
Spirick Tuning

Eine C++ Klassen- und Template-Bibliothek

für performancekritische Anwendungen

Referenzhandbuch

Version 1.49

Stand Juni 2023

Copyright © Dietmar Deimling 1996 - 2023. All rights reserved.

Copyright © Dietmar Deimling 1996 - 2023. All rights reserved.

Kein Teil dieses Werkes darf ohne schriftliche Genehmigung des Autors in irgendeiner Form (Fotokopie,
Mikrofilm oder andere Verfahren), auch nicht für Zwecke der Unterrichtsgestaltung, reproduziert oder
unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden. Bei der
Zusammenstellung wurde mit größter Sorgfalt vorgegangen. Fehler können trotzdem nicht völlig
ausgeschlossen werden, so daß der Autor für fehlerhafte Angaben und deren Folgen keine juristische
Verantwortung oder irgendeine Haftung übernimmt. Die Wiedergabe von Gebrauchsnamen,
Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere
Kennzeichnung nicht zu der Annahme, daß solche Namen im Sinne der Warenzeichen- und
Markenschutzgesetzgebung als frei betrachtet wären. Für Verbesserungsvorschläge und Hinweise auf
Fehler ist der Autor stets dankbar.

Spirick Tuning Referenzhandbuch Seite 2

Inhaltsverzeichnis

1 SPEICHERVERWALTUNG 7

1.1 Systemschnittstelle...7
1.1.1 Globale Definitionen (tuning/defs.hpp)..7
1.1.2 Reservespeicher (tuning/sys/calloc.hpp)..7
1.1.3 Dynamischer Speicher (tuning/sys/calloc.hpp)...8
1.1.4 Heapoperationen (tuning/sys/calloc.hpp)...9
1.1.5 Speicheroperationen (tuning/sys/cmemory.hpp)...10

1.2 Store...11
1.2.1 Storeschnittstelle...11
1.2.2 Globale Stores (tuning/defs.hpp)..13
1.2.3 Beispiel für eine Wrapperklasse..14

1.3 Dynamische Stores..15
1.3.1 Standardstore (tuning/std/store.hpp)..15
1.3.2 Roundstore (tuning/rnd/store.hpp)..16
1.3.3 Chainstore (tuning/chn/store.hpp)..17
1.3.4 Operatoren new und delete (tuning/newdel.cpp)..19

1.4 Block...20
1.4.1 Blockschnittstelle...20
1.4.2 Allgemeiner Block (tuning/block.h)...21
1.4.3 Miniblock (tuning/miniblock.h)...23
1.4.4 Reserveblock (tuning/resblock.h)..25
1.4.5 Fixblock (tuning/fixblock.h)...26
1.4.6 Nulldatablock (tuning/nulldatablock.h)..27
1.4.7 Zeichenblock (tuning/charblock.h)..28
1.4.8 Elementblock (tuning/itemblock.h)..30
1.4.9 Pageblock (tuning/pageblock.hpp)..32
1.4.10 Block-Instanzen (tuning/xxx/block.h)..35

1.5 Spezielle Stores...35
1.5.1 Blockstore (tuning/blockstore.h)...35
1.5.2 Blockstore-Instanzen (tuning/xxx/blockstore.h)..37
1.5.3 Referenzzähler (tuning/refcount.hpp)..38
1.5.4 Refstore (tuning/refstore.h)...39
1.5.5 Refstore-Instanzen (tuning/xxx/refstore.h)...41
1.5.6 Blockrefstore-Instanzen (tuning/xxx/blockrefstore.h)..41
1.5.7 Packstore (tuning/packstore.hpp)...42
1.5.8 Packstore 2 (tuning/packstore.h)...44

2 OBJEKTVERWALTUNG 46

2.1 Container...46
2.1.1 Containerschnittstelle...46
2.1.2 Operationen mit Containern...50
2.1.3 Erweiterter Container (tuning/extcont.h)...52

2.2 Arrays und Listen..55
2.2.1 Array (tuning/array.h)...55
2.2.2 Array-Instanzen (tuning/xxx/array.h)...57
2.2.3 Liste (tuning/dlist.h)...57
2.2.4 Listen-Instanzen (tuning/xxx/dlist.h)...58

2.3 Sortierte Container..59
2.3.1 Sortiertes Array (tuning/sortarr.h)..59

Spirick Tuning Referenzhandbuch Seite 3

2.3.2 Sortierte Array-Instanzen (tuning/xxx/sortedarray.h)...61
2.3.3 Hashtabelle (tuning/hashtable.h)..62
2.3.4 Hashtabellen-Instanzen (tuning/xxx/hashtable.h)..63

2.4 Block- und Reflisten...64
2.4.1 Blockliste..64
2.4.2 Blocklisten-Instanzen (tuning/xxx/blockdlist.h)...64
2.4.3 Refliste (tuning/refdlist.h)..65
2.4.4 Reflisten-Instanzen (tuning/xxx/refdlist.h)...66
2.4.5 Blockreflisten-Instanzen (tuning/xxx/blockrefdlist.h)...67

2.5 Vergleichs-, Zeiger- und Mapcontainer...68
2.5.1 Vergleichscontainer (tuning/compcontainer.h)...68
2.5.2 Zeigercontainer (tuning/ptrcontainer.h)...70
2.5.3 Operationen mit Zeigercontainern..76
2.5.4 Zeigervergleichscontainer (tuning/ptrcompcontainer.h)...78
2.5.5 Mapcontainer (tuning/map.h)...80
2.5.6 Zeigermapcontainer (tuning/ptrmap.h)..83

2.6 Zeigercontainer-Instanzen...87
2.6.1 Zeigerarray-Instanzen (tuning/xxx/ptrarray.h)...87
2.6.2 Zeigerlisten-Instanzen (tuning/xxx/ptrdlist.h)...88
2.6.3 Sortierte Zeigerarray-Instanzen (tuning/xxx/ptrsortedarray.h).................................89
2.6.4 Zeigerhashtabellen-Instanzen (tuning/xxx/ptrhashtable.h)......................................89
2.6.5 Blockzeigerlisten-Instanzen (tuning/xxx/blockptrdlist.h)...90
2.6.6 Refzeigerlisten-Instanzen (tuning/xxx/refptrdlist.h)...91
2.6.7 Blockrefzeigerlisten-Instanzen (tuning/xxx/blockrefptrdlist.h).................................92

2.7 Übersicht Container-Instanzen...92
2.7.1 Vordefinierte Templateinstanzen..92
2.7.2 Selbstdefinierte Templateinstanzen..93

2.8 Collections..94
2.8.1 Abstraktes Objekt (tuning/object.hpp)..94
2.8.2 Abstrakte Collection (tuning/collection.hpp)..95
2.8.3 Operationen mit Collections..96
2.8.4 Abstrakte Refcollection (tuning/refcollection.hpp)..98
2.8.5 Konkrete Collections..99

3 ZEICHENKETTEN UND SYSTEMDIENSTE 101

3.1 Systemschnittstelle..101
3.1.1 Ressourcenfehler (tuning/sys/creserror.hpp)..101
3.1.2 Zeichen und Zeichenketten (tuning/sys/cstring.hpp)...102
3.1.3 Unicode (UTF) (tuning/sys/cutf.hpp)...104
3.1.4 Unicode-Const-Iterator (tuning/utfcit.h)...105
3.1.5 Präzisionszeit (tuning/sys/ctimedate.hpp)..107
3.1.6 Uhrzeit und Datum (tuning/sys/ctimedate.hpp)..107
3.1.7 Prozessorzeit (tuning/sys/ctimedate.hpp)..108
3.1.8 Taskumgebung (tuning/sys/cprocess.hpp)...108
3.1.9 Threads (tuning/sys/cthread.hpp)...109
3.1.10 Prozesse (tuning/sys/cprocess.hpp)..109
3.1.11 Thread-Mutex (tuning/sys/cthmutex.hpp)..110
3.1.12 Thread-Semaphor (tuning/sys/cthsemaphore.hpp)..111
3.1.13 Gemeinsame Ressource (tuning/sys/csharedres.hpp)..112
3.1.14 Prozeß-Mutex (tuning/sys/cprmutex.hpp)..113
3.1.15 Prozeß-Semaphor (tuning/sys/cprsemaphore.hpp)..115
3.1.16 Gemeinsamer Speicher (tuning/sys/csharedmem.hpp).......................................116
3.1.17 Datei (tuning/sys/cfile.hpp)..117
3.1.18 Verzeichnis (tuning/sys/cdir.hpp)..119
3.1.19 Systemnahe Informationen (tuning/sys/cinfo.hpp)..119

3.2 Zeichenketten und Dateinamen...122

Spirick Tuning Referenzhandbuch Seite 4

3.2.1 Stringtemplate (tuning/string.h)...122
3.2.2 String-Instanzen (tuning/xxx/[w]string.h)...132
3.2.3 Polymorphe Stringklassen (tuning/[w]string.hpp)..133
3.2.4 Dateiname (tuning/filename.hpp)..133
3.2.5 Zeichenketten formatieren (tuning/printf.hpp)..138
3.2.6 Zeichenketten sortieren (tuning/stringsort.hpp)..138
3.2.7 Zahlen sortieren (tuning/stringsort.hpp)..139

3.3 Dateien und Verzeichnisse..140
3.3.1 Datei (tuning/file.hpp)...140
3.3.2 Verzeichnis (tuning/dir.hpp)...142
3.3.3 Verzeichnis durchlaufen (tuning/dirscan.hpp)...144

3.4 Weitere Werkzeuge..148
3.4.1 Uhrzeit und Datum (tuning/timedate.hpp)..148
3.4.2 MD5 Summe (tuning/md5.hpp)..150
3.4.3 Universally Unique Identifier (tuning/uuid.hpp)...151

4 DESIGNDIAGRAMME 153

4.1 Zur Notation...153

4.2 Polymorphe Klassenhierarchie...154

4.3 Ein Array..155

4.4 Ein Zeigerarray..157

4.5 Eine Liste..159

4.6 Eine Blockliste...161

5 INSTALLATION UND BEISPIELE 163

5.1 Hinweise zur Installation...163
5.1.1 Verfügbare Plattformen...163
5.1.2 Abhängigkeiten..163
5.1.3 Installation..163
5.1.4 Performance-Tests...164
5.1.5 Inline-Methoden...164
5.1.6 DLL's..164
5.1.7 Globale Objekte...164
5.1.8 Multithreading...165
5.1.9 Exception Handling...165

5.2 Beispielprogramme...166
5.2.1 Protokollklasse (samples/int.cpp)...166
5.2.2 Speicherüberlauf (samples/talloc.cpp)...166
5.2.3 Alignment (samples/talign.cpp)..167
5.2.4 Globale Stores (samples/tstore.cpp)...167
5.2.5 Block (samples/tblock.cpp)..168
5.2.6 Block- und Packstore (samples/tblockstore.cpp)...168
5.2.7 Container (samples/tcontainer.cpp)..169
5.2.8 Collections (samples/tcollection.cpp)..169
5.2.9 [Zeiger]Mapcontainer (samples/t[ptr]map.cpp)..170
5.2.10 Zugriffsbeschleunigung (samples/taccess.cpp)...170
5.2.11 Exceptions in Containern (samples/texception.cpp)..170
5.2.12 Interlocked (samples/tinterlocked.cpp)..172
5.2.13 Threads (samples/tthread.cpp)...172
5.2.14 Semaphoren (samples/tsemaphore.cpp)..173
5.2.15 Prozesse (samples/texec.cpp)..173
5.2.16 Starthilfe (samples/texechelper.cpp)...173
5.2.17 Gemeinsame Ressourcen (samples/tshared.cpp)..173
5.2.18 Zeichenketten (samples/tstring.cpp)...173
5.2.19 Zeichenketten sortieren (samples/tsort.cpp)..174

Spirick Tuning Referenzhandbuch Seite 5

5.2.20 Dateiname (samples/tfilename.cpp)..174
5.2.21 Datei (samples/tfile.cpp)...175
5.2.22 Verzeichnis (samples/tdir.cpp)...175
5.2.23 Verzeichnis durchlaufen (samples/tdirscan.cpp)...175
5.2.24 Verzeichnisbaum (samples/ttree.cpp)..175
5.2.25 Uhrzeit und Datum (samples/ttimedate.cpp)..176
5.2.26 Systemnahe Informationen (samples/tinfo.cpp)..176
5.2.27 MD5 und UUID (samples/tmd5.cpp und tuuid.cpp)...176

Spirick Tuning Referenzhandbuch Seite 6

1 SPEICHERVERWALTUNG

1.1 Systemschnittstelle

1.1.1 Globale Definitionen (tuning/defs.hpp)

In der Datei 'tuning/defs.hpp' werden compilerspezifische Makros abgefragt und eigene globale
Datentypen und Makros definiert. Diese Datei wird von allen anderen Headerdateien der Bibliothek
Spirick Tuning zuerst inkludiert. Am Ende wird optional die Datei 'tl_user.hpp' inkludiert. Damit ist es
möglich, das Verhalten der Klassenbibliothek an eigene Anforderungen anzupassen ohne den Quelltext
zu verändern. Z. B. kann auf diese Weise das Makro TL_ASSERT umdefiniert werden.

Datentypen
typedef ... t_Int;
typedef ... t_UInt;
typedef ... t_Int8;
typedef ... t_UInt8;
typedef ... t_Int16;
typedef ... t_UInt16;
typedef ... t_Int32;
typedef ... t_UInt32;

Diskrete numerische Datentypen mit bestimmter Anzahl von Bits, jeweils mit oder ohne Vorzeichen.
t_Int und t_UInt umfassen in einer 32-Bit-Umgebung 32 Bit und in einer 64-Bit-Umgebung 64 Bit.

1.1.2 Reservespeicher (tuning/sys/calloc.hpp)

Mit Hilfe des Reservespeichers können bei Speichermangel elementare Operationen zu Ende geführt
werden, ohne daß jede einzelne Speicheranforderung geprüft werden muß. Der Reservespeicher sollte
einmalig zu Programmbeginn angefordert werden. Er wird von tl_Alloc und tl_Realloc automatisch
freigegeben, wenn die C-Standardbibliothek keinen Speicher mehr bereitstellen kann. Danach liefert die
Funktion tl_HasReserve den Wert false. Die Verwaltung des Reservespeichers ist gegen den
konkurrierenden Zugriff mehrerer Threads geschützt.

Speicherüberlauf
Innerhalb der Bibliothek Spirick Tuning wird an sehr vielen Stellen neuer Speicher angefordert oder
vorhandener vergrößert. An jeder einzelnen Stelle im Programmcode kann ein Speicherüberlauf eintreten.
Eine Behandlung des Speicherüberlaufs in jedem Einzelfall würde den Programmcode stark vergrößern
und den Rechenzeitbedarf erhöhen. Ein Speicherüberlauf ist jedoch ein Ausnahmefall, der in der Praxis
selten auftritt. Die Bibliothek Spirick Tuning ist darauf optimiert, im Normalfall eine bestmögliche
Performance zu erzielen. Deshalb wird der Speicherüberlauf an einer zentralen Stelle, in den Funktionen
tl_Alloc und tl_Realloc, behandelt. Alle anderen Programmteile gehen davon aus, daß eine angeforderte
Speicheroperation korrekt ausgeführt wurde.

Bei einer Speicheranforderung oder dem Vergrößern eines vorhandenen Speicherblocks laufen
nacheinander die folgenden Schritte ab. Zunächst wird versucht, die Speicheroperation mit Hilfe der C-
Standardbibliothek (malloc, realloc) auszuführen. Gelingt es nicht, wird der (eventuell vorhandene)
Reservespeicher freigegeben, und die C-Standardbibliothek wird erneut aufgerufen. Liegt kein positives
Resultat vor, wird der Overflowhandler aufgerufen. Sollte anschließend die Speicheranforderung von der

Spirick Tuning Referenzhandbuch Seite 7

C-Standardbibliothek immer noch nicht erfüllt werden können, kann das Programm nicht weiterarbeiten.
Jede weitere Operation, z. B. das Schreiben in eine Log-Datei oder das Anzeigen einer Dialogbox, würde
wahrscheinlich fehlschlagen, da kein Speicher mehr zur Verfügung steht. Deshalb wird das Programm
ohne den Aufruf der Destruktoren globaler Objekte mit der Funktion tl_EndProcess beendet.

Datentypen
typedef void (* tpf_AllocHandler) ();

Zeiger auf eine globale Funktion, die keinen Rückgabewert und keine Parameter besitzt.

Funktionen
tpf_AllocHandler tl_SetReserveHandler (tpf_AllocHandler pf_allocHandler);

Setzt die globale Funktion für den Reservehandler und liefert die Adresse des vorher eingestellten
Reservehandlers. Der Reservehandler wird stets aufgerufen, wenn sich der Reservespeicher verändert
hat, also wenn Reservespeicher angefordert oder freigegeben wurde oder wenn sich seine Größe
verändert hat.

tpf_AllocHandler tl_SetOverflowHandler (tpf_AllocHandler pf_allocHandler);

Setzt die globale Funktion für den Overflowhandler und liefert die Adresse des vorher eingestellten
Overflowhandlers. Der Overflowhandler wird aufgerufen, wenn kein Reservespeicher mehr zur
Verfügung steht und eine Speicheranforderung von der C-Standardbibliothek nicht erfüllt werden konnte.
Innerhalb der Bibliothek Spirick Tuning wird der Speicherüberlauf an einer zentralen Stelle, in den
Funktionen tl_Alloc und tl_Realloc, behandelt. Alle anderen Programmteile gehen davon aus, daß eine
angeforderte Speicheroperation korrekt ausgeführt wurde. Deshalb darf im Overflowhandler keine
Exception ausgelöst werden. Diese Exception würde in der Bibliothek Spirick Tuning nicht behandelt
werden und dazu führen, daß das Objekt, das gerade Speicher angefordert hat, in einem inkonsistenten
Zustand verbleibt.

void tl_SetReserveSize (t_UInt u_resSize);

Setzt die neue Größe des Reservespeichers auf u_resSize. Anschließend kann mit tl_HasReserve gefragt
werden, ob Reservespeicher mit der neuen Größe bereitgestellt werden konnte.

t_UInt tl_GetReserveSize ();

Liefert die Größe des Reservespeichers. Der Rückgabewert ist unabhängig davon, ob gerade
Reservespeicher bereitsteht oder nicht.

bool tl_HasReserve ();

Liefert true, wenn Reservespeicher bereitsteht.

void tl_FreeReserve ();

Gibt den Reservespeicher frei. Anschließend liefert tl_HasReserve den Wert false.

void tl_AllocReserve ();

Versucht, den Reservespeicher anzufordern. Anschließend kann mit tl_HasReserve gefragt werden, ob
Reservespeicher bereitsteht.

