytemplate besitzt zwei Parameter, die Objektklasse t obj und die Blockklasse

t block. Der erste Parameter bleibt auch bei vordefinierten Instanzen erhalten. In ARRAY DCL
(ct_RndLong) wird das Template gct RndLongArray deklariert. Es baut auf der generierten
Blockklasse ct RndLongBlock auf.

#define ARRAY DCL(StoreSpec) \
template <class t_obj> \
class g ## StoreSpec ## Array: \

public gct Array <t obj, StoreSpec ## Block> { };

Spirick Tuning Tutorial Seite 141

// Beispiel: ARRAY DCL (ct RndLong) expandiert zu
template <class t_obj>
class gct _RndLongArray:
public gct Array <t obj, ct RndLongBlock> { };

Das Template gct DList erwartet als zweiten Parameter eine Storeklasse. Dabei ist die
Auswahl grolRer als bei Blockklassen (siehe Abbildung 3-16). Flr einen einzelnen GréoRentyp
generieren wir vier Listentemplates: Eine normale Liste, eine Blockliste, eine Refliste und
eine Block-Refliste. Im Makro DLIST DCL werden vordefinierte Stores verwendet. Zum Beispiel
nutzt der Listencontainer gct RndIntBlockDList das Storetemplate gct RndIntBlockStore.

#define DLIST DCL(StoreSpec) \
template <class t obj> \
class g ## StoreSpec ## DList: \
public gct DList <t obj, StoreSpec ## Store> { }; \
template <class t _obj> \
class g ## StoreSpec ## BlockDList: \
public gct DList <t obj, g ## StoreSpec # BlockStore \
<sizeof (gct DListNode <t obj, StoreSpec ## Store:: t Size>)> >{};\
template <class t _obj> \
class g ## StoreSpec ## RefDList: \
public gct RefDList <t _obj, StoreSpec ## RefStore> { }; \
template <class t_obj> \
class g ## StoreSpec ## BlockRefDList: \
public gct RefDList <t obj, g ## StoreSpec ## BlockRefStore \
<sizeof (gct DListNode <t obj, StoreSpec ## Store:: t Size>)> >{};

// Beispiel: DLIST DCL (ct RndInt) expandiert zu
template <class t_obj>
class gct RndIntDList:
public gct DList <t obj, ct RndIntStore> { };
template <class t_obj>
class gct_RndIntBlockDList:
public gct DList <t obj, gct RndIntBlockStore
<sizeof (gct DListNode <t obj, ct RndIntStore:: t Size>)> > { };
template <class t_obj>
class gct RndIntRefDList:
public gct RefDList <t obj, ct RndIntRefStore> { };
template <class t obj>
class gct_RndIntBlockRefDList:
public gct RefDList <t_obj, gct_RndIntBlockRefStore
<sizeof (gct DListNode <t obj, ct RndIntStore:: t Size>)> > { };

In Abbildung 3-17 sehen wir das Regal fir Strings und Container, die vom Roundstore
gebildet werden. Zu ihrer Erzeugung sind die drei Makros STRING DCLS (Rnd), ARRAY DCLS (Rnd)
und DLIST DCLS (Rnd) erforderlich. In jeder Box des Regals befinden sich vier Klassen oder
Templates, von denen die obersten beiden zu sehen sind. Ein dhnliches Regal existiert auch
fir den Standardstore.

Spirick Tuning Tutorial Seite 142

ct_RndIntString gct_RndIntArray
ct_RndCharString gct_ RndCharArray
Strings Arrays
gct_RndintDList gct_RndIntBlockDList
gct_RndCharDList gct_RndCharBlockDList
Listen Blocklisten
gct_RndIntRefDList gct_RndIntBlockRefDList
gct_RndCharRefDList gct_RndCharBlockRefDList
Reflisten Block-Reflisten

Abb. 3-17: Regal fiir Strings und Container

3.4.3 Collections

Mit groRen Regalen voller Arrays und Listen fallt es uns nicht schwer, einige Collections zu
implementieren. Wir bendtigen dazu ein Template, das die Funktionalitét eines Containers
auf das Collectioninterface (siehe Abschnitt 2.4.2) mappt. Das Template gct_Collection
erwartet eine Containerklasse der Form gct_AnyContainer <ct _Object *>, also einen Container,
der C + +-Zeiger auf die abstrakte Basisklasse ct_Object enthalt. Beim Zugriff auf ein Objekt
ist ein Dereferenzieren erforderlich. Die Containermethode GetObj liefert einen Zeiger auf
einen Zeiger (ct Object * *). Die Collectionmethode GetObj mul aber einen Zeiger auf ein
ct_Object zurickgeben. Umgekehrt mul? beim Einfligen eines Zeigers mit der
Collectionmethode AddPtrAfter die Adresse des Zeigers an die Containermethode AddObjAfter
gegeben werden.