1.1.3 Dynamischer Speicher (tuning/sys/calloc.hpp)

Die Systemschnittstelle baut direkt auf der C-Standardbibliothek auf. Sie verwendet die globalen
Funktionen malloc, realloc und free. Debughilfen und Heapwalker der C-Standardbibliothek können
uneingeschränkt weitergenutzt werden. Die Funktionen tl_Alloc und tl_Realloc nutzen darüberhinaus
den Reservespeicher. Kann z. B. malloc keinen Speicher mehr liefern, gibt tl_Alloc den Reservespeicher
frei und ruft malloc erneut auf.

Spirick Tuning Referenzhandbuch Seite 8

Funktionen
t_UInt tl_StoreInfoSize ();

Liefert die Anzahl Bytes Verwaltungsspeicher pro Speicherblock. Dieser Wert wird für die Berechnung
gerundeter Blockgrößen benötigt.

t_UInt tl_MaxAlloc ();

Liefert die maximale Anzahl Bytes, die zusammenhängend bereitgestellt werden können, d. h. die
maximale Größe eines einzelnen Speicherblocks.

void * tl_Alloc (t_UInt u_size);

Stellt einen zusammenhängenden Speicherblock der Größe u_size bereit. Ist u_size gleich Null, wird Null
zurückgegeben. Bei Speicherüberlauf werden Reservehandler und Overflowhandler aufgerufen (siehe
Abschnitt ‘Reservespeicher’).

void * tl_Realloc (void * pv_ptr, t_UInt u_size);

Verändert die Größe des Speicherblocks pv_ptr auf u_size. Bei pv_ptr gleich Null ist tl_Realloc identisch
mit tl_Alloc. Bei u_size gleich Null ist tl_Realloc identisch mit tl_Free. Bei Speicherüberlauf werden
Reservehandler und Overflowhandler aufgerufen (siehe Abschnitt ‘Reservespeicher’).

void tl_Free (void * pv_ptr);

Gibt den Speicherblock pv_ptr frei. Der Wert pv_ptr gleich Null ist erlaubt.

Zugehörige Klassen
Die globalen Funktionen dieser Schnittstelle dienen als Grundlage der Klassen ct_StdStore, ct_RndStore
und ct_ChnStore.

1.1.4 Heapoperationen (tuning/sys/calloc.hpp)

Debughilfen und Heapwalker sind leider nicht standardisiert. Deshalb enthält die Systemschnittstelle nur
einige ausgewählte Heapinformationen. Die Struktur st_HeapInfo enthält die Anzahl und die Gesamtgröße
genutzter und ungenutzter Speicherblöcke sowie die Gesamtgröße des Heaps. Die ungenutzten
Speicherblöcke sind ein Maß für die Speicherfragmentierung. Die Heapgröße gibt Auskunft über den
Gesamtspeicherbedarf des Programms. Zu beachten ist, daß MS Visual C++ keine Informationen über
die Freiliste liefert.

Strukturdeklaration
struct st_HeapInfo
 {
 unsigned long u_AllocEntries;
 unsigned long u_FreeEntries;
 unsigned long u_AllocSize;
 unsigned long u_FreeSize;
 unsigned long u_HeapSize;
 };

Funktionen
bool tl_QueryHeapInfo (st_HeapInfo * pso_info);

Speichert in pso_info Daten über den aktuellen Zustand des Heaps. Wurden im Heap keine Fehler
gefunden, liefert die Funktion den Wert true. Der Rückgabewert false deutet auf Inkonsistenzen im Heap
hin.

Spirick Tuning Referenzhandbuch Seite 9

bool tl_FreeUnused ();

Versucht, ungenutzten Freispeicher an das Betriebssystem zurückzugeben. Der Rückgabewert false
deutet auf Inkonsistenzen im Heap hin.

1.1.5 Speicheroperationen (tuning/sys/cmemory.hpp)

Die Systemschnittstelle für Speicheroperationen baut direkt auf der C-Standardbibliothek auf. Sie
verwendet globale Funktionen wie memcpy und memcmp. Zusätzlich werden einige Sonderfälle
berücksichtigt, die von der C-Standardbibliothek nicht immer korrekt behandelt werden. Ist z. B. die
Länge einer Operation gleich Null, können die Zeigerparameter ungültige Werte enthalten. Alle Parameter
werden mit ASSERT-Makros überprüft. Von allen Funktionen existiert jeweils eine Version für die
Datentypen char und wchar_t. Alle Längenangaben beziehen sich auf die Anzahl der Zeichen und nicht auf
die Anzahl der Bytes.

Funktionen
void tl_CopyMemory (char * pc_dst, const char * pc_src, t_UInt u_len);
void tl_CopyMemory (wchar_t * pc_dst, const wchar_t * pc_src, t_UInt u_len);

Kopiert u_len Zeichen von pc_src nach pc_dst. Diese Funktion ist nicht für überlappende Speicherbereiche
geeignet.

void tl_MoveMemory (char * pc_dst, const char * pc_src, t_UInt u_len);
void tl_MoveMemory (wchar_t * pc_dst, const wchar_t * pc_src, t_UInt u_len);

Kopiert u_len Zeichen von pc_src nach pc_dst. Diese Funktion ist auch für überlappende Speicherbereiche
geeignet.

char * tl_FillMemory (char * pc_dst, t_UInt u_len, char c_fill);
wchar_t * tl_FillMemory (wchar_t * pc_dst, t_UInt u_len, wchar_t c_fill);

Füllt u_len Zeichen beginnend bei pc_dst mit dem Zeichen c_fill.

int tl_CompareChar (char c1, char c2);
int tl_CompareChar (wchar_t c1, wchar_t c2);

Vergleicht die Zeichen c1 und c2 miteinander. Das Resultat ist bei c1 < c2 kleiner Null, bei c1 == c2 gleich
Null und bei c1 > c2 größer Null. Die beiden Zeichen werden ohne Vorzeichen miteinander verglichen. Z.
B. gilt '\x40' < '\xC0'.

int tl_CompareMemory (const char * pc1, const char * pc2, t_UInt u_len);
int tl_CompareMemory (const wchar_t * pc1, const wchar_t * pc2, t_UInt u_len);

Vergleicht die ersten u_len Zeichen der Speicherbereiche pc1 und pc2. Das Resultat ist bei pc1 < pc2 kleiner
Null, bei pc1 == pc2 gleich Null und bei pc1 > pc2 größer Null. Die einzelnen Zeichen werden ohne
Vorzeichen miteinander verglichen. Z. B. gilt "\x40" < "\xC0".

const char * tl_FirstChar (const char * pc_mem, t_UInt u_len, char c_search);
const wchar_t * tl_FirstChar (const wchar_t * pc_mem, t_UInt u_len, wchar_t c_search);

Sucht in den ersten u_len Zeichen des Speicherbereiches pc_mem nach dem ersten Auftreten des Zeichens
c_search. Wurde das Zeichen nicht gefunden, ist der Rückgabewert gleich Null.

const char * tl_FirstMemory (const char * pc_mem, t_UInt u_len, const char * pc_search, t_UInt u_searchLen);
const wchar_t * tl_FirstMemory (const wchar_t * pc_mem, t_UInt u_len, const wchar_t * pc_search, t_UInt
u_searchLen);

Sucht in den ersten u_len Zeichen des Speicherbereiches pc_mem nach dem ersten Auftreten der
Zeichenfolge pc_search, die u_searchLen Zeichen lang ist. Wurde die Zeichenfolge nicht gefunden, ist der
Rückgabewert gleich Null.

Spirick Tuning Referenzhandbuch Seite 10

const char * tl_LastChar (const char * pc_mem, t_UInt u_len, char c_search);
const wchar_t * tl_LastChar (const wchar_t * pc_mem, t_UInt u_len, wchar_t c_search);

Sucht in den ersten u_len Zeichen des Speicherbereiches pc_mem nach dem letzten Auftreten des Zeichens
c_search. Wurde das Zeichen nicht gefunden, ist der Rückgabewert gleich Null.

const char * tl_LastMemory (const char * pc_mem, t_UInt u_len, const char * pc_search, t_UInt u_searchLen);
const wchar_t * tl_LastMemory (const wchar_t * pc_mem, t_UInt u_len, const wchar_t * pc_search, t_UInt
u_searchLen);

Sucht in den ersten u_len Zeichen des Speicherbereiches pc_mem nach dem letzten Auftreten der
Zeichenfolge pc_search, die u_searchLen Zeichen lang ist. Wurde die Zeichenfolge nicht gefunden, ist der
Rückgabewert gleich Null.

template <t_UInt u_len>
 void tl_SwapMemory (void * pv1, void * pv2);

Tauscht den Inhalt der Speicherbereiche pv1 und pv2 mit der Länge u_len Bytes aus.

template <class t_obj>
 void tl_SwapObj (t_obj & o1, t_obj & o2);

Tauscht den Wert der Objekte o1 und o2 durch dreimaliges Aufrufen von operator = aus. Dabei wird ein
drittes lokales Objekt verwendet.

Zugehörige Klassen
Die globalen Funktionen dieser Schnittstelle dienen als Grundlage der Templates gct_CharBlock und
gct_String.

1.2 Store

1.2.1 Storeschnittstelle

Stores sind Speicherverwaltungsobjekte. Zur Erhöhung der Flexibilität und Performance besitzen sie
keine gemeinsame Basisklasse mit virtuellen Methoden. Sie verfügen jedoch über eine einheitliche
Schnittstelle. Diese vereinfacht die Handhabung und ermöglicht das leichte Austauschen eines Stores
gegen einen anderen. Es werden nicht alle Methoden von allen Stores unterstützt. Damit beim
Verwenden einer Storeklasse als Templateparameter keine Syntaxfehler auftreten, enthält die
Deklaration der Klasse auch nicht unterstützte Methoden. Diese enthalten jedoch in ihrer Definition die
Anweisung ASSERT (false).

Klassendeklaration
class ct_AnyStore
 {
public:
 typedef t_UInt t_Size;
 typedef void * t_Position;

 void Swap (ct_AnyStore & co_swap);
 t_UInt StoreInfoSize ();
 t_UInt MaxAlloc ();

 t_Position Alloc (t_Size o_size);
 t_Position Realloc (t_Position o_pos, t_Size o_size);
 void Free (t_Position o_pos);

 void * AddrOf (t_Position o_pos);
 t_Position PosOf (void * pv_adr);

Spirick Tuning Referenzhandbuch Seite 11

 t_Size SizeOf (t_Position o_pos);
 t_Size RoundedSizeOf (t_Position o_pos);

 bool CanFreeAll ();
 void FreeAll ();
 };

Datentypen
typedef t_UInt t_Size;

Der geschachtelte Typ t_Size beschreibt die Größe der Speicherblöcke, die der Store verwalten kann.
Neben t_UInt werden auch t_UInt8, t_UInt16 und t_UInt32 verwendet. Ist z. B. t_Size auf t_UInt8 definiert,
kann ein Speicherblock maximal 255 Bytes umfassen. Ein angepaßter Größentyp verringert den
Speicherbedarf von Objekten, die Größenangaben enthalten.

typedef void * t_Position;

Stores verwalten ihre Speicherblöcke mit Hilfe von Positionszeigern. Neben void * werden auch t_UInt,
t_UInt8, t_UInt16 und t_UInt32 verwendet. Bei allen Positionstypen ist der Wert Null per Definition
ungültig. Der Zugriff auf den Speicher erfolgt i. a. mit der Methode AddrOf. Bei einigen Stores, die void *
als Positionstyp verwenden, ist ein Positionszeiger gleich dem physischen Zeiger. Auch in diesen Fällen
sollte die Methode AddrOf verwendet werden, denn sie ist inline definiert und benötigt keine zusätzliche
Rechenzeit.

Methoden
void Swap (ct_AnyStore & co_swap);

Tauscht den Inhalt der beiden Objekte aus.

t_UInt StoreInfoSize ();

Liefert die Anzahl Bytes Verwaltungsspeicher pro Speicherblock. Diese Methode wird nicht von allen
Stores unterstützt.

t_UInt MaxAlloc ();

Liefert die maximale Anzahl Bytes, die zusammenhängend bereitgestellt werden können, d. h. die
maximale Größe eines einzelnen Speicherblocks.

t_Position Alloc (t_Size o_size);

Stellt einen zusammenhängenden Speicherblock der Größe o_size bereit. Ist o_size gleich Null, wird Null
zurückgegeben. Bei Speicherüberlauf werden Reservehandler und Overflowhandler aufgerufen (siehe
Abschnitt ‘Reservespeicher’).

t_Position Realloc (t_Position o_pos, t_Size o_size);

Verändert die Größe des Speicherblocks o_pos auf o_size. Bei o_pos gleich Null ist Realloc identisch mit
Alloc. Bei o_size gleich Null ist Realloc identisch mit Free. Bei Speicherüberlauf werden Reservehandler
und Overflowhandler aufgerufen (siehe Abschnitt ‘Reservespeicher’).

void Free (t_Position o_pos);

Gibt den Speicherblock o_pos frei. Der Wert o_pos gleich Null ist erlaubt.

void * AddrOf (t_Position o_pos);

Berechnet die zum Positionszeiger o_pos gehörende Speicheradresse. Bei o_pos gleich Null liefert AddrOf
den Nullzeiger.

Spirick Tuning Referenzhandbuch Seite 12

t_Position PosOf (void * pv_adr);

Berechnet den zur Speicheradresse pv_adr gehörenden Positionszeiger. Diese Methode wird nicht von
allen Stores unterstützt.

t_Size SizeOf (t_Position o_pos);

Berechnet die exakte Größe des Speicherbereichs, auf den o_pos zeigt, d. h. die Größe, die bei Alloc oder
Realloc angegeben wurde. Diese Methode wird nicht von allen Stores unterstützt.

t_Size RoundedSizeOf (t_Position o_pos);

Berechnet die aufgerundete interne Größe des Speicherbereichs, auf den o_pos zeigt. Diese Methode wird
nicht von allen Stores unterstützt.

bool CanFreeAll ();

Liefert true, wenn der Store sämtlichen Speicher, der von ihm angefordert wurde, zusammenhängend
freigeben kann.

void FreeAll ();

Gibt sämtlichen Speicher, der vom Store angefordert wurde, frei. Diese Methode wird nicht von allen
Stores unterstützt.

1.2.2 Globale Stores (tuning/defs.hpp)

Stores werden innerhalb der Bibliothek Spirick Tuning sehr unterschiedlich eingesetzt. Von den drei
dynamischen Stores (siehe folgende Abschnitte) wird je eine globale Instanz erzeugt, auf die mit
generierten Wrapperklassen zugegriffen wird. Z. B. reicht es in den meisten Fällen aus, vom Roundstore
nur eine einzelne Instanz zu bilden. Die eingestellten Parameter zum Runden der Blockgröße gelten dann
für das gesamte Programm.

Zahlreiche Templates erwarten als Parameter eine Storeklasse und bilden eine Instanz davon. Z. B.
enthält jeder Listencontainer ein Storeobjekt, von dem er den Speicher für seine Nodes anfordert. Eine
Blockliste enthält einen 'echten' Store (einen Blockstore). Eine 'normale' Liste nutzt jedoch ein globales
Storeobjekt und greift mit Hilfe eines Wrapperobjektes darauf zu.

Zu jedem globalen Storeobjekt werden vier Wrapperklassen generiert. Diese unterscheiden sich nur
durch den Größentyp t_Size. Alle Methoden einer Wrapperklasse sind static deklariert. Sie können
entweder direkt (z. B. bei gct_Block) oder über ein Wrapperobjekt (z. B. bei gct_DList) aufgerufen werden.

Eine Wrapperklasse mappt ihre eigenen Methoden auf Methodenaufrufe des globalen Objekts. Sind für
eine Storeklasse die Positionszeiger gleich den physischen Zeigern, kann der Zugriff auf den Speicher
über die Wrapperklasse beschleunigt werden. Anstatt die Methode AddrOf des globalen Objekts
aufzurufen, kann die Methode AddrOf der Wrapperklasse inline definiert werden.

Auf das generierte globale Storeobjekt kann mit einer Get-Funktion direkt zugegriffen werden. Das Objekt
wird nicht als ein globales C++-Objekt erzeugt, sondern beim ersten Zugriff über die Get-Funktion oder
beim Starten des ersten Threads. Dadurch ist der globale Store unabhängig von der Reihenfolge der
Initialisierung globaler Objekte. Andere globale Objekte besitzen in ihrem Konstruktor einen sicheren
Zugriff auf globale Stores. Bei Bedarf können globale Stores mit einer Create-Funktion explizit erzeugt
werden.

Globale Stores werden nicht automatisch zerstört. Dadurch können die Destruktoren anderer globaler
Objekte noch sicher auf angeforderten Speicher zugreifen. Das Zerstören globaler Stores ist nicht
notwendig, denn sie verwalten nur rohe Speicherblöcke, die am Programmende vom Betriebssystem
automatisch freigegeben werden. Bei Bedarf können globale Stores mit einer Delete-Funktion explizit
zerstört werden.

Spirick Tuning Referenzhandbuch Seite 13

GLOBAL_STORE_DCLS(t_store, Obj, inl_or_stat)

Dieses Makro wird am Ende der Headerdatei der Storeklasse plaziert. Der Parameter t_store enthält die
ursprüngliche Storeklasse. Obj ist ein Namenskürzel für die generierten Namen. Es erlaubt das Generieren
mehrerer globaler Instanzen einer Storeklasse. Der Parameter inl_or_stat legt fest, ob die Methoden
AddrOf und PosOf der Wrapperklasse inline oder static deklariert werden sollen. Die Makroverwendung

GLOBAL_STORE_DCLS (ct_AnyStore, My, INLINE)

enthält die folgenden Deklarationen (Makroparameter sind fett hervorgehoben):

void CreateMyStore ();
void DeleteMyStore ();
ct_AnyStore * GetMyStore ();
class ct_My_Store;
class ct_My8Store;
class ct_My16Store;
class ct_My32Store;

GLOBAL_STORE_DEFS(t_store, Obj, inl_or_stat)

Dieses Makro wird in der Implementierungsdatei der Storeklasse plaziert. Es erwartet dieselben
Parameter wie GLOBAL_STORE_DCLS und generiert die Definition der Methoden.