template <class t_cont>

class gct_Collection: public ct_Collection
{
t_cont o _Container;

public:
virtual inline const char * GetTypeName () const;
virtual inline t_Colllen GetLen () const:
virtual inline t Coll1Ptr First () const:
virtual inline t _Col1Ptr Next (t_CollPtr o ptr) const;
virtual inline ct Object * GetObj (t CollPtr o ptr) const;
virtual inline t CollPtr AddPtr (ct_Object * pco obj):
virtual inline t CollPtr AddPtrCond (ct_Object * pco obj);
virtual inline t Coll1Ptr AddPtrAfter (t_CollPtr o ptr,

ct _Object * pco_obj);

virtual inline t _CollPtr DelPtr (t CollPtr o ptr);
IE

Spirick Tuning Tutorial Seite 143

template <class t_cont>
inline ct Object *
gct Collection <t cont>:: GetObj (t_CollPtr o ptr) const
{

return * o _Container. GetObj ((t_cont:: t Pointer) o _ptr);

}

template <class t_cont>
inTine t Coll1Ptr gct Collection <t cont>:: AddPtrAfter
(t_ColTPtr o_ptr, ct Object * pco obj)

{
return (t_Col1Ptr)

o _Container. AddObjAfter ((t _cont:: t Pointer) o _ptr, & pco obj);
}

Erzeugen wir mit diesem Template eine konkrete Collection, miissen wir nur noch die
Methode GetTypeName definieren. Bei der Auswahl eines geeigneten Containers bevorzugen
wir die vordefinierten Instanzen des Roundstores. Diese arbeiten auf der Grundlage einer
effektiveren Speicherverwaltung. Der globale GroRentyp fir Collections t CollLen ist auf
unsigned Tong definiert. Fir eine optimale Typvertraglichkeit der Collection mit ihrer
Basisklasse verwenden wir Container mit dem geschachtelten GréRentyp unsigned long, zum
Beispiel gct _RndLongArray.

class ct_Array: public gct_Collection <gct RndLongArray <ct Object *> >

{
public:
virtual inline const char * GetTypeName () const;

1%

inline const char * ct Array:: GetTypeName () const

{

return "ct_Array";

}

Die grol3e Auswahl an Listencontainern erméglicht es uns, mehrere Listencollections zu
implementieren. Die neue Klasse ct DList baut auf einem normalen Listencontainer auf und
besitzt dasselbe Verhalten wie die gleichnamige Klasse unseres Beispielprogramms OHelp
(siehe Abschnitt 1.4.2). Eine bessere Speicherauslastung besitzt die Klasse ct BlockDList.
Sie wird mit Hilfe des Containertemplates gct RndLongBlockDList implementiert.

class ct _DList: public gct_Collection <gct RndLongDList <ct Object *> >

{
public:
virtual inline const char * GetTypeName () const;

1%

class ct_BlockDList:
public gct_Collection <gct RndLongBlockDList <ct Object *> >

{
public:
virtual inline const char * GetTypeName () const;

1%

Wollen wir die Funktionalitat der Reflisten auf die Collections Ubertragen, bendtigen wir eine
abstrakte Basisklasse. Diese erweitert das allgemeine Collectioninterface um die
Zugriffsmethoden auf den Referenzzahler, der jedem Element zugeordnet wird. Die abstrakte
Klasse ct_RefCollection dient der Verarbeitung von Collections mit Referenzzéhlern in einem
polymorphen Kontext. Zum Mappen der Funktionalitat eines Refcontainers auf eine
Refcollection nutzten wir das Template gct_RefCollection.

class ct_RefCollection: public ct_Collection

Spirick Tuning Tutorial Seite 144

{

pubTlic:
virtual void IncRef (t_CollPtr o ptr) = 0;
virtual void DecRef (t CollPtr o ptr) = 0;
virtual t RefCount GetRef (t_CollPtr o ptr) = 0;
virtual bool IsAlloc (t_CollPtr o ptr) = 0;
virtual bool IsFree (t _CollPtr o ptr) = 0;
b

template <class t_cont>

class gct_RefCollection: public ct RefCollection
{
t _cont o _Container;

public:
virtual inline const char * GetTypeName () const;
virtual inline t_Colllen GetLen () const:
... /] Weitere Collectionmethoden
virtual inline void IncRef (t_CollPtr o _ptr);
.... // Weitere Zugriffsmethoden auf den Referenzzdhler
s

template <class t_cont>
inline bool gct RefCollection <t _cont>:: IsAlloc (t_CollPtr o_ptr)

{

return o_Container. IsAlloc ((t_cont:: t_Pointer) o_ptr);

}

Mit diesem Template konnen wir konkrete Refcollections implementieren. Als Grundlage
nutzen wir zwei Refcontainer, eine normale Refliste und eine Block-Refliste. Die beiden
neuen Collections nennen wir ct RefDList und ct BlockRefDList. In Abbildung 3-18 sehen wir
die verwendeten Klassen der Collection ct RefDList. Der zugrundegelegte Refcontainer und
seine Abhangigkeiten sind in der Abbildung nicht enthalten.

class ct_RefDList:
pubTic gct RefCollection <gct RndLongRefDList <ct Object *> >
{

pubTlic:
virtual inline const char * GetTypeName () const;

b

class ct_BlockRefDList:
public gct RefCollection <gct RndLongBlockRefDList <ct Object *> >
{

public:
virtual inline const char * GetTypeName () const;

1%

Spirick Tuning Tutorial Seite 145

ct_Collection ct_Object
GetLen D ~ct_Object
First GetTypeName
Next IsOfType
GetObj —
AddPtr 1
AddPtrCond S ——
AddPtrAfter ct_RefCount
DelPtr o_RefCount
b_Alloc
ct_RefCount
Init
] IncRef
ct_RefCollection 1 || DecRef
GetRef
IncRef IsAlloc
DecRef SetAlloc
GetRef IsFree
IsAlloc SetFree
IsFree IsNull
+ 0o,n 0,n

gct_RefCollection <gct_ RndLongRefDList <ct_Object *>>

o_Container

GetTypeName
GetlLen

First

Next
GetObj
AddPtr
AddPtrCond
AddPtrAfter
DelPtr
IncRef
DecRef
GetRef
IsAlloc
IsFree

ct_RefDList

GetTypeName

Abb. 3-18: Verwendete Klassen einer Refcollection

Die vordefinierten Collections bieten elementare Mdglichkeiten zur Anpassung an konkrete
Bedingungen. Zur Auswahl stehen eine Array- und vier Listencollections. Es kénnen jedoch
auch weitergehende Wiinsche auftreten. Zum Beispiel kann beim vordefinierten Roundstore
der Schritt-Teiler Vier eingestellt sein. Wir méchten aber fiir eine Blockcollection die binare
Rundung (Schritt-Teiler Eins) verwenden. Dazu miissen wir einen eigenen Roundstore und
eine eigene Collection definieren. Die Makros GLOBAL STORE DCLS und DLIST DCLS nehmen uns
den groRRten Teil der Arbeit ab. Im folgenden Programmfragment wird das globale
Roundstoreobjekt co MyCol1Store erzeugt. Am Programmbeginn wird die bindre Rundung
eingestellt. Die Collection ct_MyBlockDList fordert ihren Speicher von diesem globalen Store
an.

// In einer Headerdatei plazieren

Spirick Tuning Tutorial Seite 146

GLOBAL_STORE_DCLS (ct RndStore, MyColl)
DLIST DCLS (MyCol1)

class ct_MyBlockDList:
public gct Collection <gct MyCollLongBlockDList <ct Object *> >

{
pubTic:
virtual inline const char * GetTypeName () const;

b

inTine const char * ct_MyBlockDList:: GetTypeName () const

{
return "ct MyBlockDList";

}

// In einer Implementierungsdatei plazieren
GLOBAL_STORE_DEFS (ct_RndStore, MyCol1)

int main ()

{

GetMyColl1Store ()-> SetMinSize (16);
GetMyCol1Store ()-> SetStepDiv (1);
ct_MyBlockDList co myList;

3.5 OHelp2

3.5.1 Implementierung

Am Ende des dritten Teils des Buches werden wir die neuen Konzepte anhand unseres
Beispiels OHelp Uberprifen. Das Design Gbernehmen wir aus dem ersten Teil (siehe
Abschnitt 1.5.1). Bei der Implementierung setzen wir jedoch die neuen Programmbausteine
ein und nennen das neue Beispiel OHelp2.