1.2.3 Beispiel für eine Wrapperklasse

Die vollständige Deklaration der Wrapperklasse ct_My16Store aus dem vorigen Beispiel lautet:

class ct_My16Store
 {
public:
 typedef t_UInt16 t_Size;
 typedef ct_AnyStore::t_Position t_Position;
 typedef ct_AnyStore t_Store;

 static void Swap (ct_My16Store &);
 static t_UInt StoreInfoSize ();
 static t_UInt MaxAlloc ();
 static t_Position Alloc (t_Size o_size);
 static t_Position Realloc (t_Position o_pos, t_Size o_size);
 static void Free (t_Position o_pos);
 static inline void * AddrOf (t_Position o_pos) { return o_pos; }
 static inline t_Position PosOf (void * pv_adr) { return pv_adr; }
 static t_Size SizeOf (t_Position o_pos);
 static t_Size RoundedSizeOf (t_Position o_pos);
 static bool CanFreeAll ();
 static void FreeAll ();
 static ct_AnyStore * GetStore ();
 };

Im Makro GLOBAL_STORE_DEFS werden drei Funktionen für das globale Objekt definiert:

static ct_AnyStore * pco_MyStore;
void CreateMyStore ()
 {
 if (pco_MyStore == 0)
 pco_MyStore = new ct_AnyStore;
 }
void DeleteMyStore ()
 {
 if (pco_MyStore != 0)
 {
 delete pco_MyStore;

Spirick Tuning Referenzhandbuch Seite 14

 pco_MyStore = 0;
 }
 }
ct_AnyStore * GetMyStore ()
 {
 if (pco_MyStore == 0)
 CreateMyStore ();
 return pco_MyStore;
 }

Die generierte Definition der Methode ct_My16Store:: Alloc lautet:

ct_My16Store::t_Position
ct_My16Store::Alloc (t_Size o_size)
 { return GetMyStore ()-> Alloc (o_size); }

1.3 Dynamische Stores

1.3.1 Standardstore (tuning/std/store.hpp)

Die Klasse ct_StdStore enthält keine eigene Funktionalität. Sie mappt die globalen Funktionen der
Systemschnittstelle auf Methoden der Storeschnittstelle. Als Beispiel folgt der Klassendeklaration die
Definition der Methode Alloc:

Klassendeklaration
class ct_StdStore
 {
public:
 typedef t_UInt t_Size;
 typedef void * t_Position;
 static inline void Swap (ct_StdStore & co_swap);

 static inline t_UInt StoreInfoSize ();
 static inline t_UInt MaxAlloc ();

 static inline t_Position Alloc (t_Size o_size);
 static inline t_Position Realloc (t_Position o_pos, t_Size o_size);
 static inline void Free (t_Position o_pos);

 static inline void * AddrOf (t_Position o_pos);
 static inline t_Position PosOf (void * pv_adr);

 static inline t_Size SizeOf (t_Position o_pos);
 static inline t_Size RoundedSizeOf (t_Position o_pos);

 static inline bool CanFreeAll ();
 static inline void FreeAll ();
 };

inline ct_StdStore::t_Position ct_StdStore::Alloc (t_Size o_size)
 { return tl_Alloc (o_size); }

Besonderheiten, Wrapperklassen
Die folgenden Methoden werden vom Standardstore nicht unterstützt: SizeOf, RoundedSizeOf und FreeAll.
Da die Klasse ct_StdStore auf der Systemschnittstelle aufbaut, nutzt sie indirekt auch die Funktionalität
des Reservespeichers. Z. B. kann mit der globalen Funktion tl_HasReserve gefragt werden, ob noch
Reservespeicher bereit steht. Jede Speicheranforderung führt über die Systemschnittstelle zu einem

Spirick Tuning Referenzhandbuch Seite 15

Aufruf von malloc. Debughilfen und Heapwalker der C-Standardbibliothek können uneingeschränkt
weitergenutzt werden.

In der Headerdatei des Standardstores werden Funktionen für das globale Objekt und vier
Wrapperklassen deklariert:

void CreateStdStore ();
void DeleteStdStore ();
ct_StdStore * GetStdStore ();
class ct_Std_Store;
class ct_Std8Store;
class ct_Std16Store;
class ct_Std32Store;

1.3.2 Roundstore (tuning/rnd/store.hpp)

Die Klasse ct_RndStore nutzt ähnlich wie ct_StdStore die Systemschnittstelle, rundet jedoch alle
Größenangaben, bevor sie an die globalen Funktionen weitergegeben werden. Die Berechnung der
gerundeten Werte erfolgt in der privaten Methode Round.

Klassendeklaration
class ct_RndStore
 {
public:
 typedef t_UInt t_Size;
 typedef void * t_Position;

 ct_RndStore ();
 void Swap (ct_RndStore & co_swap);

 static inline t_UInt StoreInfoSize ();
 static inline t_UInt MaxAlloc ();

 inline t_Position Alloc (t_Size o_size);
 inline t_Position Realloc (t_Position o_pos, t_Size o_size);
 static inline void Free (t_Position o_pos);

 static inline void * AddrOf (t_Position o_pos);
 static inline t_Position PosOf (void * pv_adr);

 static inline t_Size SizeOf (t_Position o_pos);
 static inline t_Size RoundedSizeOf (t_Position o_pos);

 static inline bool CanFreeAll ();
 static inline void FreeAll ();
 };

inline ct_RndStore::t_Position ct_RndStore::Alloc (t_Size o_size)
 { return tl_Alloc (Round (o_size)); }

Die Rundung der Blockgrößen wirkt der Speicherfragmentierung entgegen. Dadurch verkleinert sich der
ungenutzte Freispeicher, und die Speicherverwaltung wird spürbar schneller. Der Roundstore rundet alle
Anforderungen auf die nächst höhere Zweierpotenz.

Der Speicherplatz, der durch die grobe Rundung verlorengeht, wird durch die geringere Fragmentierung
ausgeglichen, und die Speicherverwaltung wird spürbar schneller. Bei einer sehr starken Belastung des
dynamischen Speichers sollte der Chainstore verwendet werden. Er besitzt einen deutlich höheren
Wirkungsgrad als der Roundstore.

Spirick Tuning Referenzhandbuch Seite 16

Der Wirkungsgrad des Roundstores hängt stark von der Implementierung der C-Standardbibliothek ab.
Enthält diese bereits eigene Rundungsmechanismen, fällt die Nachbereitung durch den Roundstore
weniger ins Gewicht. Der Roundstore führt bei vielen älteren Compilern zu einem meßbaren
Geschwindigkeitsgewinn gegenüber dem Standardstore.

Besonderheiten, Wrapperklassen
Die folgenden Methoden werden vom Roundstore nicht unterstützt: SizeOf, RoundedSizeOf und FreeAll. Da
die Klasse ct_RndStore auf der Systemschnittstelle aufbaut, nutzt sie indirekt auch die Funktionalität des
Reservespeichers. Z. B. kann mit der globalen Funktion tl_HasReserve gefragt werden, ob noch
Reservespeicher bereit steht. Jede Speicheranforderung führt über die Systemschnittstelle zu einem
Aufruf von malloc. Debughilfen und Heapwalker der C-Standardbibliothek können uneingeschränkt
weitergenutzt werden.

In der Headerdatei des Roundstores werden Funktionen für das globale Objekt und vier Wrapperklassen
deklariert:

void CreateRndStore ();
void DeleteRndStore ();
ct_RndStore * GetRndStore ();
class ct_Rnd_Store;
class ct_Rnd8Store;
class ct_Rnd16Store;
class ct_Rnd32Store;

1.3.3 Chainstore (tuning/chn/store.hpp)

Die Klasse ct_ChnStore ist eine Weiterentwicklung des Roundstores. Der Chainstore ist auf Programme
mit starker Belastung der Speicherverwaltung ausgerichtet. Er enthält eine Optimierungstechnologie für
maximale Geschwindigkeit. Sie wirkt auch der Speicherfragmentierung effektiv entgegen und benötigt in
einigen Fällen etwas weniger, in anderen Fällen bis zu 25% mehr Gesamtspeicher als der Standardstore.
Der Chainstore bringt Programmen mit geringer Belastung der Speicherverwaltung keine Nachteile und
ist universell einsetzbar.

Klassendeklaration
class ct_ChnStore
 {
public:
 typedef t_UInt t_Size;
 typedef void * t_Position;

 ct_ChnStore ();
 ~ct_ChnStore ();
 void Swap (ct_ChnStore & co_swap);

 static inline t_UInt StoreInfoSize ();
 static inline t_UInt MaxAlloc ();

 t_Position Alloc (t_Size o_size);
 t_Position Realloc (t_Position o_pos, t_Size o_size);
 void Free (t_Position o_pos);

 static inline void * AddrOf (t_Position o_pos);
 static inline t_Position PosOf (void * pv_adr);

 static inline t_Size SizeOf (t_Position o_pos);
 inline t_Size RoundedSizeOf (t_Position o_pos);

 static bool CanFreeAll ();

Spirick Tuning Referenzhandbuch Seite 17

 static void FreeAll ();

 unsigned GetMaxChainExp ();
 void SetMaxChainExp (unsigned u_exp);
 t_UInt GetEntries ();
 t_UInt GetSize ();
 t_UInt QueryAllocEntries ();
 t_UInt QueryAllocSize ();
 t_UInt QueryFreeEntries ();
 t_UInt QueryFreeSize ();
 void FreeUnused ();
 };

Der Chainstore rundet ähnlich wie der Roundstore alle Anforderungen auf die nächst höhere
Zweierpotenz. Normalerweise bildet eine dynamische Speicherverwaltung eine lineare Liste der
Freielemente. Bei jeder neuen Speicheranforderung wird diese Liste durchlaufen, bis ein passendes
Element gefunden wird. Die Suche benötigt bei zunehmender Speicherfragmentierung (längere Liste)
immer mehr Rechenzeit. Die Rundung führt jedoch zu wesentlich weniger möglichen Blockgrößen. Damit
wächst die Wahrscheinlichkeit, sehr schnell einen passenden Block zu finden.

Der Chainstore besitzt zusätzlich eine eigene Verwaltung des Freispeichers. Er legt für jede einzelne
Blockgröße eine eigene Liste (Chain) der Freielemente an. Bei einer neuen Speicheranforderung greift er
direkt auf die passende Freiliste zu. Existiert dort ein Element, wird es aus der Liste entfernt. Andernfalls
wird über die Systemschnittstelle mit der Funktion tl_Alloc neuer Speicher angefordert.

Wird ein Speicherblock an den Chainstore zurückgegeben, reicht dieser ihn nicht sofort an die C-
Standardbibliothek weiter, sondern ordnet ihn der passenden eigenen Freiliste zu. Dort steht der
Speicherblock für neue Anforderungen direkt zur Verfügung. Zum Ermitteln der Blockgröße benötigt der
Chainstore acht zusätzliche Bytes pro Block. Am Anfang jedes Speicherblocks wird seine exakte und
gerundete Größe untergebracht. Mit Hilfe dieser Zusatzinformationen kann der Chainstore die Methoden
SizeOf und RoundedSizeOf der allgemeinen Storeschnittstelle unterstützen, und sie ermöglichen eine
Buchführung über die genutzten und freien Blöcke.

Die eigene Verwaltung des Freispeichers ist besonders effektiv bei speicherintensiven Rechenvorgängen,
die etwa gleichviel Speicher freigeben und wieder anfordern. Wurde jedoch wesentlich mehr Speicher
freigegeben als neu angefordert (z. B. beim Schließen eines Dokuments in einer interaktiven
Anwendung), besitzt der Chainstore unnötig große Freilisten. Am Ende des Vorgangs sollte die Methode
FreeUnused aufgerufen werden. Sie leert sämtliche Freilisten und gibt deren Elemente mit der Funktion
tl_Free an die C-Standardbibliothek zurück.

Mit zunehmender Blockgröße wird die Wahrscheinlichkeit der Speicherfragmentierung immer geringer.
Gleichzeitig erhöht sich die Wahrscheinlichkeit, daß sich in den Freilisten unnötig viel ungenutzter
Speicher befindet. Z. B. ist es bei einem Gesamtspeicher von 4 GB unwahrscheinlich, daß Blöcke mit
einer Größe von 100 MB oder mehr fragmentieren. Wenn mehrere Blöcke der Größe 100 MB ungenutzt
in einer Freiliste auf eine neue Verwendung warten, erhöht sich unnötig der Gesamtspeicherbedarf.
Deshalb kann man im Chainstore die maximale Größe für die Verwendung von Freilisten einstellen.
Blöcke mit einer Größe oberhalb dieser Grenze werden bei der Freigabe nicht in die zugehörige Freiliste
einsortiert, sondern mit der Funktion tl_Free direkt an die C-Standardbibliothek zurückgegeben. Der
Chainstore funktioniert oberhalb dieser Grenze also ähnlich wie der Roundstore beim Schritt-Teiler Eins.

Neben den allgemeinen Storemethoden enthält die Klasse ct_ChnStore noch Buchführungsmethoden. Da
vom Chainstore ein globales Objekt gebildet wird, sind seine privaten Attribute gegen den
konkurrierenden Zugriff mehrerer Threads geschützt.

Zusätzliche Methoden
unsigned GetMaxChainExp ();

Liefert den maximalen Exponenten für Freilisten.

Spirick Tuning Referenzhandbuch Seite 18

void SetMaxChainExp (unsigned u_exp);

Setzt den maximalen Exponenten für Freilisten. Die maximale Größe für Blöcke in Freilisten wird nicht als
Bytegröße, sondern als Exponent angegeben. Z. B. bedeutet der Exponent 10, daß alle Blöcke, die
größer als 2^10 (1 KB) sind, nicht in Freilisten einsortiert werden. Der Defaultwert ist 22 (4 MB).

t_UInt GetEntries ();

Liefert die Gesamtzahl der genutzten und ungenutzten Speicherblöcke, die von dieser Instanz des
Chainstores verwaltet werden.

t_UInt GetSize ();

Liefert die Gesamtgröße der genutzten und ungenutzten Speicherblöcke.

t_UInt QueryAllocEntries ();

Berechnet die Anzahl der genutzten Speicherblöcke.

t_UInt QueryAllocSize ();

Berechnet die Gesamtgröße der genutzten Speicherblöcke.

t_UInt QueryFreeEntries ();

Berechnet die Anzahl der ungenutzten Speicherblöcke.

t_UInt QueryFreeSize ();

Berechnet die Gesamtgröße der ungenutzten Speicherblöcke.

void FreeUnused ();

Leert alle Freilisten und gibt deren Speicher an die C-Standardbibliothek zurück.

Besonderheiten, Wrapperklassen
Die Methode FreeAll wird vom Chainstore nicht unterstützt. Da die Klasse ct_ChnStore auf der
Systemschnittstelle aufbaut, nutzt sie indirekt auch die Funktionalität des Reservespeichers. Z. B. kann
mit der globalen Funktion tl_HasReserve gefragt werden, ob noch Reservespeicher bereit steht. Jede
Speicheranforderung führt über die Systemschnittstelle zu einem Aufruf von malloc. Debughilfen und
Heapwalker der C-Standardbibliothek können uneingeschränkt weitergenutzt werden. Es ist jedoch zu
beachten, daß Elemente der eigenen Freilisten des Chainstores beim Durchlaufen des Heaps nicht als
frei, sondern als genutzt erscheinen, und daß sich am Anfang jedes Blocks acht Bytes
Zusatzinformationen befinden.

In der Headerdatei des Chainstores werden Funktionen für das globale Objekt und vier Wrapperklassen
deklariert:

void CreateChnStore ();
void DeleteChnStore ();
ct_ChnStore * GetChnStore ();
class ct_Chn_Store;
class ct_Chn8Store;
class ct_Chn16Store;
class ct_Chn32Store;

1.3.4 Operatoren new und delete (tuning/newdel.cpp)

Um die Vorteile des Chainstores der globalen C++-Speicherverwaltung zur Verfügung zu stellen, werden
in der Datei 'tuning/newdel.cpp' die globalen Operatoren new und delete überschrieben. Sie greifen auf
das globale Chainstore-Objekt zu. Unterstützt der verwendete Compiler die Operatoren new [] und delete
[], werden auch diese überschrieben.

Spirick Tuning Referenzhandbuch Seite 19

void * operator new (size_t u_size)
 {
 return GetChnStore ()-> Alloc (u_size);
 }

void operator delete (void * pv)
 {
 GetChnStore ()-> Free (pv);
 }

void * operator new [] (size_t u_size)
 {
 return GetChnStore ()-> Alloc (u_size);
 }

void operator delete [] (void * pv)
 {
 GetChnStore ()-> Free (pv);
 }

1.4 Block

1.4.1 Blockschnittstelle

Zahlreiche Klassen der Bibliothek Spirick Tuning verwenden dynamische Speicherblöcke zur
Unterbringung ihrer Daten. Ihre gemeinsame Grundlage ist das Blockkonzept. Ein Block ist ein Objekt,
das einen Speicherbereich dynamischer Größe verwaltet. Ähnlich wie Storeklassen besitzen auch
Blockklassen keine gemeinsame Basisklasse mit virtuellen Methoden, aber eine einheitliche Schnittstelle.
Diese vereinfacht die Handhabung und ermöglicht das leichte Austauschen eines Blocks gegen einen
anderen. Blockklassen dienen als Templateparameter für Strings, Arrays und Blockstores.

Klassendeklaration
class ct_AnyBlock
 {
public:
 typedef t_UInt t_Size;

 ct_AnyBlock ();
 ct_AnyBlock (const ct_AnyBlock & co_init);
 ~ct_AnyBlock ();
 ct_AnyBlock & operator = (const ct_AnyBlock & co_asgn);
 void Swap (ct_AnyBlock & co_swap);

 static t_UInt GetMaxByteSize ();
 t_Size GetByteSize () const;
 void SetByteSize (t_Size o_newSize);
 void * GetAddr () const;
 };

Datentypen
typedef t_UInt t_Size;

Der geschachtelte Größentyp einer Blockklasse bestimmt den Wertebereich der Größen- und
Positionsangaben. Außer t_UInt werden auch t_UInt8, t_UInt16 und t_UInt32 verwendet. Ist z. B. der
Größentyp auf t_UInt8 definiert, kann der dynamische Speicherbereich maximal 255 Bytes umfassen. Der

Spirick Tuning Referenzhandbuch Seite 20

Größentyp beeinflußt auch die Größe des Blockobjekts, denn die meisten Blockklassen enthalten ein
Attribut des Typs t_Size.