Als Grundlage der Speicherverwaltung verwenden wir den globalen Roundstore. Er
vergroRert zwar jeden dynamischen Speicherblock zum Unterbringen der gerundeten GréRRe.
Durch die Rundung bleibt aber die Freikette kleiner, und die Speicherverwaltung wird
insgesamt schneller. Das globale Objekt co RndStore taucht in unserem Programm nirgendwo
direkt auf. In den vordefinierten Instanzen (zum Beispiel gct RndShortRefDList) ist aber sein
Name enthalten.

In den Anwendungsklassen von OHelp2 kénnen wir Gberall den geschachtelten Groélen-
bzw. Langentyp unsigned short einsetzen. Zum Beispiel ist es sinnvoll, Zeichenketten auf eine
Grol3e von 64 KB zu beschranken. Die Klasse ct_RndShortString umfal3t nur sechs Bytes,
wahrend die Klasse ct_RndIntString acht Bytes bendtigt. Zum Speichern der Hyperlinks und
Formate in einem Thema verwenden wir den Arraycontainer gct RndShortArray. Der
dynamische Block dieses Arrays kann bis zu 64 KB grol3 werden. Auch diese Beschrankung
ist in unserer Anwendung sinnvoll. Das Arrayobjekt selbst umfal3t nur sechs Bytes.

Datentypen, die wir haufig verwenden, kirzen wir mit einer Typdefinition ab. Zum Speichern
des Texts in einem Thema nutzen wir die Klasse ct RndShortString. Positionen, die sich auf
diesen Text beziehen, sind in Hyperlinks und Formatangaben enthalten. Der Datentyp flr
Textpositionen ist gleich dem geschachtelten GroRentyp der Stringklasse. Beide Datentypen
sollten im Programmtext hintereinander stehen. Andern wir spater die Stringklasse, muf
auch der Datentyp fir Textpositionen Uberprift werden.

Spirick Tuning Tutorial Seite 147

typedef ct RndShortString t TextString;
typedef t TextString:: t Size t TextSize; // unsigned short

Analog verfahren wir bei Containern. Ein Hyperlink enthalt einen Verweis auf ein Thema.
Dazu verwenden wir keinen C + +-Zeiger, sondern den logischen Zeiger aus der Liste aller
Themen. Den Containertyp fir Themen kénnen wir an dieser Stelle nicht definieren. Die
Klasse ct_Topic ist dem Compiler noch unbekannt. Eine Vorwartsdeklaration reicht in diesem
Fall nicht aus, denn der Container enthalt Objekte vom Typ ct _Topic (keine Zeiger). Damit
beide Datentypen textuell beisammen stehen, definieren wir den Containertyp als ein
Praprozessormakro.

In OHelp1 besald jedes Thema einen Referenzzéhler. Ein Hyperlink, das auf dieses Thema
verwies, erhohte ihn um eins. Ein Thema durfte erst geléscht werden, wenn keine Verweise
mehr darauf existierten. Nun verwenden wir zum Sammeln der Themen eine Refliste, also
eine Liste, die jedem Eintrag einen Referenzzahler zuweist. Wir kdnnen fragen, ob ein
Hyperlink noch glltig ist. Ein Thema kann unabhangig vom zugeordneten Referenzzahler
geléscht werden.

#define TOPIC LIST gct RndShortRefDList <ct Topic>
typedef void * t_TopicPtr;

Die Klassen ct_HyperLink und ct_Format missen nicht mehr von der abstrakten Basisklasse
ct_Object erben. Aber sie missen einige neue Anforderungen erfiillen. Das Einfligen in einen
Container erfolgt mit dem Standard- oder Kopier-Konstruktor. Andere Konstruktoren kénnen
nicht verwendet werden. Die Konstruktoren aus dem Beispiel OHelp1 werden deshalb in
normale Methoden umgewandelt. Ein Objekt wird nun mit seinem Standard-Konstruktor
erzeugt und mit einer Init-Methode initialisiert. Fir die Containermethode AddObjCond muR die
Klasse einen Gleichheits-Operator enthalten.

class ct_HyperLink

{
t TextSize 0_Pos:
t TopicPtr o_TopicPtr;
bool b InText: 1;
public:
inline void Init (t_TopicPtr o ptr);
inTine void Init (t_TextSize o_pos, t TopicPtr o _ptr);
inTine bool operator == (const ct_HyperLink & co_comp) const;
inline t_TextSize GetPos () const;
inTine void MovePos (int i_delta);
inTine t_TopicPtr GetTopicPtr () const;
inline bool IsInText () const:
b
typedef unsigned char t_Formatld;
const t _FormatId co Bold = 0x01;
const t FormatId co Italic = 0x02;
const t FormatId co Underline = 0x04;
const t FormatId co Example = 0x08;
class ct_Format
{
t TextSize 0_Pos:
t TextSize 0 _Len:
t Formatld 0 _Format:
public:
inline void Init (t_TextSize o pos, t TextSize o Ten,
t Formatld o_format);
inline bool operator == (const ct Format & co_comp) const;

Spirick Tuning Tutorial Seite 148

inline t_TextSize GetPos () const;

inline void MovePos (int i delta);

inline t_TextSize GetLen () const;

inline void Changelen (int i _delta);

inline t Formatld GetFormat () const;

inTine void AddFormat (t_Formatld o_format);
inline void DelFormat (t Formatld o format):
b

Zum Speichern der Hyperlinks und Formate verwenden wir das Template gct RndShortArray.
Die konkreten Containerklassen werden nicht mit einer Typdefinition erzeugt. Zum
Beschleunigen des Compilierens definieren wir dafiir zwei Klassen. Die zugeordneten
Zeigertypen sind primitive Datentypen und kénnen als Typdefinition notiert werden. In
OHelp1 war fir den Zugriff auf ein Hyperlink-Objekt die Methode ct _Topic:: GetHyperLink
notig. Sie ermittelte aus der Collection einen Zeiger des Typs ct_0Object * und wandelte ihn in
ct_HyperLink * um. Diese Typumwandlung ist nun nicht mehr erforderlich. Beim Durchlaufen
des Containers erhalten wir bereits die richtigen Zeiger.

class ct_HyperlLinks: public gct RndShortArray <ct HyperLink> { };
typedef ct HyperlLinks:: t _Pointer t HyperLinkPtr; // unsigned short

class ct_Formats: public gct RndShortArray <ct Format> { };
typedef ct _Formats:: t Pointer t FormatPtr; // unsigned short

In der Klasse ct_Topic sind nur geringe Anderungen nétig. Das Attribut u_RefCount entféllt,
denn in der Liste aller Themen ist jedem Eintrag ein Referenzzahler zugeordnet. Stattdessen
bendtigen wir den logischen Zeiger des Themas innerhalb der Themenliste. Er gelangt als
Attribut o_LogPtr neu in die Klasse. Der logische Zeiger wird zusammen mit dem Zeiger auf
den Hypertext und dem Namen in der Init-Methode initialisiert und kann spéater nicht mehr
gedndert werden. Er wird in der Methode GetRefCount verwendet (siehe unten).

Ein einzelnes Hyperlink-Objekt kann keine Auskunft geben, ob es noch gliltig ist, denn es
besitzt keinen Zugriff auf die Liste aller Themen. Die Methode IsHyperLinkValid wird also in
der Klasse ct_Topic deklariert. Am Ende des folgenden Programmausschnitts sehen wir ihre
Definition. Sie erwartet als Parameter den logischen Zeiger des Hyperlinks. Aus dem
Hyperlink-Container co_HyperlLinks ermittelt sie den logischen Zeiger des referenzierten
Themas. Damit wird auf die Themenliste zugegriffen. Die Reflisten-Methode IsAlloc liefert
schlieRlich die gewtlinschte Information.

class ct_HyperText;

class ct_Topic

{
ct_HyperText * pco_HyperText;
t TopicPtr 0_LogPtr;
ct_RndShortString co Title;
t TextString 0 _Text;
ct_HyperLinks co_HyperLinks;
ct_Formats co_Formats:
void Clear ();
void Copy (const ct Topic & co_copy);
public:

ct_Topic ();

ct_Topic (const ct Topic & co_init);

~ct _Topic ();
void Init (ct_HyperText * pco_hyperText,

t TopicPtr o _ptr, const char * pc_title);

ct Topic & operator = (const ct _Topic & co_asgn);
bool operator == (const ct _Topic & co_comp) const;

inline ct HyperText * GetHyperText () const;

Spirick Tuning Tutorial Seite 149

inline t_TopicPtr GetLogPtr () const;

unsigned GetRefCount () const;
inline const char * GetTitle () const;
inTine void SetTitle (const char * pc_title);
inTine const char * GetText () const;
void InsertText (t TextSize o _pos, const char * pc_tx);
void DeleteText (t TextSize o pos, t TextSize o len);
inTine const ct HyperLinks * GetHyperLinks () const;
bool IsHyperLinkValid (t_HyperLinkPtr o ptr) const;
t HyperLinkPtr AddHyperLink (t_TopicPtr o _ptr);
t _HyperLinkPtr AddHyperLink (t_TextSize o _pos, t TopicPtr o_ptr);
t_HyperLinkPtr DelHyperLink (t_HyperLinkPtr o_ptr);
inline const ct_Formats * GetFormats () const;
t FormatPtr AddFormat (t _TextSize o_pos, t TextSize o_Ten,
t Formatld o_format);