Konstruktoren, Destruktor, Gleichoperator, Swap
Blockobjekte werden häufig kopiert. Deshalb enthält jede Blockklasse einen Konstruktor,
Kopierkonstruktor, Destruktor und Gleichoperator. Viele Anwender von Blockklassen verlassen sich auf
das einwandfreie Funktionieren dieser Methoden.

ct_AnyBlock ();

Initialisiert ein leeres Blockobjekt (Größe Null).

ct_AnyBlock (const ct_AnyBlock & co_init);

Initialisiert ein Blockobjekt durch Kopieren des Inhalts von co_init. Es wird eine echte Kopie (deep copy)
angefertigt. Der Inhalt von co_init wird in einen eigenen Speicherbereich kopiert.

~ct_AnyBlock ();

Gibt den belegten Speicher frei.

ct_AnyBlock & operator = (const ct_AnyBlock & co_asgn);

Weist dem Blockobjekt einen neuen Inhalt zu. Es wird eine echte Kopie (deep copy) angefertigt. Nach
der Anpassung der Größe wird der Inhalt von co_asgn in den eigenen Speicherbereich kopiert.

void Swap (ct_AnyBlock & co_swap);

Tauscht den Inhalt der beiden Objekte aus.

Weitere Methoden
static t_UInt GetMaxByteSize ();

Liefert die maximale Größe des dynamischen Speicherbereichs.

t_Size GetByteSize () const;

Liefert die Größe des dynamischen Speicherbereichs.

void SetByteSize (t_Size o_newSize);

Setzt die Größe des dynamischen Speicherbereichs auf o_newSize. Der Wert Null ist erlaubt.

void * GetAddr () const;

Liefert die Anfangsadresse des dynamischen Speicherbereichs. Ist die Größe gleich Null, wird ein
Nullzeiger zurückgegeben.

In den folgenden Abschnitten werden verschiedene Implementierungen der Blockschnittstelle vorgestellt.

1.4.2 Allgemeiner Block (tuning/block.h)

Das Klassentemplate gct_Block enthält die Standardimplementierung der Blockschnittstelle. Es basiert auf
einer Storeklasse, in der alle Methoden static deklariert sind. Diese Bedingung erfüllen die
Wrapperklassen für globale Storeobjekte, z. B. ct_Rnd16Store. Die Implementierung besteht aus der
Basisklasse gct_BlockBase, der eigentlichen Blockklasse gct_Block und den Erweiterungen
gct_EmptyBaseBlock und gct_ObjectBaseBlock.

Spirick Tuning Referenzhandbuch Seite 21

Basisklasse
Die Basisklasse gct_BlockBase enthält je ein Attribut der Typen t_Position und t_Size der Storeklasse.
Durch einen angepaßten Größentyp t_Size (z. B. t_UInt16 statt t_UInt32) kann die Größe des Blockobjekts
optimiert werden. Für die korrekte Ausrichtung der Attribute im Speicher kann der Compiler
Paddingbytes einfügen. Diese Paddingbytes können nur innerhalb einer Klasse durch zusätzliche
Attribute nutzbar gemacht werden. Es ist z. B. nicht möglich, in einer abgeleiteten Klasse die
Paddingbytes am Ende der Basisklasse zu nutzen. Im Beispielprogramm TBlock werden Paddingbytes in
einer modifizierten Block-Basisklasse verwendet.

Das Klassentemplate gct_BlockBase erwartet als Parameter t_staticStore eine statische Storeklasse und
als Parameter t_base eine frei definierbare Basisklasse. Wegen der Möglichkeit zusätzlicher Attribute und
der variablen Basisklasse wird die Blockmethode Swap nicht in gct_Block, sondern in gct_BlockBase
definiert.

Templatedeklaration
template <class t_staticStore, class t_base>
 class gct_BlockBase: public t_base
 {
 public:
 typedef t_staticStore t_StaticStore;
 typedef t_StaticStore::t_Size t_Size;

 protected:
 t_StaticStore::t_Position o_Pos;
 t_Size o_Size;

 public:
 inline void Swap (gct_BlockBase & co_swap);
 inline t_StaticStore::t_Store * GetStore () const;
 };

Blockklasse
Das Klassentemplate gct_Block erwartet als Parameter t_blockBase eine Klasse, die mindestens die
Datentypen, Attribute und Methoden wie gct_BlockBase enthält.

Templatedeklaration
template < class t_blockBase>
 class gct_Block: public t_blockBase
 {
 public:
 typedef t_blockBase::t_Size t_Size;
 typedef t_blockBase::t_StaticStore t_StaticStore;

 inline gct_Block ();
 inline gct_Block (const gct_Block & co_init);
 inline ~gct_Block ();
 inline gct_Block & operator = (const gct_Block & co_asgn);

 static inline t_UInt GetMaxByteSize ();
 inline t_Size GetByteSize () const;
 inline void SetByteSize (t_Size o_newSize);
 inline void * GetAddr () const;
 };

Die Methoden des Klassentemplates gct_Block enthalten nur wenige Anweisungen und sind durchgängig
inline definiert. Da die Methoden der Storeklasse static deklariert sind, werden sie direkt aufgerufen.
Der Rechenzeitbedarf der Blockmethoden ist sehr gering.

Spirick Tuning Referenzhandbuch Seite 22

template <class t_staticStore>
 inline void gct_Block <t_staticStore>::SetByteSize (t_Size o_newSize)
 {
 o_Size = o_newSize;
 o_Pos = t_staticStore::Realloc (o_Pos, o_Size);
 }

Erweiterungen
Als oberste Basisklasse können z. B. die leere Klasse ct_Empty oder ct_Object verwendet werden. Dafür
existieren die beiden Erweiterungen gct_EmptyBaseBlock und gct_ObjectBaseBlock.

Templatedeklaration
template <class t_staticStore>
 class gct_EmptyBaseBlock:
 public gct_Block <gct_BlockBase <t_staticStore, ct_Empty> >
 {
 };

Templatedeklaration
template <class t_staticStore>
 class gct_ObjectBaseBlock:
 public gct_Block <gct_BlockBase <t_staticStore, ct_Object> >
 {
 };

1.4.3 Miniblock (tuning/miniblock.h)

Eine aus dem Template gct_Block abgeleitete Klasse enthält ein Größen- und ein Positionsattribut.
Unterstützt der zugrunde gelegte Store die Methode SizeOf, ist das Größenattribut redundant. Diese
Eigenschaft wurde im Template gct_MiniBlock berücksichtigt. Die Implementierung besteht ähnlich wie
bei gct_Block aus der Basisklasse gct_MiniBlockBase, der eigentlichen Blockklasse gct_MiniBlock und den
Erweiterungen gct_EmptyBaseMiniBlock und gct_ObjectBaseMiniBlock.

Basisklasse
Das Klassentemplate gct_MiniBlockBase enthält ein Attribut des Typs t_Position der Storeklasse. Es
erwartet als Parameter t_staticStore eine statische Storeklasse und als Parameter t_base eine frei
definierbare Basisklasse. Wegen der Möglichkeit zusätzlicher Attribute und der variablen Basisklasse wird
die Blockmethode Swap nicht in gct_MiniBlock, sondern in gct_MiniBlockBase definiert.

Templatedeklaration
template <class t_staticStore, class t_base>
 class gct_MiniBlockBase: public t_base
 {
 public:
 typedef t_staticStore t_StaticStore;
 typedef t_StaticStore::t_Size t_Size;

 protected:
 t_StaticStore::t_Position o_Pos;

 public:
 inline void Swap (gct_MiniBlockBase & co_swap);
 inline t_StaticStore::t_Store * GetStore () const;
 };

Spirick Tuning Referenzhandbuch Seite 23

Blockklasse
Das Klassentemplate gct_MiniBlock erwartet als Parameter t_blockBase eine Klasse, die mindestens die
Datentypen, Attribute und Methoden wie gct_MiniBlockBase enthält.

Templatedeklaration
template <class t_blockBase>
 class gct_MiniBlock: public t_blockBase
 {
 public:
 typedef t_blockBase::t_Size t_Size;
 typedef t_blockBase::t_StaticStore t_StaticStore;

 inline gct_MiniBlock ();
 inline gct_MiniBlock (const gct_MiniBlock & co_init);
 inline ~gct_MiniBlock ();
 inline gct_MiniBlock & operator = (const gct_MiniBlock & co_asgn);

 static inline t_UInt GetMaxByteSize ();
 inline t_Size GetByteSize () const;
 inline void SetByteSize (t_Size o_newSize);
 inline void * GetAddr () const;
 };

Ein Miniblockobjekt ist kleiner als ein vergleichbares Blockobjekt. Die Methode GetByteSize, die von
Blockanwendern (z. B. Strings) häufig aufgerufen wird, ist jedoch etwas langsamer. Das Template
gct_MiniBlock ist insbesondere für Objekte geeignet, die in großen Stückzahlen auftreten.

template <class t_blockBase>
 inline gct_MiniBlock <t_blockBase>::t_Size
 gct_MiniBlock <t_blockBase>::GetByteSize () const
 {
 return (t_Size) t_staticStore::SizeOf (o_Pos);
 }

Erweiterungen
Als oberste Basisklasse können z. B. die leere Klasse ct_Empty oder ct_Object verwendet werden. Dafür
existieren die beiden Erweiterungen gct_EmptyBaseMiniBlock und gct_ObjectBaseMiniBlock.

Templatedeklaration
template <class t_staticStore>
 class gct_EmptyBaseMiniBlock:
 public gct_MiniBlock <gct_MiniBlockBase <t_staticStore, ct_Empty> >
 {
 };

Templatedeklaration
template <class t_staticStore>
 class gct_ObjectBaseMiniBlock:
 public gct_MiniBlock <gct_MiniBlockBase <t_staticStore, ct_Object> >
 {
 };

Spirick Tuning Referenzhandbuch Seite 24

1.4.4 Reserveblock (tuning/resblock.h)

Bei den Templates gct_Block und gct_MiniBlock werden Reallokationen vom verwendeten Store optimiert.
In einigen Fällen möchte der Anwender jedoch diese Optimierung selber durchführen, indem er zeitweise
mehr Speicher allokiert, als tatsächlich verwendet wird. Diese Eigenschaft wurde im Template
gct_ResBlock berücksichtigt. Es hat als zusätzliches Attribut eine Minimalgröße. Die Größe des allokierten
Speichers ist gleich dem Maximum aus Größe und Minimalgröße. D. h. bei Bedarf kann zusätzlicher
Speicher reserviert werden, um die Anzahl der Reallokationen zu verringern.

Ein typischer Anwendungsfall ist eine Zeichenkettenverarbeitung, bei der in einem bestimmten
Arbeitsschritt sehr viele Änderungen an einem Objekt vorgenommen werden, die i. a. auch mit einer
Größenänderung verbunden sind. Wenn zusätzlich bekannt ist, daß die Zeichenkette nicht größer als z.
B. 4096 Bytes wird, so setzt man die Minimalgröße vor dem Arbeitsschritt auf 4096 und am Ende
wieder auf Null.

Die Implementierung besteht ähnlich wie bei gct_Block aus der Basisklasse gct_ResBlockBase, der
eigentlichen Blockklasse gct_ResBlock und den Erweiterungen gct_EmptyBaseResBlock und
gct_ObjectBaseResBlock.

Basisklasse
Das Klassentemplate gct_ResBlockBase enthält ein Attribut des Typs t_Position und zwei Attribute des
Typs t_Size der Storeklasse. Es erwartet als Parameter t_staticStore eine statische Storeklasse und als
Parameter t_base eine frei definierbare Basisklasse. Wegen der Möglichkeit zusätzlicher Attribute und der
variablen Basisklasse wird die Blockmethode Swap nicht in gct_ResBlock, sondern in gct_ResBlockBase
definiert.

Templatedeklaration
template <class t_staticStore, class t_base>
 class gct_ResBlockBase: public t_base
 {
 public:
 typedef t_staticStore t_StaticStore;
 typedef t_StaticStore::t_Size t_Size;

 protected:
 t_StaticStore::t_Position o_Pos;
 t_Size o_Size;
 t_Size o_MinSize;

 public:
 inline void Swap (gct_ResBlockBase & co_swap);
 inline t_StaticStore::t_Store * GetStore () const;
 };

Blockklasse
Das Klassentemplate gct_ResBlock erwartet als Parameter t_blockBase eine Klasse, die mindestens die
Datentypen, Attribute und Methoden wie gct_ResBlockBase enthält.

Templatedeklaration
template <class t_blockBase>
 class gct_ResBlock: public t_blockBase
 {
 public:
 typedef t_blockBase::t_Size t_Size;
 typedef t_blockBase::t_StaticStore t_StaticStore;

Spirick Tuning Referenzhandbuch Seite 25

 inline gct_ResBlock ();
 inline gct_ResBlock (const gct_ResBlock & co_init);
 inline ~gct_ResBlock ();
 inline gct_ResBlock & operator = (const gct_ResBlock & co_asgn);

 static inline t_UInt GetMaxByteSize ();
 inline t_Size GetByteSize () const;
 inline void SetByteSize (t_Size o_newSize);
 inline void * GetAddr () const;

 inline t_Size GetMinByteSize () const;
 inline t_Size GetAllocByteSize () const;
 inline void SetMinByteSize (t_Size o_newSize);
 };

Zusätzliche Methoden
t_Size GetMinByteSize () const;

Liefert die Minimalgröße in Bytes.

t_Size GetAllocByteSize () const;

Liefert die allokierten Bytes, d. h. das Maximum von Größe und Minimalgröße.

void SetMinByteSize (t_Size o_newSize);

Setzt die neue Minimalgröße in Bytes.

Erweiterungen
Als oberste Basisklasse können z. B. die leere Klasse ct_Empty oder ct_Object verwendet werden. Dafür
existieren die beiden Erweiterungen gct_EmptyBaseResBlock und gct_ObjectBaseResBlock.

Templatedeklaration
template <class t_staticStore>
 class gct_EmptyBaseResBlock:
 public gct_ResBlock <gct_ResBlockBase <t_staticStore, ct_Empty> >
 {
 };

Templatedeklaration
template <class t_staticStore>
 class gct_ObjectBaseResBlock:
 public gct_ResBlock <gct_ResBlockBase <t_staticStore, ct_Object> >
 {
 };

1.4.5 Fixblock (tuning/fixblock.h)

Jede dynamische Speicherverwaltung besitzt eine Minimalgröße für Speicherblöcke und beansprucht pro
Block einige Bytes Verwaltungsspeicher. Dieser doppelte Overhead wirkt sich besonders bei kleinen
Anforderungen von 10 oder 16 Bytes aus. Ist von Instanzen eines Blocktyps bekannt, daß ihre Größe
einen bestimmten Wert nicht überschreitet, kann mit Hilfe des Templates gct_FixBlock der
Verwaltungsaufwand gesenkt werden.

Spirick Tuning Referenzhandbuch Seite 26

Templatedeklaration
template <class t_size, t_UInt u_fixSize>
 class gct_FixBlock
 {
 public:
 typedef t_size t_Size;

 protected:
 t_Size o_Size;
 char ac_Block [u_fixSize];

 public:
 inline gct_FixBlock ();
 inline gct_FixBlock (const gct_FixBlock & co_init);
 inline gct_FixBlock & operator = (const gct_FixBlock & co_asgn);
 void Swap (gct_FixBlock & co_swap);

 static inline t_UInt GetMaxByteSize ();
 inline t_Size GetByteSize () const;
 inline void SetByteSize (t_Size o_newSize);
 inline void * GetAddr () const;
 };

Ein Fixblockobjekt fordert den benötigten Speicher nicht von einem Store an, sondern enthält ihn als
Attribut ac_Block. Die Parameter t_size und u_fixSize sollten aufeinander abgestimmt sein. Z. B. ist
gct_FixBlock <t_UInt8, 15> eine sinnvolle Kombination. Das Blockobjekt umfaßt insgesamt 16 Bytes.

Der Parameter t_size beeinflußt die Ausrichtung des Arrays ac_Block im Speicher. Ist z. B. t_size auf
t_UInt16 gesetzt, dann belegt o_Size 2 Bytes, ac_Block liegt auf einer 2-Byte-Grenze und das Blockobjekt
endet auf einer 2-Byte-Grenze. In diesem Block können nur Objekte gespeichert werden, die eine 1- oder
2-Byte-Ausrichtung erfordern.

1.4.6 Nulldatablock (tuning/nulldatablock.h)

Stringklassen, die nullterminierte Zeichenketten verwalten, belegen auch im leeren Zustand den Speicher
für das Nullzeichen. Durch die Rundung der Blockgrößen werden effektiv mindestens 8 oder 16 Bytes
belegt. Treten in einer Anwendung sehr häufig leere Stringobjekte auf, kann sich dieser Overhead zu
einem großen Betrag summieren. Der Nulldatablock behandelt dieses Problem, indem er statischen
Speicher für ein einzelnes Zeichen bereitstellt und bei Blockgröße 1 keinen dynamischen Speicher
verwendet.

Templatedeklaration
template <class t_block, class t_null>
 class gct_NullDataBlock: public t_block
 {
 public:
 typedef t_block::t_Size t_Size;

 private:
 static t_null o_NullData;

 public:
 inline t_Size GetByteSize () const;
 inline void SetByteSize (t_Size o_newSize);
 inline void * GetAddr () const;
 };

Der Anwender des Nulldatablock muß darauf achten, daß bei Blockgröße 1 nur das Nullzeichen in den
Speicher geschrieben wird und keine anderen Daten. Auf diese Weise ist der Nulldatablock auch ohne

Spirick Tuning Referenzhandbuch Seite 27

Synchronisierung sicher beim Zugriff durch mehrere Threads. Das Klassentemplate gct_NullDataBlock
erwartet als Parameter eine Blockklasse, z. B. gct_EmptyBaseBlock <ct_Chn_Store>, und einen
Zeichendatentyp, also char oder wchar_t.

1.4.7 Zeichenblock (tuning/charblock.h)

Das Klassentemplate gct_CharBlock erweitert die Blockschnittstelle um Zusatzfunktionen für Zugriff,
Einfügen und Löschen von Zeichen. Es erwartet als Parameter eine Blockklasse, z. B. gct_EmptyBaseBlock
<ct_Chn_Store>, und einen Zeichendatentyp, also char oder wchar_t. Die byte-orientierten Aufrufe werden
privat deklariert, damit byte- und zeichen-orientierte Aufrufe nicht gemischt verwendet werden können,
z. B. SetByteSize und GetCharSize.