t_FormatPtr DelFormat (t_FormatPtr o ptr);:
b

unsigned ct Topic:: GetRefCount () const
{
return pco_HyperText-> GetTopics ()-> GetRef (o_LogPtr);
}

bool ct_Topic:: IsHyperLinkValid (t HyperLinkPtr o_ptr) const
{

return pco HyperText-> GetTopics ()->
IsATloc (co HyperLinks. GetObj (o _ptr)-> GetTopicPtr ());

}

Die Klasse ct_HyperText kdnnen wir im wesentlichen von OHelp1 Gbernehmen. Wir andern
nur die Typen der Attribute und Methodenparameter. Die Methode GetTopic fir den Zugriff
auf ein einzelnes Thema entféllt. Der Listentyp fir die Themen wird mit Hilfe des weiter
oben definierten Makros erzeugt. Wir kdnnen keine platzsparende Blockliste einsetzen, denn
ein Hypertext soll bis zu 10 000 Themen aufnehmen kénnen. Damit ist eine Blockliste
Uberfordert.

class ct_Topics: public TOPIC LIST { };

class ct_HyperText

{

ct_RndShortString co_Name;

t TopicPtr 0_RootTopicPtr;

ct _Topics co_Topics;
public:

ct_HyperText ();
~ct_HyperText ();
inline const char * GetName () const;

inline void SetName (const char * pc_name);

inline t_TopicPtr GetRootTopicPtr () const;

inline void SetRootTopicPtr (t TopicPtr o_rootPtr);

inline const ct_Topics * GetTopics () const;

t TopicPtr AddTopic (const char * pc_title);

t TopicPtr CopyTopic (t_TopicPtr o_source,
const char * pc_newTitle);

void ReplaceTopic (t_TopicPtr o_repl, t TopicPtr o_src,
const char * pc_newTitle);

void DelTopicUsages (t TopicPtr o ptr);

t TopicPtr DelTopic (t_TopicPtr o ptr);

b

Der Verzicht auf abstrakte Basisklassen und virtuelle Methoden bei der Implementierung von
OHelp2 ist keine allgemeine Empfehlung. Unsere Programmierregel aus dem Abschnitt 1.6.1
lautet: An performancekritischen Stellen suchen wir eine Losung ohne virtuelle Methoden.

Spirick Tuning Tutorial Seite 150

Existiert diese Lésung nicht, setzen wir weiterhin virtuelle Methoden ein. In unserem Beispiel
OHelp2 existieren jedoch solche Lésungen.

3.5.2 Performance-Analyse

Die neue Implementierung von OHelp unterziehen wir demselben kritischen Test wir OHelp1.
Zunéachst starten wir ein Testprogramm. Dann ermitteln wir rechnerisch den
Ressourcenverbrauch von OHelp2. Wir nutzen dazu dieselben Daten wie beim ersten
Performancetest. Zur Erinnerung seien diese Zahlen noch einmal wiederholt.

¢ 10 000 Themen,

e Titel des Themas mit 15 Zeichen,

e pro Thema 10 Zeilen,

e pro Zeile 30 Zeichen Text und

e pro Zeile je eine Formatangabe und ein Hyperlink.

Im Testprogramm wird zuerst die algorithmische Richtigkeit anhand kleiner Beipiele
Uberprift. Dann erfolgt der Performancetest. Wir bauen eine gréf3ere Datenmenge auf und
nehmen daran umfangreiche Anderungen vor. Der Test verlauft diesmal ohne Probleme.
Unser Programm ist merklich schneller geworden und bendtigt weniger Speicher. Auch nach
langerer Arbeit mit groRen Datenmengen wird das Programm nicht langsamer. Die héhere
Rechengeschwindigkeit ist auf folgende Faktoren zurickzufihren:

¢ Kleine Methoden sind inline definiert und kénnen an jeder Verwendungsstelle inline
expandiert werden.

¢ An rechenzeitkritischen Stellen werden keine virtuellen Methoden eingesetzt.

¢ Die Speicherverwaltung wird durch Rundung und minimierte Blockanzahl entlastet.

Zur Berechnung der absoluten GréRe von Objekten setzen wir wieder einen 32-Bit-Compiler
voraus. Die primitiven Datentypen umfassen: char ein Byte, short zwei Bytes, int vier Bytes,
long vier Bytes und Zeiger vier Bytes. Einzelne Objekte der Typen ct_HyperLink, ct_Format und
ct_Topic beanspruchen keine eigenen Speicherblocke, denn sie werden in Containern
untergebracht. In Abbildung 3-19 sehen wir das Speicherlayout eines einzelnen Themas.
Tabelle 3-6 enthalt die Analyseergebnisse.

Spirick Tuning Tutorial Seite 151

ct_HyperText * pco_HyperText

t_TopicPtr o_LogPtr

— ct_RndShortString co_Title
— Basisklasse ct_RndShortBlock

— unsigned short o_Size

E void * o_Ptr —D 15 + 1 Zeichen Titel

— ct_RndShortString co_Text
— Basisklasse ct_RndShortBlock

— unsigned short o_Size

F void * o_Ptr —> | 300 + 1 Zeichen Text
— ct_HyperLinks co_HyperLinks
— Basisklasse gct_RndShortArray ct_HyperLink 1

— Basisklasse ct_RndShortBlock
— unsigned short o_Size

~ void * o_Ptr —D ct_HyperLink 10
— ct_Formats co_Formats
— Basisklasse gct_RndShortArray ct Format 1

— Basisklasse ct_RndShortBlock
— unsigned short o_Size

- void * o_Ptr —D ct_Format 10

Objekt vom Typ ct_Topic Abhangige Objekte

Abb. 3-19: Speicherlayout einer Instanz der Klasse ct_Topic

Objekttyp Absolute GroRRe Virt. Tab.-Zeiger Anzahl Blécke
Hyperlink 7 Bytes O Bytes 0
Formatangabe 5 Bytes O Bytes 0
Thema ohne Inhalt 32 Bytes O Bytes 0
Titel mit 15 Zeichen 15 + 1 Bytes O Bytes 1
Text mit 300 Zeichen 300 + 1 Bytes O Bytes 1
10 Hyperlinks 70 Bytes 0 Bytes 1
10 Formatangaben 50 Bytes O Bytes 1
Themen-Inhalt 437 Bytes O Bytes

Thema mit Inhalt (OHelp2) 469 Bytes O Bytes

Thema mit Inhalt (OHelp1) 777 Bytes 100 Bytes 25

Tab. 3-6: Speicheranalyse der Klasse ct _Topic

Bei der Auswertung der Tabelle missen wir beachten, dal® in einem Thema 317 Bytes reine
Zeichenketten enthalten sind, die sich nicht optimieren lassen. Dennoch konnte der
Speicherbedarf deutlich verringert werden. Durch den Einsatz von Containern wurde auch
die Anzahl der Blocke stark reduziert. Damit sinkt der unsichtbare Verwaltungsaufwand der

Spirick Tuning Tutorial Seite 152

dynamischen Speicherverwaltung. Abbildung 3-20 zeigt das Speicherlayout eines
Hypertexts. In Tabelle 3-7 befinden sich die Ergebnisse der Speicheranalyse.

— ct_RndShortString co_Name
— Basisklasse ct_RndShortBlock

— unsigned short o_Size

E void * o_Ptr 15 + 1 Zeichen Name

— t_TopicPtr o_RootTopicPtr

— ct_Topics co_Topics — ct_RefCount
— Basisklasse gct_RndShortRefDList — gct_DListNode
— Basisklasse gct_DList — void * o_Prev
— unsigned short o_Length

void * o_Next

void * o_First

ct_Topic 1
gct_RefStore o_Store T

. a
&

]
— ct_RefCount

— gct_DListNode
— void * o_Prev

void * o_Next

ct_Topic 10000

Objekt vom Typ ct_HyperText Abhangige Objekte

Abb. 3-20: Speicherlayout einer Instanz der Klasse ct_HyperText
Objekttyp Absolute GroRe Virt. Tab.-Zeiger Anzahl Blécke
Hypertext ohne Inhalt 17 Bytes O Bytes 1
Titel mit 15 Zeichen 15 + 1 Bytes O Bytes 1
DList-Eintrag mit Th. o. I. 42 Bytes O Bytes 1
10 000 DList-Eintrage 42 000 Bytes O Bytes 10 000
Hypertext mit Th. o. I. 42 033 Bytes O Bytes 10 002
10 000 Themen-Inhalte 4 370 000 Bytes O Bytes 40 000
Hypertext mit Inhalt (OHelp2) 4 412 033 Bytes O Bytes 50 002
Hypertext mit Inhalt (OHelp1) 7 890 048 Bytes 1 000 012 Bytes 260 002

Tab. 3-7: Speicheranalyse der Klasse ct HyperText

Ein Vergleich mit den Analyseergebnissen von OHelp1 ergibt, dal3 wir den Speicherbedarf
auf 56 und die Anzahl der Blécke auf 19 Prozent reduziert haben. Die wichtigsten Faktoren
unserer Speicheroptimierung sind:

Spirick Tuning Tutorial Seite 153

¢ Wir setzen angepaldte primitive Datentypen ein, zum Beispiel unsigned short statt unsigned
int.