Basisklasse
ct_AnyBlock (siehe Abschnitt ‘Blockschnittstelle’)

Templatedeklaration
template <class t_block, class t_char>
 class gct_CharBlock: public t_block
 {
 public:
 inline t_Size GetMaxCharSize () const;
 inline t_Size GetCharSize () const;
 inline void SetCharSize (t_Size o_size);
 inline void IncCharSize (t_Size o_inc);
 inline void DecCharSize (t_Size o_dec);
 inline t_char * GetRawAddr () const;
 inline t_char * GetRawAddr (t_Size o_pos) const;
 inline t_char * GetCharAddr () const;
 inline t_char * GetCharAddr (t_Size o_pos) const;

 t_char * AppendChars (t_Size o_len);
 t_char * InsertChars (t_Size o_pos, t_Size o_count);
 t_char * DeleteChars (t_Size o_pos, t_Size o_count);
 inline t_char * FillChars (t_Size o_pos, t_Size o_count, t_char c_fill = (t_char) 0);

 inline void AssignChars (const t_char * pc_asgn, t_Size o_len);
 inline void AppendChars (const t_char * pc_app, t_Size o_len);
 inline void InsertChars (t_Size o_pos, const t_char * pc_ins, t_Size o_len);
 void ReplaceChars (t_Size o_pos, t_Size o_delLen,
 const t_char * pc_ins, t_Size o_insLen);

 inline t_Size GetDefaultPageSize () const;
 inline void AlignPageSize (t_Size o_itemSize, t_Size o_pageSize);
 };

Methoden
t_Size GetMaxCharSize ();

Liefert die maximale Anzahl der Zeichen im Block.

t_Size GetCharSize () const;

Liefert die Anzahl der Zeichen im Block.

void SetCharSize (t_Size o_size);

Setzt die Anzahl der Zeichen im Block auf o_size.

Spirick Tuning Referenzhandbuch Seite 28

void IncCharSize (t_Size o_inc);

Vergrößert den Block um o_inc Zeichen.

void DecCharSize (t_Size o_dec);

Verkleinert den Block um o_dec Zeichen. Es muß o_dec <= GetCharSize () gelten.

t_char * GetRawAddr () const;

Liefert die Anfangsadresse des Blocks mit dem Typ t_char *.

t_char * GetRawAddr (t_Size o_pos) const;

Liefert die Adresse des Zeichens an der Position o_pos. Es muß o_pos <= GetCharSize () gelten. Die
angegebene Position kann also auch hinter dem letzten Zeichen sein.

t_char * GetCharAddr () const;

Liefert die Anfangsadresse des Blocks mit dem Typ t_char *. Der Block muß mindestens ein Zeichen
enthalten, d. h. der Rückgabewert zeigt garantiert auf ein Zeichen innerhalb des Blocks.

t_char * GetCharAddr (t_Size o_pos) const;

Liefert die Adresse des Zeichens an der Position o_pos. Es muß o_pos < GetCharSize () gelten, d. h. der
Rückgabewert zeigt garantiert auf ein Zeichen innerhalb des Blocks.

t_char * AppendChars (t_Size o_len);

Vergrößert den Block um o_len Zeichen und gibt die Adresse des freigewordenen Speicherbereichs
zurück.

t_char * InsertChars (t_Size o_pos, t_Size o_len);

Vergrößert den Block um o_len Zeichen, verschiebt den Speicher an der Position o_pos um o_len Zeichen
nach hinten (zu höheren Positionen) und gibt die Adresse des freigewordenen Speicherbereichs zurück.

t_char * DeleteChars (t_Size o_pos, t_Size o_len);

Verschiebt den Speicher an der Position o_pos um o_len Zeichen nach vorn (zu niedrigeren Positionen),
verkleinert den Block um o_len Zeichen und gibt die Adresse des verschobenen Speicherbereichs zurück.

t_char * FillChars (t_Size o_pos, t_Size o_len, t_char c_fill = (t_char) 0);

Füllt o_len Zeichen ab der Position o_pos mit dem Zeichen c_fill und gibt die Adresse des veränderten
Speicherbereichs zurück.

void AssignChars (const t_char * pc_asgn, t_Size o_len);

Setzt die Größe auf o_len Zeichen und kopiert die ersten o_len Zeichen der Zeichenkette pc_asgn in den
eigenen Speicherbereich (mit Prüfung auf Selbstzuweisung).

void AppendChars (const t_char * pc_app, t_Size o_len);

Vergrößert den Block um o_len Zeichen und kopiert die ersten o_len Zeichen der Zeichenkette pc_app in
den freigewordenen Speicherbereich (ohne Prüfung auf Selbstzuweisung).

void InsertChars (t_Size o_pos, const t_char * pc_ins, t_Size o_len);

Vergrößert den Block um o_len Zeichen, verschiebt den Speicher an der Position o_pos um o_len Zeichen
nach hinten (zu höheren Positionen) und kopiert die ersten o_len Zeichen der Zeichenkette pc_ins in den
freigewordenen Speicherbereich.

void ReplaceChars (t_Size o_pos, t_Size o_delLen, const t_char * pc_ins, t_Size o_insLen);

Ersetzt o_delLen Zeichen an der Position o_pos durch die ersten o_insLen Zeichen der Zeichenkette pc_ins.
Dabei kann der Block vergrößert oder verkleinert werden.

Spirick Tuning Referenzhandbuch Seite 29

t_Size GetDefaultPageSize () const;
void AlignPageSize (t_Size o_itemSize, t_Size o_pageSize);

Mit diesen beiden Methoden wird gct_CharBlock kompatibel zur PageBlock-Schnittstelle..

1.4.8 Elementblock (tuning/itemblock.h)

Das Klassentemplate gct_ItemBlock erweitert die Blockschnittstelle um Zusatzfunktionen für Zugriff,
Einfügen und Löschen von Elementen gleicher Größe. Die byte-orientierten Aufrufe werden privat
deklariert, damit byte- und element-orientierte Aufrufe nicht gemischt verwendet werden können, z. B.
SetByteSize und GetItemSize.

Basisklasse
ct_AnyBlock (siehe Abschnitt ‘Blockschnittstelle’)

Templatedeklaration
template <class t_block>
 class gct_ItemBlock: public t_block
 {
 public:
 inline t_Size GetFixSize () const;
 inline t_Size GetMaxItemSize () const;
 inline t_Size GetItemSize () const;
 inline void SetItemSize (t_Size o_size);
 inline void IncItemSize1 ();
 inline void DecItemSize1 ();
 inline void IncItemSize (t_Size o_inc);
 inline void DecItemSize (t_Size o_dec);
 inline void * GetItemAddr (t_Size o_pos) const;

 void * AppendItems (t_Size o_count);
 void * InsertItems (t_Size o_pos, t_Size o_count);
 void * DeleteItems (t_Size o_pos, t_Size o_count);

 inline t_Size GetDefaultPageSize () const;
 inline void AlignPageSize (t_Size o_fixSize, t_Size o_pageSize);
 };

Methoden
t_Size GetFixSize () const;

Liefert die Größe eines Elements in Bytes.

t_Size GetMaxItemSize () const;

Liefert die maximale Anzahl der Elemente im Block.

t_Size GetItemSize () const;

Liefert die Anzahl der Elemente im Block.

void SetItemSize (t_Size o_size) const;

Setzt die Anzahl der Elemente im Block auf o_size.

void IncItemSize1 ();

Vergrößert den Block um 1 Element.

Spirick Tuning Referenzhandbuch Seite 30

void DecItemSize1 ();

Verkleinert den Block um 1 Element. Es muß 1 <= GetItemSize () gelten.

void IncItemSize (t_Size o_inc);

Vergrößert den Block um o_inc Elemente.

void DecItemSize (t_Size o_dec);

Verkleinert den Block um o_dec Elemente. Es muß o_dec <= GetItemSize () gelten.

void * GetItemAddr (t_Size o_pos) const;

Liefert die Adresse des Elements an der Position o_pos. Es muß o_pos < GetItemSize () gelten, d. h. der
Rückgabewert zeigt garantiert auf ein Element innerhalb des Blocks.

void * AppendItems (t_Size o_count);

Vergrößert den Block am Ende um o_count Elemente. Die Adresse des freigewordenen Speicherbereichs
wird zurückgegeben.

void * InsertItems (t_Size o_pos, t_Size o_count);

Vergrößert den Block um o_count Elemente und verschiebt den Speicher an der Position o_pos um o_count
Elemente nach hinten (zu höheren Positionen). Die Adresse des freigewordenen Speicherbereichs wird
zurückgegeben.

void * DeleteItems (t_Size o_pos, t_Size o_count);

Verschiebt den Speicher an der Position o_pos um o_count Elemente nach vorn (zu niedrigeren Positionen)
und verkleinert den Block um o_count Elemente. Die Adresse des verschobenen Speicherbereichs wird
zurückgegeben.

t_Size GetDefaultPageSize () const;
void AlignPageSize (t_Size o_itemSize, t_Size o_pageSize);

Mit diesen beiden Methoden wird gct_ItemBlock kompatibel zur PageBlock-Schnittstelle..

Erweiterungen
Die Größe eines Elements im Klassentemplate gct_ItemBlock kann zur Laufzeit oder zur Übersetzungszeit
festgelegt werden. Dafür existieren die beiden Erweiterungen gct_VarItemBlock und gct_FixItemBlock.

Das Klassentemplate gct_VarItemBlock erweitert gct_ItemBlock. Die Größe eines Elements wird zur Laufzeit
mit der Methode AlignPageSize festgelegt, während der Block noch die Größe Null hat. Eine typische
Anwendung ist der Blockstore.

Templatedeklaration
template <class t_block>
 class gct_VarItemBlock:
 public gct_ItemBlock <gct_VarItemBlockBase <t_block> >
 {
 };

Das Klassentemplate gct_FixItemBlock erweitert gct_ItemBlock. Die Größe eines Elements wird mit dem
Templateparameter o_itemSize festgelegt. Eine typische Anwendung ist der Arraycontainer.

Templatedeklaration
template <class t_block, t_UInt o_itemSize>
 class gct_FixItemBlock:
 public gct_ItemBlock <gct_FixItemBlockBase <t_block, o_itemSize> >
 {

Spirick Tuning Referenzhandbuch Seite 31

 };

1.4.9 Pageblock (tuning/pageblock.hpp)

Der Pageblock unterteilt den angeforderten Speicher in mehrere, gleichgroße Pages. Dadurch ergeben
sich gegenüber einem zusammenhängenden Block folgende Vorteile:

1. Geringere Anzahl an Speicheranforderungen und -freigaben bei Größenänderung.
2. Geringere Speicherfragmentierung durch wenige, immer gleichgroße Teilblöcke.
3. Kein Umkopieren beim Ändern der Größe.
4. Speicheradressen innerhalb des Blocks bleiben auch beim Ändern der Größe gültig.

Der Pageblock ist nur für größere Speichermengen sinnvoll, denn auch bei einer geringen Blockgröße
wird immer mindestens eine Page belegt. Die Größe des Blockobjekts spielt im Verhältnis zum
verwalteten Datenspeicher keine wesentliche Rolle. Deshalb wurde der Pageblock als eine Klasse
implementiert und nicht als ein Template mit variablen Größen- und Positionstypen.

Neben den gleichgroßen Pages mit Nutzdaten enthält der Pageblock noch einen Speicherblock, der
Zeiger auf die Pages verwaltet. Für beide Speichertypen können unterschiedliche Storeobjekte
verwendet werden. Der Verwaltungsspeicher kann eine feste oder eine variable Größe haben. Ein fest
dimensionierter Verwaltungsspeicher hat in einer multithreaded Umgebung den Vorteil, daß für die
Berechnung der Speicheradresse aus einem Index (GetCharAddr oder GetItemAddr) kein Mutex benötigt
wird. Die maximale Anzahl der Pages und damit auch die Maximalgröße des Blocks sind in diesem Fall
jedoch begrenzt, und es muß darauf geachtet werden, daß es nicht zu einem Überlauf kommt.

Da ganze Pages relativ selten angefordert und freigegeben werden, erfolgt der Zugriff auf die
Storeobjekte nicht als Templateparameter, sondern über virtuelle Methoden. Die Implementierung
besteht aus der Basisklasse ct_PageBlockBase mit rein virtuellen Methoden und der abgeleiteten Klasse
ct_PageBlock mit dem Zugriff auf zwei Default-Storeobjekte.

Neben der allgemeinen Blockschnittstelle enthält der Pageblock auch die Methoden von gct_CharBlock
und gct_ItemBlock. Bei der Verwendung als Elementblock muß darauf geachtet werden, daß der Speicher
eines Elements nicht über eine Pagegrenze gehen darf. Deshalb muß der Pageblock, solange er noch die
Größe Null hat, mit der Methode AlignPageSize justiert werden.

Klassendeklaration
class ct_PageBlockBase
 {
public:
 typedef t_UInt t_Size;

protected:
 void SetByteSize0 ();
 virtual void * AllocPtr (t_Size o_size) = 0;
 virtual void * ReallocPtr (void * pv_mem, t_Size o_size) = 0;
 virtual void * AllocData (t_Size o_size) = 0;
 virtual void FreeData (void * pv_mem) = 0;
 virtual void LastPageWarning () { }
 virtual void LastPageError () { }

public:
 // Block
 ct_PageBlockBase ();
 inline ct_PageBlockBase (const ct_PageBlockBase & co_init);
 virtual ~ct_PageBlockBase () { }
 inline ct_PageBlockBase & operator = (const ct_PageBlockBase & co_asgn);
 void Swap (ct_PageBlockBase & co_swap);

 // CharBlock

Spirick Tuning Referenzhandbuch Seite 32

 inline t_Size GetMaxCharSize () const;
 inline t_Size GetCharSize () const;
 inline void SetCharSize (t_Size o_size);
 inline void IncCharSize (t_Size o_inc);
 inline void DecCharSize (t_Size o_dec);
 inline char * GetRawAddr () const;
 inline char * GetRawAddr (t_Size o_pos) const;
 inline char * GetCharAddr () const;
 inline char * GetCharAddr (t_Size o_pos) const;

 char * AppendChars (t_Size o_count);
 char * InsertChars (t_Size o_pos, t_Size o_count);
 char * DeleteChars (t_Size o_pos, t_Size o_count);
 char * FillChars (t_Size o_pos, t_Size o_count,
 char c_fill = '\0');

 // ItemBlock
 inline t_Size GetFixSize () const;
 inline t_Size GetMaxItemSize () const;
 inline t_Size GetItemSize () const;
 inline void SetItemSize (t_Size o_size);
 inline void IncItemSize1 ();
 inline void DecItemSize1 ();
 inline void IncItemSize (t_Size o_inc);
 inline void DecItemSize (t_Size o_dec);
 inline void * GetItemAddr (t_Size o_pos) const;

 inline void * AppendItems (t_Size o_count);
 inline void * InsertItems (t_Size o_pos, t_Size o_count);
 inline void * DeleteItems (t_Size o_pos, t_Size o_count);

 // PageBlock only Methods
 inline t_Size GetDefaultPageSize () const;
 inline t_Size GetFixPagePtrs () const;
 void SetFixPagePtrs (t_Size o_ptrs);
 void AlignPageSize (t_Size o_fixSize, t_Size o_pageSize);
 inline t_Size GetPageSize () const;
 inline t_Size GetRoundedSize () const;
 };

Zusätzliche Methoden
void LastPageWarning ();

Diese virtuelle Methode wird aufgerufen, wenn der Verwaltungsspeicher für Pages fest dimensioniert ist
und die letzte Page allokiert werden soll. Das bedeutet, daß für weitere Vergrößerungen des Blocks nur
noch Speicher im Umfang von einer Page zur Verfügung steht.

void LastPageError ();

Diese virtuelle Methode wird aufgerufen, wenn der Verwaltungsspeicher für Pages fest dimensioniert ist
und die letzte Page aufgebraucht ist, d. h. der Pageblock kann nicht weiter vergrößert werden. Der
Aufrufer muß vor dem Vergrößern des Pageblocks sicherstellen, daß dieser Fall nicht eintritt. Andernfalls
kann das Programm nicht sinnvoll weitergeführt werden.

Bei Klassen und Templates, die die Blockschnittstelle verwenden, wird dieser Fall nicht behandelt.
Deshalb darf im Pageerrorhandler keine Exception ausgelöst werden. Diese Exception würde in der
Bibliothek Spirick Tuning nicht behandelt werden und dazu führen, daß das Objekt, das gerade Speicher
angefordert hat, in einem inkonsistenten Zustand verbleibt (siehe Funktion tl_SetOverflowHandler).

t_Size GetDefaultPageSize () const;

Die DefaultPageSize kann von abgeleiteten Klassen verwendet werden, wenn sie keine eigene Größe für
Pages konfigurieren.

Spirick Tuning Referenzhandbuch Seite 33

t_Size GetFixPagePtrs () const;

Liefert die Anzahl der Pages für den fest dimensionierten Verwaltungsspeicher. Das ist gleichzeitig die
maximale Anzahl der Pages. Der Wert Null bedeutet, daß die Größe des Verwaltungsspeichers nicht fest,
sondern dynamisch ist.

void SetFixPagePtrs (t_Size o_ptrs);

Setzt die Anzahl der Pages für den fest dimensionierten Verwaltungsspeicher auf den Wert o_ptrs. Der
Aufruf ist nur möglich, wenn die Blockgröße gleich Null ist.

void AlignPageSize (t_Size o_fixSize, t_Size o_pageSize);

Die interne Größe für Pages wird so justiert, daß sie ein Vielfaches der Elementgröße o_fixSize und
größer oder gleich o_pageSize ist. Der Aufruf ist nur möglich, wenn die Blockgröße gleich Null ist.

t_Size GetPageSize () const;

Liefert die tatsächliche Größe einer Page nach dem Aufruf von AlignPageSize.

t_Size GetRoundedSize () const;

Liefert das Produkt aus Größe einer Page und Anzahl der Pages.

Klassendeklaration
class ct_PageBlock: public ct_PageBlockBase
 {
protected:
 virtual void * AllocPtr (t_Size o_size);
 virtual void * ReallocPtr (void * pv_mem, t_Size o_size);
 virtual void * AllocData (t_Size o_size);
 virtual void FreeData (void * pv_mem);

public:
 ~ct_PageBlock ();
 };

Methoden
void * AllocPtr (t_Size o_size);

Allokiert Speicher für den Zeigerblock (Verwaltungsspeicher).

void * ReallocPtr (void * pv_mem, t_Size o_size);

Reallokiert Speicher für den Zeigerblock (Verwaltungsspeicher).

void * AllocData (t_Size o_size);

Allokiert eine Page für Nutzdaten.

void FreeData (void * pv_mem);

Gibt eine Page für Nutzdaten frei.

~ct_PageBlock ();

Im Destruktor der abgeleiteten Klasse muß der angeforderte Speicher frei gegeben werden, denn im
Destruktor der Basisklasse besteht kein Zugriff auf die virtuellen Methoden mehr.

Spirick Tuning Referenzhandbuch Seite 34

1.4.10 Block-Instanzen (tuning/xxx/block.h)

Zur Erleichterung des Umgangs mit der Blockschnittstelle werden in der Bibliothek Spirick Tuning einige
Standardinstanzen des Klassentemplates gct_Block vordefiniert. Das Makro BLOCK_DCLS(Obj) generiert für
jede der vier Wrapperklassen eines globalen Storeobjekts je eine Blockklasse. Die Makroverwendung

BLOCK_DCLS (Any)

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

class ct_Any_Block:
 public gct_EmptyBaseBlock <ct_Any_Store> { };
class ct_Any8Block:
 public gct_EmptyBaseBlock <ct_Any8Store> { };
class ct_Any16Block:
 public gct_EmptyBaseBlock <ct_Any16Store> { };
class ct_Any32Block:
 public gct_EmptyBaseBlock <ct_Any32Store> { };

Jedes Verzeichnis eines dynamischen Stores enthält eine Datei 'block.h'. Darin werden mit Hilfe des
Makros BLOCK_DCLS vier Blockklassen deklariert. Z. B. enthält die Klasse ct_Std8Block den Größentyp
t_UInt8 und fordert den Speicher für den dynamischen Block vom globalen Standardstoreobjekt an.

In der Datei 'tuning/std/block.h' werden deklariert:

class ct_Std_Block;
class ct_Std8Block;
class ct_Std16Block;
class ct_Std32Block;

In der Datei 'tuning/rnd/block.h' werden deklariert:

class ct_Rnd_Block;
class ct_Rnd8Block;
class ct_Rnd16Block;
class ct_Rnd32Block;

In der Datei 'tuning/chn/block.h' werden deklariert:

class ct_Chn_Block;
class ct_Chn8Block;
class ct_Chn16Block;
class ct_Chn32Block;

1.5 Spezielle Stores

1.5.1 Blockstore (tuning/blockstore.h)

Blockstores verwalten in einem umfassenden Block mehrere gleichgroße Speicherblöcke. Ihr
Hauptanwendungsgebiet sind Listencontainer, denn deren Nodes besitzen stets dieselbe Größe. Eine
dynamische Speicherverwaltung rundet (auch ohne Round- und Chainstore) die Blockgrößen und
beansprucht pro Block einige Bytes Verwaltungsspeicher. Werden viele gleichgroße Speicherblöcke
angefordert, ist dieser Verwaltungsaufwand unnötig. Eine dynamische Speicherverwaltung ist darauf
nicht eingerichtet. Ein Blockstore bringt jedoch die gleichgroßen Elemente fortlaufend ohne
Zwischenraum im umfassenden Block unter und erzielt damit eine bessere Speicherauslastung.

Spirick Tuning Referenzhandbuch Seite 35

Das Klassentemplate gct_BlockStore erwartet als Parameter t_itemBlock eine Blockklasse mit
Elementblock-Schnittstelle, z. B. gct_VarItemBlock <ct_Chn16Block> oder ct_PageBlock. Sie dient dem
Blockstore als Basisklasse. Der zweite Templateparameter t_charBlock ist eine Blockklasse mit
Zeichenblock-Schnittstelle, z. B. gct_CharBlock <ct_Chn16Block, char>. Sie wird in der Methode FreeUnused
als temporärer Zwischenspeicher verwendet.

Basisklassen
t_itemBlock (siehe Abschnitt ‘Elementblock’)

Templatedeklaration
template <class t_itemBlock, class t_charBlock>
 class gct_BlockStore: public t_itemBlock
 {
 public:
 typedef t_itemBlock::t_Size t_Size;
 typedef t_itemBlock::t_Size t_Position;

 inline gct_BlockStore ();

 inline t_UInt StoreInfoSize () const;
 inline t_UInt MaxAlloc () const;

 t_Position Alloc (t_Size o_size);
 t_Position Realloc (t_Position o_pos, t_Size o_size);
 void Free (t_Position o_pos);

 inline void * AddrOf (t_Position o_pos) const;
 inline t_Position PosOf (void * pv_adr) const;

 inline t_Size SizeOf (t_Position o_pos) const;
 inline t_Size RoundedSizeOf (t_Position o_pos) const;

 inline bool CanFreeAll () const;
 inline void FreeAll ();

 void SetSortedFree (bool b);
 void SetPageSize (t_Size o_size);
 inline t_Position LastIdx () const;
 inline bool HasFree () const;
 void FreeUnused ();
 };

Größen- und Positionstyp eines Blockstores sind gleich dem Größentyp der übergebenen Blockklasse. Als
Positionszeiger dienen Indizes. Es wird nicht das Byte-Offset eines inneren Blocks verwendet, sondern
seine fortlaufende Nummer. Der Positionswert Null ist wie bei allen anderen Stores per Definition
ungültig. Die Positionswerte eines Blockstores beginnen also mit 1, 2, 3 usw.

Ein Blockstore stellt sicher, daß Positionszeiger stets auf dieselben Elemente verweisen. Die
Speicheradressen sind jedoch nur eingeschränkt gültig. Beim Vergrößern oder Verkleinern des
umfassenden Blocks wird dieser u. U. an eine andere Stelle im Speicher verschoben. Dabei ändern sich
die physischen Adressen der Elemente im Blockstore. Die Adressen (die mit AddrOf ermittelt werden) sind
nur solange gültig, wie der Store nicht mit Alloc, Realloc oder Free verändert wurde. Wurde als Parameter
t_itemBlock jedoch ct_PageBlock angegeben, bleiben die Speicheradressen der Elemente im Blockstore
erhalten.

Wird ein Element freigegeben, kann der Blockstore nicht die dahinterliegenden Elemente verschieben,
denn damit würden sich ihre Positionszeiger ändern. Ein Blockstore muß also ähnlich wie ein
dynamischer Store eine Liste der Freielemente verwalten. Dafür existieren zwei Strategien.

Spirick Tuning Referenzhandbuch Seite 36

Die erste ist auf eine maximale Geschwindigkeit ausgerichtet. Beim Freigeben eines Elements wird nur
geprüft, ob es sich am physischen Ende befindet. In diesem Fall wird der umfassende Block verkleinert.
Befindet sich das Element 'mittendrin', wird es der Freiliste ohne weitere Prüfung zugeordnet. Diese
Stategie ist sehr schnell. Die Wahrscheinlichkeit, daß am Ende des umfassenden Blocks etwas
freigegeben werden kann und sich dieser verkleinert, ist jedoch gering.

Die zweite Strategie ist auf eine gute Speichernutzung ausgerichtet und arbeitet mit einer sortierten
Freiliste. Wird am Ende des umfassenden Blocks ein Element freigegeben, kann mit Hilfe der Sortierung
leicht festgestellt werden, ob sich unmittelbar davor weitere freie Elemente befinden und der
umfassende Block um mehrere Einheiten verkürzt werden kann. Befindet sich das Element 'mittendrin',
wird es in aufsteigender Reihenfolge in die Freiliste einsortiert. Die Sortierung der Freiliste ermöglicht es,
beim Anfordern eines neuen Elements das freie mit dem kleinsten Index zu verwenden. Damit verdichtet
sich die Auslastung am physischen Anfang des umfassenden Blocks, und es steigt die
Wahrscheinlichkeit, daß am Ende etwas freigegeben werden kann.

Die beiden Strategien führen zu einer unterschiedlichen Implementierung der Blockstoremethode Free.
Wegen des größeren Rechenzeitaufwandes der zweiten Stategie wird standardmäßig die erste
verwendet. Die Methode SetSortedFree steuert ein Umschalten auf die zweite Strategie. Beim Verwenden
der ersten Strategie besteht die Möglichkeit, von Zeit zu Zeit mit der Methode FreeUnused die Freiliste zu
sortieren und Freielemente am physischen Ende des umfassenden Blocks zu entfernen.

Die Methode SizeOf wird vom Template gct_BlockStore nicht unterstützt. Neben der allgemeinen
Storeschnittstelle enthält es noch die folgenden Methoden:

Zusätzliche Methoden
void SetSortedFree (bool b);

Steuert das Umschalten der Strategie zum Sortieren der Freiliste.

void SetPageSize (t_Size o_size);

Setzt die Größe der Pages, wenn als Parameter t_itemBlock die Klasse ct_PageBlock angegeben wurde.

t_Position LastIdx () const;

Liefert den größten gültigen Positionswert, unabhängig davon, ob das zugehörige Element frei oder
belegt ist. Bei einem leeren Blockstore ist der Rückgabewert gleich Null.

bool HasFree () const;

Liefert true, wenn sich mindestens ein Element in der Freiliste befindet.

void FreeUnused ();

Sortiert die Freiliste aufsteigend und löscht Freielemente am physischen Ende des umfassenden Blocks.

1.5.2 Blockstore-Instanzen (tuning/xxx/blockstore.h)

Zur Erleichterung des Umgangs mit Blockstores werden in der Bibliothek Spirick Tuning einige
Standardinstanzen des Klassentemplates gct_BlockStore vordefiniert. Das Makro BLOCK_STORE_DCLS(Obj)
generiert ähnlich wie BLOCK_DCLS(Obj) für jede der vier Wrapperklassen eines globalen Storeobjekts je eine
Blockstoreklasse. Die Makroverwendung

BLOCK_STORE_DCLS (Any)

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

class ct_Any_BlockStore:
 public gct_BlockStore <gct_VarItemBlock <ct_Any_Block>, gct_CharBlock <ct_Any_Block, char> > { };
class ct_Any8BlockStore:

Spirick Tuning Referenzhandbuch Seite 37

 public gct_BlockStore <gct_VarItemBlock <ct_Any8Block>, gct_CharBlock <ct_Any8Block, char> > { };
class ct_Any16BlockStore:
 public gct_BlockStore <gct_VarItemBlock <ct_Any16Block>, gct_CharBlock <ct_Any16Block, char> > { };
class ct_Any32BlockStore:
 public gct_BlockStore <gct_VarItemBlock <ct_Any32Block>, gct_CharBlock <ct_Any32Block, char> > { };

Jedes Verzeichnis eines dynamischen Stores enthält eine Datei 'blockstore.h'. Darin werden mit Hilfe
des Makros BLOCK_STORE_DCLS nach obigem Muster vier Blockstoreklassen deklariert.

In der Datei 'tuning/std/blockstore.h' werden deklariert:

class ct_Std_BlockStore;
class ct_Std8BlockStore;
class ct_Std16BlockStore;
class ct_Std32BlockStore;

In der Datei 'tuning/rnd/blockstore.h' werden deklariert:

class ct_Rnd_BlockStore;
class ct_Rnd8BlockStore;
class ct_Rnd16BlockStore;
class ct_Rnd32BlockStore;

In der Datei 'tuning/chn/blockstore.h' werden deklariert:

class ct_Chn_BlockStore;
class ct_Chn8BlockStore;
class ct_Chn16BlockStore;
class ct_Chn32BlockStore;

1.5.3 Referenzzähler (tuning/refcount.hpp)

Die Bibliothek Spirick Tuning enthält die spezialisierte Referenzzählerklasse ct_RefCount. Sie wird in
Refstores und allen darauf aufbauenden Klassen eingesetzt und ist an deren Bedürfnisse angepaßt. Ein
Refstore ordnet jedem Speicherblock ein ct_RefCount-Objekt zu. Neben einem 'flachen' Referenzzähler
enthält ct_RefCount ein boolesches Attribut (das Alloc-Bit). Es besitzt den Wert true, wenn der zugehörige
Block belegt ist.

Klassendeklaration
typedef t_UInt32 t_RefCount;

class ct_RefCount
 {
public:
 inline ct_RefCount ();
 inline void Initialize ();

 inline t_RefCount GetRef () const;
 inline void IncRef ();
 inline void DecRef ();

 inline bool IsAlloc () const;
 inline void SetAlloc ();
 inline bool IsFree () const;
 inline void SetFree ();
 inline bool IsNull () const;
 };

Spirick Tuning Referenzhandbuch Seite 38

Datentypen
typedef t_UInt32 t_RefCount;

Der 'flache' Referenzzählertyp besitzt eine Breite von 32 Bits.

Methoden
ct_RefCount ();

Setzt den Referenzzähler auf Null und das Alloc-Bit auf true.

void Initialize ();

Setzt den Referenzzähler auf Null und das Alloc-Bit auf true.

t_RefCount GetRef () const;

Liefert den Wert des 'flachen' Referenzzählers.

void IncRef ();

Erhöht den Referenzzähler um Eins.

void DecRef ();

Verkleinert den Referenzzähler um Eins.

bool IsAlloc () const;

Liefert true, wenn das Alloc-Bit gesetzt ist.

void SetAlloc ();

Setzt das Alloc-Bit.

bool IsFree () const;

Liefert true, wenn das Alloc-Bit nicht gesetzt ist.

void SetFree ();

Löscht das Alloc-Bit.

bool IsNull () const;

Liefert true, wenn das Alloc-Bit nicht gesetzt und der Referenzzähler gleich Null ist.

1.5.4 Refstore (tuning/refstore.h)

Ein Refstore besitzt keine eigene Speicherverwaltung, sondern baut auf einer vorhandenen auf und
ordnet jedem Speicherblock einen Referenzzähler zu. Mit deren Hilfe können sichere Zeiger implementiert
werden. Das Klassentemplate gct_RefStore erwartet als Parameter eine Storeklasse, übernimmt von ihr
den Größen- und Positionstyp und enthält ein Objekt der Storeklasse.

Templatedeklaration
template <class t_store>
 class gct_RefStore
 {
 public:
 typedef t_store::t_Size t_Size;
 typedef t_store::t_Position t_Position;

 void Swap (gct_RefStore & co_swap);

Spirick Tuning Referenzhandbuch Seite 39

 inline t_UInt StoreInfoSize () const;
 inline t_UInt MaxAlloc () const;

 t_Position Alloc (t_Size o_size);
 t_Position Realloc (t_Position o_pos, t_Size o_size);
 inline void Free (t_Position o_pos);

 inline void * AddrOf (t_Position o_pos) const;
 inline t_Position PosOf (void * pv_adr) const;

 inline t_Size SizeOf (t_Position o_pos) const;
 inline t_Size RoundedSizeOf (t_Position o_pos) const;

 inline bool CanFreeAll () const;
 inline void FreeAll ();

 inline void IncRef (t_Position o_pos);
 inline void DecRef (t_Position o_pos);
 inline t_RefCount GetRef (t_Position o_pos) const;
 inline bool IsAlloc (t_Position o_pos) const;
 inline bool IsFree (t_Position o_pos) const;

 inline t_store * GetStore ();
 };

Wird von einem Refstore Speicher angefordert, gibt er die Anforderung an den darunterliegenden Store
weiter, plaziert am Anfang des bereitgestellten Speicherblocks ein ct_RefCount-Objekt und initialisiert es.
Der 'flache' Referenzzähler erhält den Wert Null, und das Alloc-Bit wird auf true gesetzt. Auf den
Referenzzähler und den dahinterliegenden Nutzerbereich wird mit Hilfe desselben Positionszeigers
zugegriffen. Die Methode AddrOf der allgemeinen Storeschnittstelle liefert die Adresse des
Nutzerbereichs. Zur Manipulation des Referenzzählers dienen die zusätzlichen Methoden IncRef und
DecRef.

Wird mit der Methode Free ein Speicherblock an den Refstore zurückgegeben, löscht er das Alloc-Bit im
zugehörigen ct_RefCount-Objekt. Ist zusätzlich der Wert des Referenzzählers gleich Null, wird der
Speicherblock im darunter liegenden Store freigegeben. Andernfalls bleibt der Speicher weiter genutzt,
und der Positionszeiger behält seine Gültigkeit. Der Versuch, mit AddrOf auf den Nutzerbereich
zuzugreifen, führt zu einer ASSERT-Meldung. Mit den Methoden IncRef und DecRef kann jedoch der
Referenzzähler weiterhin geändert werden. Erreicht er den Wert Null, gibt der Refstore den
Speicherblock im darunter liegenden Store frei, und der Positionszeiger verliert seine Gültigkeit.

Die Methode FreeAll wird vom Template gct_RefStore nicht unterstützt. Neben der allgemeinen
Storeschnittstelle enthält es noch die folgenden Methoden:

Zusätzliche Methoden
void IncRef (t_Position o_pos);

Erhöht den zum Positionszeiger o_pos gehörenden Referenzzähler. o_pos muß eine gültige Position sein.

void DecRef (t_Position o_pos);

Verkleinert den zum Positionszeiger o_pos gehörenden Referenzzähler. o_pos muß eine gültige Position
sein.

t_RefCount GetRef (t_Position o_pos) const;

Liefert den Wert des zum Positionszeiger o_pos gehörenden Referenzzählers. o_pos muß eine gültige
Position sein.

bool IsAlloc (t_Position o_pos) const;

Liefert true, wenn der zum Positionszeiger o_pos gehörende Speicherbereich im Refstore genutzt ist und
mit AddrOf auf den Nutzerbereich zugegriffen werden kann. o_pos muß eine gültige Position sein.

Spirick Tuning Referenzhandbuch Seite 40

bool IsFree (t_Position o_pos) const;

Diese Methode ist die logische Negation von IsAlloc. o_pos muß eine gültige Position sein.

t_store * GetStore ();

Liefert einen Zeiger auf das enthaltene Storeobjekt.

1.5.5 Refstore-Instanzen (tuning/xxx/refstore.h)

Zur Erleichterung des Umgangs mit Refstores werden in der Bibliothek Spirick Tuning einige
Standardinstanzen des Klassentemplates gct_RefStore vordefiniert. Das Makro REF_STORE_DCLS(Obj)
generiert ähnlich wie BLOCK_DCLS(Obj) für jede der vier Wrapperklassen eines globalen Storeobjekts je eine
Refstoreklasse. Die Makroverwendung

REF_STORE_DCLS (Any)

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

class ct_Any_RefStore:
 public gct_RefStore <ct_Any_Store> { };
class ct_Any8RefStore:
 public gct_RefStore <ct_Any8Store> { };
class ct_Any16RefStore:
 public gct_RefStore <ct_Any16Store> { };
class ct_Any32RefStore:
 public gct_RefStore <ct_Any32Store> { };

Jedes Verzeichnis eines dynamischen Stores enthält eine Datei 'refstore.h'. Darin werden mit Hilfe des
Makros REF_STORE_DCLS nach obigem Muster vier Refstoreklassen deklariert.