¢ Unsere Daten enthalten keine Uberflissigen virtuellen Tabellenzeiger.

¢ Container enthalten keine Zeiger zum Verwalten der Objekte.

Bei der Neuimplementierung von OHelp blieb das Interface der Klassen weitgehend stabil.
Die Benutzeroberflache passen wir in klrrzester Zeit an den neuen Programmkern an. Das
einst so schwerfallige Programm wirkt nun flott und elegant. Die gestre3ten Anwender
unseres Hilfesystems werden umgehend telefonisch benachrichtigt. Schon nachste Woche
erhalten sie eine neue Version, die doppelt so schnell ist und nur noch halb so viel Speicher
verbraucht.

Spirick Tuning Tutorial Seite 154

	1 Performance-Analyse eines C++-Programms
	1.1 Einleitung
	1.2 Einige Grundlagen
	1.2.1 Zur Notation im Buch
	1.2.2 Überblick ist Alles
	1.2.3 Brandschutz statt Feuerwehr
	1.2.4 Vorsicht, Falle im Unsichtbaren

	1.3 Ein Beispielprogramm
	1.3.1 Beschränkung auf das Wesentliche
	1.3.2 Aufgabenstellung des Programms

	1.4 Fundamentale Klassen von OHelp
	1.4.1 Design der fundamentalen Klassen
	1.4.2 Implementierung der Collections
	1.4.3 EntryId und Längenangabe
	1.4.4 Implementierung der Stringklasse

	1.5 Anwendungsklassen von OHelp
	1.5.1 Design der Anwendungsklassen
	1.5.2 Implementierung der Anwendungsklassen
	1.5.3 Stunde der Wahrheit

	1.6 Ein Blick hinter die Kulissen des Compilers
	1.6.1 Virtuelle Methoden
	1.6.2 Inline-Methoden
	1.6.3 Dynamische Speicherverwaltung

	1.7 Performance-Analyse von OHelp
	1.7.1 Rechenzeitverhalten
	1.7.2 Speicherbedarf
	1.7.3 Auswertung

	2 Grundlagen einer besseren Performance
	2.1 Ein Abstecher in die Philosophie
	2.1.1 Modellierung - Wichtiger Bestandteil menschlicher Tätigkeit
	2.1.2 Arten und Eigenschaften von Modellen
	2.1.3 Modellierung mit Computern

	2.2 Zugriff auf Objekte
	2.2.1 Zeiger in C++
	2.2.2 Indizes von Arrays
	2.2.3 Logische Zeiger

	2.3 Speicherverwaltung
	2.3.1 Eine runde Sache
	2.3.2 Rundungstechniken
	2.3.3 Feste Speicherverwaltung

	2.4 Objektverwaltung
	2.4.1 Container
	2.4.2 Collections

	2.5 Sicherheitstraining
	2.5.1 Reservespeicher
	2.5.2 Referenzzähler und sichere Zeiger
	2.5.3 Wem gehört was?

	2.6 Einige Programmiertechniken
	2.6.1 Operatoren new und delete
	2.6.2 Jungle of Scopes

	3 C++-Bausteine für High-Performance-Programme
	3.1 Beginn beim Fundament
	3.1.1 Dynamische Stores
	3.1.2 Globale Stores
	3.1.3 Globale C++-Speicherverwaltung
	3.1.4 Dynamischer Speicherblock
	3.1.5 Eine Blockanwendung - String

	3.2 Speicher nach Maß
	3.2.1 Fester Store im Block
	3.2.2 Ein Anwendungsbeispiel
	3.2.3 Store mit Referenzzählern
	3.2.4 Konkrete Refstores

	3.3 Neue Container braucht das Land
	3.3.1 Array
	3.3.2 DList
	3.3.3 Block- und Reflisten
	3.3.4 Test der Container

	3.4 Griff ins Regal
	3.4.1 Vordefinierte Stores und Blöcke
	3.4.2 Vordefinierte Strings und Container
	3.4.3 Collections

	3.5 OHelp2
	3.5.1 Implementierung
	3.5.2 Performance-Analyse