In der Datei 'tuning/std/refstore.h' werden deklariert:

class ct_Std_RefStore;
class ct_Std8RefStore;
class ct_Std16RefStore;
class ct_Std32RefStore;

In der Datei 'tuning/rnd/refstore.h' werden deklariert:

class ct_Rnd_RefStore;
class ct_Rnd8RefStore;
class ct_Rnd16RefStore;
class ct_Rnd32RefStore;

In der Datei 'tuning/chn/refstore.h' werden deklariert:

class ct_Chn_RefStore;
class ct_Chn8RefStore;
class ct_Chn16RefStore;
class ct_Chn32RefStore;

1.5.6 Blockrefstore-Instanzen (tuning/xxx/blockrefstore.h)

Ein Blockrefstore entsteht, wenn dem Klassentemplate gct_RefStore als Parameter t_store eine
Blockstoreklasse übergeben wird. Er nutzt die Speicherverwaltung des Blockstores, der gleichgroße
Speicherblöcke in einem umfassenden Block unterbringt. Zusätzlich ordnet der Blockrefstore jedem
Speicherblock einen Referenzzähler zu.

Spirick Tuning Referenzhandbuch Seite 41

Zur Erleichterung des Umgangs mit Blockrefstores werden in der Bibliothek Spirick Tuning einige
Standardinstanzen vordefiniert. Das Makro BLOCKREF_STORE_DCLS(Obj) generiert ähnlich wie BLOCK_DCLS(Obj)
für jede der vier Wrapperklassen eines globalen Storeobjekts je eine Blockrefstoreklasse. Die
Makroverwendung

BLOCKREF_STORE_DCLS (Any)

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

class ct_Any_BlockRefStore:
 public gct_RefStore <ct_Any_BlockStore> { };
class ct_Any8BlockRefStore:
 public gct_RefStore <ct_Any8BlockStore> { };
class ct_Any16BlockRefStore:
 public gct_RefStore <ct_Any16BlockStore> { };
class ct_Any32BlockRefStore:
 public gct_RefStore <ct_Any32BlockStore> { };

Jedes Verzeichnis eines dynamischen Stores enthält eine Datei 'blockrefstore.h'. Darin werden mit Hilfe
des Makros BLOCKREF_STORE_DCLS nach obigem Muster vier Blockrefstoreklassen deklariert.

In der Datei 'tuning/std/blockrefstore.h' werden deklariert:

class ct_Std_BlockRefStore;
class ct_Std8BlockRefStore;
class ct_Std16BlockRefStore;
class ct_Std32BlockRefStore;

In der Datei 'tuning/rnd/blockrefstore.h' werden deklariert:

class ct_Rnd_BlockRefStore;
class ct_Rnd8BlockRefStore;
class ct_Rnd16BlockRefStore;
class ct_Rnd32BlockRefStore;

In der Datei 'tuning/chn/blockrefstore.h' werden deklariert:

class ct_Chn_BlockRefStore;
class ct_Chn8BlockRefStore;
class ct_Chn16BlockRefStore;
class ct_Chn32BlockRefStore;

1.5.7 Packstore (tuning/packstore.hpp)

Der Packstore ist darauf optimiert, mehrere zusammengehörige Speicheranforderungen ohne unnötigen
Zwischenraum und Rechenzeitaufwand hintereinander im Speicher abzulegen. Er arbeitet nach einem
sehr einfachen Verfahren. Die angeforderten Speicherblöcke werden nacheinander in gleichgroßen Pages
untergebracht. Ist der Restspeicher in der aktuellen Page zu klein für eine neue Anforderung, wird eine
neue Page allokiert. Ab einer konfigurierbaren Minimalgröße erhält eine Speicheranforderung eine eigene
Page.

Die Freigabe einzelner Speicherblöcke ist nicht vorgesehen. Der Packstore kann jedoch mit der Methode
FreeAll den gesamten Speicher freigeben. Wird ein Packstore-Objekt mehrmals mit FreeAll geleert und
wiederverwendet, kann man mit dem Parameter b_keepPage verhindern, daß die erste Page freigegeben
und anschließend neu allokiert wird.

Neben den gleichgroßen Pages mit Nutzdaten verwaltet der Packstore noch einen Speicherblock
variabler Größe, der Zeiger auf die Pages enthält. Für beide Speichertypen können unterschiedliche
Storeobjekte verwendet werden. Da ganze Pages relativ selten angefordert und freigegeben werden,

Spirick Tuning Referenzhandbuch Seite 42

erfolgt der Zugriff auf die Storeobjekte nicht als Templateparameter, sondern über virtuelle Methoden.
Die Implementierung besteht aus der Basisklasse ct_PackStoreBase mit rein virtuellen Methoden und der
abgeleiteten Klasse ct_PackStore mit dem Zugriff auf zwei Default-Storeobjekte.

Klassendeklaration
class ct_PackStoreBase
 {
public:
 typedef t_UInt t_Size;
 typedef void * t_Position;

protected:
 virtual void * ReallocPtr (void * pv_mem, t_Size o_size) = 0;
 virtual t_UInt MaxDataAlloc () const = 0;
 virtual void * AllocData (t_Size o_size) = 0;
 virtual void FreeData (void * pv_mem) = 0;

public:
 ct_PackStoreBase ();
 virtual ~ct_PackStoreBase () { }
 void Swap (ct_PackStoreBase & co_swap);

 static inline t_UInt StoreInfoSize ();
 inline t_UInt MaxAlloc ();

 t_Position Alloc (t_Size o_size);
 t_Position Realloc (t_Position o_pos, t_Size o_size);
 void Free (t_Position o_pos);

 static inline void * AddrOf (t_Position o_pos);
 static inline t_Position PosOf (void * pv_adr);

 t_Size SizeOf (t_Position o_pos);
 t_Size RoundedSizeOf (t_Position o_pos);

 bool CanFreeAll ();
 void FreeAll (bool b_keepPage = false);

 bool Init (t_Size o_align, t_Size o_pageSize,
 t_Size o_ownPageSize = 0);

Zusätzliche Methoden
bool Init (t_Size o_align, t_Size o_pageSize, t_Size o_ownPageSize = 0);

Initialisiert den Packstore, solange noch kein Speicher angefordert wurde. Mit dem Parameter o_align
wird das Alignment gesteuert. Zulässige Werte sind 1, 2, 4, 8 und 16. Der Parameter o_pageSize gibt die
Größe einer Page an. Mit dem optionalen Parameter o_ownPageSize wird festgelegt, ab welcher Größe eine
Speicheranforderung eine eigene Page erhält. Ist der Parameter nicht angegeben, wird ein Viertel der
Pagesize verwendet. Der Rückgabewert ist false, wenn im Packstore bereits Speicher angefordert wurde
oder ein Parameter einen ungültigen Wert enthält.

Klassendeklaration
class ct_PackStore: public ct_PackStoreBase
 {
protected:
 virtual void * ReallocPtr (void * pv_mem, t_Size o_size);
 virtual t_UInt MaxDataAlloc () const;
 virtual void * AllocData (t_Size o_size);
 virtual void FreeData (void * pv_mem);

public:

Spirick Tuning Referenzhandbuch Seite 43

 ~ct_PackStore ();
 };

Methoden
void * ReallocPtr (void * pv_mem, t_Size o_size);

Reallokiert Speicher für den Zeigerblock.

t_UInt MaxDataAlloc () const;

Liefert die maximale Anzahl Bytes für Nutzdaten.

void * AllocData (t_Size o_size);

Allokiert eine Page für Nutzdaten.

void FreeData (void * pv_mem);

Gibt eine Page für Nutzdaten frei.

~ct_PackStore ();

Im Destruktor der abgeleiteten Klasse muß der angeforderte Speicher frei gegeben werden, denn im
Destruktor der Basisklasse besteht kein Zugriff auf die virtuellen Methoden mehr.

1.5.8 Packstore 2 (tuning/packstore.h)

Das Klassentemplate gct_PackStore enthält eine alternative Implementierung des Packstore-Konzepts
(siehe voriger Abschnitt). Das Template verwaltet keinen separaten Speicherblock, der Zeiger auf die
Pages enthält. Stattdessen werden diese Zeiger in den Pages selbst untergebracht (Single Linked List).
Der Parameter t_staticStore ist eine Storeklasse, in der alle Methoden static deklariert sind. Diese
Bedingung erfüllen die Wrapperklassen für globale Storeobjekte, z. B. ct_Rnd_Store. Jedes Verzeichnis
eines dynamischen Stores enthält eine Datei 'packstore.h' mit einer vordefinierten Templateinstanz.

Die Freigabe einzelner Speicherblöcke ist nicht vorgesehen. Der Packstore kann jedoch mit der Methode
FreeAll den gesamten Speicher freigeben. Wird ein Packstore-Objekt mehrmals mit FreeAll geleert und
wiederverwendet, kann man mit dem Parameter b_keepPage verhindern, daß die erste Page freigegeben
und anschließend neu allokiert wird.

Templatedeklaration
template <class t_staticStore>
 class gct_PackStore
 {
 public:
 typedef t_staticStore t_StaticStore;
 typedef t_StaticStore::t_Size t_Size;
 typedef void * t_Position;

 gct_PackStore ();
 ~gct_PackStore ();
 inline void Swap (gct_PackStore & co_swap);

 static inline t_UInt StoreInfoSize ();
 static inline t_UInt MaxAlloc ();

 t_Position Alloc (t_Size o_size);
 inline t_Position Realloc (t_Position o_pos, t_Size o_size);
 inline void Free (t_Position o_pos);

 static inline void * AddrOf (t_Position o_pos);

Spirick Tuning Referenzhandbuch Seite 44

 static inline t_Position PosOf (void * pv_adr);

 static inline t_Size SizeOf (t_Position o_pos);
 static inline t_Size RoundedSizeOf (t_Position o_pos);

 static inline bool CanFreeAll ();
 void FreeAll (bool b_keepPage = false);

 bool Init (unsigned u_align, unsigned u_pageExp,
 t_Size o_ownPageSize = 0);
 };

Zusätzliche Methoden
bool Init (unsigned u_align, unsigned u_pageExp, t_Size o_ownPageSize = 0);

Initialisiert den Packstore, solange noch kein Speicher angefordert wurde. Mit dem Parameter u_align
wird das Alignment gesteuert. Zulässige Werte sind 1, 2, 4, 8 und 16. Der Parameter u_pageExp (>= 7) ist
der Exponent der Pagesize (2^exp). Mit dem optionalen Parameter o_ownPageSize wird festgelegt, ab
welcher Größe eine Speicheranforderung eine eigene Page erhält. Ist der Parameter nicht angegeben,
wird ein Viertel der Pagesize verwendet. Der Rückgabewert ist false, wenn im Packstore bereits
Speicher angefordert wurde oder ein Parameter einen ungültigen Wert enthält.

Spirick Tuning Referenzhandbuch Seite 45

2 OBJEKTVERWALTUNG

2.1 Container

2.1.1 Containerschnittstelle

Die Bibliothek Spirick Tuning enthält zwei verschiedene Konzepte für die Objektverwaltung: Container
und Collections. Collections sind auf leichte Bedienbarkeit und schnelles Übersetzen ausgerichtet. Sie
sind polymorph, d. h. sie können Objekte unterschiedlicher Typen enthalten. Bei Containern steht die
Laufzeiteffizienz im Vordergrund. Sie sind homogen, d. h. sie enthalten nur Objekte eines bestimmten
Typs. Die Anpassung an den konkreten Objekttyp ermöglicht zahlreiche Optimierungen.

Ähnlich wie Storeklassen besitzen auch Containerklassen keine gemeinsame Basisklasse mit virtuellen
Methoden, aber eine einheitliche Schnittstelle. Diese vereinfacht die Handhabung und ermöglicht das
leichte Austauschen eines Containers gegen einen anderen.

Templatedeklaration
template <class t_obj>
 class gct_AnyContainer
 {
 public:
 typedef t_UInt t_Length;
 typedef void * t_Position;
 typedef t_obj t_Object;

 gct_AnyContainer ();
 gct_AnyContainer (const gct_AnyContainer & co);
 ~gct_AnyContainer ();
 gct_AnyContainer & operator = (const gct_AnyContainer & co_asgn);
 void Swap (gct_AnyContainer & co_swap);

 bool IsEmpty () const;
 t_Length GetLen () const;

 t_Position First () const;
 t_Position Last () const;
 t_Position Next (t_Position o_pos) const;
 t_Position Prev (t_Position o_pos) const;
 t_Position Nth (t_Length u_idx) const;

 t_Object * GetObj (t_Position o_pos) const;
 t_Position AddObj (const t_Object * po_obj = 0);
 t_Position AddObjBefore (t_Position o_pos, const t_Object * po_obj = 0);
 t_Position AddObjAfter (t_Position o_pos, const t_Object * po_obj = 0);

 void AppendObj (const t_Object * po_obj = 0, t_Length o_count = 1);
 void TruncateObj (t_Length o_count = 1);

 t_Position DelObj (t_Position o_pos);
 void DelAll ();
 t_Position FreeObj (t_Position o_pos);
 void FreeAll ();
 };

Spirick Tuning Referenzhandbuch Seite 46

Container werden als Klassentemplates mit mindestens einem Parameter, dem Typ der enthaltenen
Objekte t_obj, deklariert. Dieser muß weder von einer abstrakten Basisklasse erben noch einen Gleich-
oder Vergleichsoperator besitzen. Es muß nur sichergestellt sein, daß der normale und der
Kopierkonstruktor verfügbar sind und korrekt arbeiten. Wegen der Implementierung als Template und der
geringen Anforderungen an die enthaltenen Objekte sind Container universell einsetzbar und sehr
effizient. Es können beliebige Klassen und auch primitive Datentypen wie int oder float in Containern
untergebracht werden.

Collections verwalten Zeiger auf außerhalb erzeugte Objekte. Container enthalten dagegen ihre Objekte
physisch und können den Speicher wesentlich besser auslasten. Container stellen den Speicherplatz der
Objekte zur Verfügung und rufen deren Konstruktoren und Destruktoren auf. Ein neues Objekt wird mit
seinem normalen Konstruktor erzeugt. Ein vorhandenes Objekt kann nicht übernommen, sondern nur mit
seinem Kopierkonstruktor in den Container kopiert werden. Beim Löschen eines Objektes wird dessen
Destruktor aufgerufen.

Bei vielen Operationen, die Veränderungen am Container bewirken, müssen die enthaltenen Objekte
umorganisiert werden. Dafür existieren im wesentlichen zwei Strategien: Bei der ersten Strategie werden
die Objekte mit Kopierkonstruktoren und Gleichoperatoren kopiert. Dabei kann ein erheblicher Overhead
entstehen. Die Verwendung der C++11 Move-Semantik bringt nur wenig Abhilfe. Bei der zweiten
Strategie werden die Objekte mit memcpy und memmove in einen anderen Speicherbereich kopiert. Dieses
Verfahren kommt bei allen Containern in der Bibliothek Spirick Tuning zur Anwendung. Es muß darauf
geachtet werden, daß die enthaltenen Objekte mit memcpy kopierbar sind. In realen C++-Programmen
existieren nur sehr wenige Klassen, die diese Eigenschaft nicht besitzen. Z. B. dürfen die Klassen
ct_ThMutex und ct_ThSemaphore nicht mit memcpy kopiert werden.

Die Implementierung der Container ist der Speicherverwaltung sehr nahe. Container besitzen zahlreiche
Ähnlichkeiten mit Stores. Auch Container verwalten ihre Einträge mit Hilfe von Positionszeigern.
Während ein Store nur 'rohe' Speicherblöcke verwaltet, verarbeitet ein Container auch noch den Inhalt,
d. h. die darin enthaltenen Objekte. Der Storemethode Alloc entspricht etwa die Containermethode
AddObj. Sie erzeugt im Container ein neues Objekt und liefert seine Position. Mit AddrOf erhält man eine
untypisierte Adresse eines Speicherblocks. Die Containermethode GetObj liefert dagen einen typisierten
Zeiger auf den konkreten Objekttyp. Mit Free wird ein Speicherblock freigegeben. Die Containermethode
DelObj ruft vorher noch den Destruktor des enthaltenen Objekts auf.

Im Gegensatz zu Stores sichern nicht alle Container die Gültigkeit der Positionszeiger. Die Positionszeiger
eines Containers müssen nur dann ihre Gültigkeit behalten, wenn die Objekte von außen referenziert
werden. Werden die Elemente jedoch ausschließlich mit First und Next durchlaufen, können die
Positionszeiger zugunsten einer besseren Speicherauslastung nach Veränderungen des Containers ihre
Gültigkeit verlieren. Das ist in der Bibliothek Spirick Tuning bei allen Arraytypen der Fall. Bei
Listencontainern behalten jedoch die Positionszeiger auch nach einer Änderung ihre Gültigkeit und
verweisen auf dasselbe Objekt.

Datentypen
typedef t_UInt t_Length;

Der geschachtelte Typ t_Length beschreibt die maximale Anzahl der Objekte. Neben t_UInt werden auch
t_UInt8, t_UInt16 und t_UInt32 verwendet. Ist z. B. t_Length auf t_UInt8 definiert, kann der Container nur
maximal 255 Einträge verwalten. Jeder Container enthält ein Attribut des Typs t_Length. Ein angepaßter
Längentyp verringert somit den Speicherbedarf des Containerobjekts.

typedef void * t_Position;

Container verwalten ähnlich wie Stores ihre Objekte mit Hilfe von Positionszeigern. Neben void * werden
auch t_UInt, t_UInt8, t_UInt16 und t_UInt32 verwendet. Bei allen Positionstypen ist der Wert Null per
Definition ungültig.

Spirick Tuning Referenzhandbuch Seite 47

typedef t_obj t_Object;

Der geschachtelte Datentyp t_Object entspricht dem Parameter t_obj des Containertemplates. Die
Typdefinition ermöglicht Anwendern des Containers und abgeleiteten Klassen den Zugriff auf den
Objekttyp.

Konstruktoren, Destruktor, Gleichoperator, Swap
gct_AnyContainer ();

Der normale Konstruktor erzeugt einen leeren Container.

gct_AnyContainer (const gct_AnyContainer & co_init);

Der Kopierkonstruktor übernimmt alle Elemente eines vorhandenen Containers mit Hilfe des
Kopierkonstruktors der enthaltenen Objekte.

~gct_AnyContainer ();

Im Destruktor eines Containers wird die Methode DelAll aufgerufen. Vor der Speicherfreigabe werden
alle enthaltenen Objekte mit ihrem Destruktor zerstört.

gct_AnyContainer & operator = (const gct_AnyContainer & co_asgn);

Der Gleichoperator übernimmt ähnlich wie der Kopierkonstruktor alle Elemente eines vorhandenen
Containers mit Hilfe des Kopierkonstruktors der enthaltenen Objekte.

void Swap (gct_AnyContainer & co_swap);

Tauscht den Inhalt der beiden Objekte aus.

Anzahl der Objekte
bool IsEmpty () const;

Liefert true, wenn der Container keine Objekte enthält.

t_Length GetLen () const;

Liefert die Anzahl der enthaltenen Objekte.

Iterieren des Containers
t_Position First () const;

Liefert die Position des ersten Objekts oder Null bei einem leeren Container.

t_Position Last () const;

Liefert die Position des letzten Objekts oder Null bei einem leeren Container.

t_Position Next (t_Position o_pos) const;

Liefert die Position des nächsten Objekts oder Null, wenn o_pos die Position des letzten Elements war.
o_pos muß eine gültige Position sein.

t_Position Prev (t_Position o_pos) const;

Liefert die Position des vorigen Objekts oder Null, wenn o_pos die Position des ersten Elements war. o_pos
muß eine gültige Position sein.

t_Position Nth (t_Length u_idx) const;

Liefert die Position des Objekts mit der fortlaufenden Nummer u_idx. Der Index muß zwischen Eins und
GetLen liegen.

Spirick Tuning Referenzhandbuch Seite 48

Zugriff auf Objekte
t_Object * GetObj (t_Position o_pos) const;

Liefert einen typisierten Zeiger auf das durch o_pos identifizierte Objekt. o_pos muß eine gültige Position
sein.

Einfügen von Objekten
t_Position AddObj (const t_Object * po_obj = 0);

Fügt ein neues Objekt in den Container ein und liefert dessen Position. Die Stelle des Einfügens ist
abhängig von der Implementierung. Ist der Zeiger po_obj gleich Null, wird das Objekt mit seinem
normalen Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor mit dem Parameter * po_obj
aufgerufen.

t_Position AddObjBefore (t_Position o_pos, const t_Object * po_obj = 0);

Fügt ein neues Objekt vor einem anderen ein und liefert dessen Position. Ist o_pos gleich Null, wird das
neue Objekt nach dem letzten plaziert, d. h. es ist das neue letzte Element. Ist der Zeiger po_obj gleich
Null, wird das Objekt mit seinem normalen Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor
mit dem Parameter * po_obj aufgerufen.

t_Position AddObjAfter (t_Position o_pos, const t_Object * po_obj = 0);

Fügt ein neues Objekt nach einem anderen ein und liefert dessen Position. Ist o_pos gleich Null, wird das
neue Objekt vor dem ersten plaziert, d. h. es ist das neue erste Element. Ist der Zeiger po_obj gleich Null,
wird das Objekt mit seinem normalen Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor mit
dem Parameter * po_obj aufgerufen.

Anfügen und Löschen mehrerer Objekte
void AppendObj (const t_Object * po_obj = 0, t_Length o_count = 1);

Fügt am Ende des Containers o_count Objekte an. Ist der Zeiger po_obj gleich Null, werden die Objekte
mit ihrem normalen Konstruktor erzeugt. Andernfalls werden ihre Kopierkonstruktoren mit dem
Parameter * po_obj aufgerufen.

void TruncateObj (t_Length o_count = 1);

Löscht am Ende des Containers o_count Objekte. Es werden die Destruktoren der Objekte aufgerufen und
der zugehörige Verwaltungsspeicher freigegeben.

Rückgabewert von Löschmethoden
Löschmethoden liefern stets die Position des Nachfolgers des gelöschten Eintrags. Diese Technik
ermöglicht das gleichzeitige Iterieren und Verändern eines Containers. Der Rückgabewert wird mit der
Methode Next vor dem Löschen berechnet. Wurde der der Reihenfolge nach letzte Eintrag gelöscht
(Methode Last), ist der Rückgabewert gleich Null.

Löschen von Objekten
t_Position DelObj (t_Position o_pos);

Ruft den Destruktor eines Objekts auf und gibt den zugehörigen Speicher frei. o_pos muß eine gültige
Position sein. Die Methode liefert Next (o_pos), also die Position des nächsten Objekts oder Null, wenn
das letzte Objekt gelöscht wurde.

void DelAll ();

Ruft die Destruktoren aller Objekte auf und gibt deren Speicher frei. DelAll ist i. a. schneller als das
mehrfache Löschen mit DelObj.

Spirick Tuning Referenzhandbuch Seite 49

t_Position FreeObj (t_Position o_pos);

Gibt den Speicher eines Objekts frei, ohne dessen Destruktor aufzurufen. FreeObj ist für primitive
Datentypen wie int oder float geeignet und schneller als DelObj. o_pos muß eine gültige Position sein. Die
Methode liefert Next (o_pos), also die Position des nächsten Objekts oder Null, wenn das letzte Objekt
gelöscht wurde.

void FreeAll ();

Gibt den gesamten von Objekten belegten Speicher frei, ohne deren Destruktoren aufzurufen.

Exception Handling
Bei der Arbeit mit Containern können in Konstruktoren und Destruktoren enthaltener Objekte Exceptions
auftreten. Container enthalten minimale eigene Exceptionhandler. Diese versetzen nach dem Erkennen
einer Exception das Containerobjekt in einen konsistenten Zustand und reichen die Exception
unverändert an den übergeordneten Exceptionhandler, der sich im Programmcode des
Containeranwenders befindet, weiter. Im einzelnen gelten folgende Regeln:

Tritt beim Einfügen eines einzelnen Objektes (AddObj) in dessen Konstruktor eine Exception auf, verbleibt
der Container in seinem vorigen Zustand (Objekt wird nicht eingefügt).
Tritt beim Löschen eines einzelnen Objektes (DelObj) in dessen Destruktor eine Exception auf, wird das
Objekt trotzdem aus dem Container entfernt.
Tritt beim Einfügen mehrerer Objekte mit der Methode AppendObj im Konstruktor eines Objektes eine
Exception auf, wird das Einfügen abgebrochen. Die korrekt eingefügten Objekte verbleiben im Container.
Tritt beim Löschen mehrerer Objekte mit der Methode TruncateObj in einem Destruktor eine Exception
auf, wird das Löschen abgebrochen. Die korrekt gelöschten Objekte bleiben gelöscht. Die noch nicht
gelöschten Objekte verbleiben im Container. Das Objekt, das die Exception ausgelöst hat, gilt als
gelöscht.
Tritt beim Löschen mehrerer Objekte mit der Methode DelAll in einem Destruktor eine Exception auf,
wird das Löschen fortgesetzt. Anschließend befindet sich der Container im leeren Zustand. Dieses
Verhalten ist für die folgenden vier Methoden relevant:
Tritt in einer der Methoden Konstruktor, Kopierkonstruktor, Destruktor oder Gleichoperator im
Konstruktor oder Destruktor eines Objektes eine Exception auf, wird der Container in den leeren Zustand
versetzt. Dabei werden die Destruktoren aller enthaltenen Objekte aufgerufen und sämtlicher
Verwaltungsspeicher freigegeben.

2.1.2 Operationen mit Containern

Objekte einfügen, kopieren und löschen
Das folgende Programmbeispiel demonstriert das Einfügen, Kopieren und Löschen von Objekten in einem
Container. Die Klasse ct_Int wird im Abschnitt ‘Beispielprogramme’ beschrieben.

ct_Int co_int = 1;
ct_Int * pco_int;
gct_AnyContainer <ct_Int> co_container;
gct_AnyContainer <ct_Int>::t_Position o_pos;

// Neues Objekt im Container mit Defaultkonstruktor erzeugen
o_pos = co_container. AddObj ();

// Auf das Objekt zugreifen und es und initialisieren
pco_int = co_container. GetObj (o_pos);
(* pco_int) = 2;

// Vorhandenes Objekt in den Container kopieren
o_pos = co_container. AddObj (& co_int);

// Objekt aus dem Container nehmen und löschen

Spirick Tuning Referenzhandbuch Seite 50

co_container. DelObj (o_pos);

Vorwärts iterieren
Zum Iterieren eines Containers in aufsteigender Reihenfolge der Einträge wird eine for-Schleife nach
folgendem Muster empfohlen:

gct_AnyContainer <float> co_container;
gct_AnyContainer <float>::t_Position o_pos;

for (o_pos = co_container. First ();
 o_pos != 0;
 o_pos = co_container. Next (o_pos))
 {
 float * pf = co_container. GetObj (o_pos);
 // ...
 }

Rückwärts iterieren
Zum Iterieren eines Containers in absteigender Reihenfolge der Einträge wird eine for-Schleife nach
folgendem Muster empfohlen:

gct_AnyContainer <float> co_container;
gct_AnyContainer <float>::t_Position o_pos;

for (o_pos = co_container. Last ();
 o_pos != 0;
 o_pos = co_container. Prev (o_pos))
 {
 float * pf = co_container. GetObj (o_pos);
 // ...
 }

Iterieren und verändern
Zum Iterieren und Verändern eines Containers wird eine for-Schleife nach folgendem Muster empfohlen:

gct_AnyContainer <float> co_container;
gct_AnyContainer <float>::t_Position o_pos;

for (o_pos = co_container. First ();
 o_pos != 0;
 o_pos = /* delete entry ? */ ?
 co_container. DelObj (o_pos) :
 co_container. Next (o_pos))
 {
 float * pf = co_container. GetObj (o_pos);
 // ...
 }

Statt der for-Schleife kann auch eine while-Schleife nach folgendem Muster verwendet werden:

gct_AnyContainer <float> co_container;
gct_AnyContainer <float>::t_Position o_pos;

o_pos = co_container. First ();

while (o_pos != 0)
 {
 float * pf = co_container. GetObj (o_pos);
 // ...
 if (/* delete entry ? */)

Spirick Tuning Referenzhandbuch Seite 51

 o_pos = co_container. DelObj (o_pos);
 else
 o_pos = co_container. Next (o_pos);
 }

2.1.3 Erweiterter Container (tuning/extcont.h)

Das Klassentemplate gct_ExtContainer vereinfacht den Umgang mit der Containerschnittstelle. Z. B.
müssen zum Ermitteln des fünften Objekts normalerweise zwei Methoden aufgerufen werden.

gct_AnyContainer <float> co_floats;
// ...
float f = co_floats. GetObj (co_floats. Nth (5));

Das Klassentemplate gct_ExtContainer besitzt für diesen Fall die Methode GetNthObj. Die Containerklasse,
die als Templateparameter übergeben wird, dient dem erweiterten Container als Basisklasse. Zur
Illustration der Implementierung des erweiterten Containers wird die Definition einer Methode angefügt.

Basisklasse
gct_AnyContainer (siehe Abschnitt ‘Containerschnittstelle’)

Templatedeklaration
template <class t_container>
 class gct_ExtContainer: public t_container
 {
 public:
 inline t_Object * GetFirstObj () const;
 inline t_Object * GetLastObj () const;
 inline t_Object * GetNextObj (t_Position o_pos) const;
 inline t_Object * GetPrevObj (t_Position o_pos) const;
 inline t_Object * GetNthObj (t_Length u_idx) const;

 inline t_Position AddObjBeforeFirst (const t_Object * po_obj = 0);
 inline t_Position AddObjAfterLast (const t_Object * po_obj = 0);
 inline t_Position AddObjBeforeNth (t_Length u_idx, const t_Object * po_obj = 0);
 inline t_Position AddObjAfterNth (t_Length u_idx, const t_Object * po_obj = 0);

 t_Object * GetNewObj (const t_Object * po_obj = 0);
 t_Object * GetNewFirstObj (const t_Object * po_obj = 0);
 t_Object * GetNewLastObj (const t_Object * po_obj = 0);
 t_Object * GetNewObjBefore (t_Position o_pos, const t_Object * po_obj = 0);
 t_Object * GetNewObjAfter (t_Position o_pos, const t_Object * po_obj = 0);
 t_Object * GetNewObjBeforeNth (t_Length u_idx, const t_Object * po_obj = 0);
 t_Object * GetNewObjAfterNth (t_Length u_idx, const t_Object * po_obj = 0);

 inline t_Position DelFirstObj ();
 inline t_Position DelLastObj ();
 inline t_Position DelNextObj (t_Position o_pos);
 inline t_Position DelPrevObj (t_Position o_pos);
 inline t_Position DelNthObj (t_Length u_idx);

 inline t_Position FreeFirstObj ();
 inline t_Position FreeLastObj ();
 inline t_Position FreeNextObj (t_Position o_pos);
 inline t_Position FreePrevObj (t_Position o_pos);
 inline t_Position FreeNthObj (t_Length u_idx);
 };

template <class t_container>

Spirick Tuning Referenzhandbuch Seite 52

 inline gct_ExtContainer <t_container>:: t_Object *
 gct_ExtContainer <t_container>:: GetNthObj (t_Length u_idx) const
 {
 return GetObj (Nth (u_idx));
 }

Zugriff auf Objekte
t_Object * GetFirstObj () const;

Liefert einen typisierten Zeiger auf das erste Objekt. Der Container muß mindestens ein Objekt
enthalten.

t_Object * GetLastObj () const;

Liefert einen typisierten Zeiger auf das letzte Objekt. Der Container muß mindestens ein Objekt
enthalten.

t_Object * GetNextObj (t_Position o_pos) const;

Liefert einen typisierten Zeiger auf das folgende Objekt. o_pos und Next (o_pos) müssen gültige Positionen
sein.

t_Object * GetPrevObj (t_Position o_pos) const;

Liefert einen typisierten Zeiger auf das vorhergehende Objekt. o_pos und Prev (o_pos) müssen gültige
Positionen sein.

t_Object * GetNthObj (t_Length u_idx) const;

Liefert einen typisierten Zeiger auf das n-te Objekt. Der Index u_idx muß zwischen Eins und GetLen liegen.

Einfügen von Objekten
t_Position AddObjBeforeFirst (const t_Object * po_obj = 0);

Fügt ein neues Objekt in den Container ein und liefert dessen Position. Das Objekt wird vor dem ersten
plaziert, d. h. es ist das neue erste Element. Ist der Zeiger po_obj gleich Null, wird das Objekt mit seinem
normalen Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor mit dem Parameter * po_obj
aufgerufen.

t_Position AddObjAfterLast (const t_Object * po_obj = 0);

Fügt ein neues Objekt in den Container ein und liefert dessen Position. Das Objekt wird nach dem letzten
plaziert, d. h. es ist das neue letzte Element. Ist der Zeiger po_obj gleich Null, wird das Objekt mit seinem
normalen Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor mit dem Parameter * po_obj
aufgerufen.

t_Position AddObjBeforeNth (t_Length u_idx, const t_Object * po_obj = 0);

Fügt ein neues Objekt vor einem anderen ein und liefert dessen Position. Der Index u_idx muß zwischen
Eins und GetLen liegen. Ist der Zeiger po_obj gleich Null, wird das Objekt mit seinem normalen Konstruktor
erzeugt. Andernfalls wird sein Kopierkonstruktor mit dem Parameter * po_obj aufgerufen.

t_Position AddObjAfterNth (t_Length u_idx, const t_Object * po_obj = 0);

Fügt ein neues Objekt nach einem anderen ein und liefert dessen Position. Der Index u_idx muß zwischen
Eins und GetLen liegen. Ist der Zeiger po_obj gleich Null, wird das Objekt mit seinem normalen Konstruktor
erzeugt. Andernfalls wird sein Kopierkonstruktor mit dem Parameter * po_obj aufgerufen.

Spirick Tuning Referenzhandbuch Seite 53

Zugriff auf neue Objekte
t_Object * GetNewObj (const t_Object * po_obj = 0);

Fügt ein neues Objekt in den Container ein und liefert einen Zeiger darauf. Die Stelle des Einfügens ist
abhängig von der Implementierung. Ist der Zeiger po_obj gleich Null, wird das Objekt mit seinem
normalen Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor mit dem Parameter * po_obj
aufgerufen.

t_Object * GetNewFirstObj (const t_Object * po_obj = 0);

Fügt ein neues Objekt in den Container ein und liefert einen Zeiger darauf. Das Objekt wird vor dem
ersten plaziert, d. h. es ist das neue erste Element. Ist der Zeiger po_obj gleich Null, wird das Objekt mit
seinem normalen Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor mit dem Parameter *
po_obj aufgerufen.

t_Object * GetNewLastObj (const t_Object * po_obj = 0);

Fügt ein neues Objekt in den Container ein und liefert einen Zeiger darauf. Das Objekt wird nach dem
letzten plaziert, d. h. es ist das neue letzte Element. Ist der Zeiger po_obj gleich Null, wird das Objekt mit
seinem normalen Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor mit dem Parameter *
po_obj aufgerufen.

t_Object * GetNewObjBefore (t_Position o_pos, const t_Object * po_obj = 0);

Fügt ein neues Objekt vor einem anderen ein und liefert einen Zeiger darauf. Ist o_pos gleich Null, wird
das neue Objekt nach dem letzten plaziert, d. h. es ist das neue letzte Element. Ist der Zeiger po_obj
gleich Null, wird das Objekt mit seinem normalen Konstruktor erzeugt. Andernfalls wird sein
Kopierkonstruktor mit dem Parameter * po_obj aufgerufen.

t_Object * GetNewObjAfter (t_Position o_pos, const t_Object * po_obj = 0);

Fügt ein neues Objekt nach einem anderen ein und liefert einen Zeiger darauf. Ist o_pos gleich Null, wird
das neue Objekt vor dem ersten plaziert, d. h. es ist das neue erste Element. Ist der Zeiger po_obj gleich
Null, wird das Objekt mit seinem normalen Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor
mit dem Parameter * po_obj aufgerufen.

t_Object * GetNewObjBeforeNth (t_Length u_idx, const t_Object * po_obj = 0);

Fügt ein neues Objekt vor einem anderen ein und liefert einen Zeiger darauf. Der Index u_idx muß
zwischen Eins und GetLen liegen. Ist der Zeiger po_obj gleich Null, wird das Objekt mit seinem normalen
Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor mit dem Parameter * po_obj aufgerufen.

t_Object * GetNewObjAfterNth (t_Length u_idx, const t_Object * po_obj = 0);

Fügt ein neues Objekt nach einem anderen ein und liefert einen Zeiger darauf. Der Index u_idx muß
zwischen Eins und GetLen liegen. Ist der Zeiger po_obj gleich Null, wird das Objekt mit seinem normalen
Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor mit dem Parameter * po_obj aufgerufen.

Rückgabewert von Löschmethoden
Löschmethoden liefern stets die Position des Nachfolgers des gelöschten Eintrags. Diese Technik
ermöglicht das gleichzeitige Iterieren und Verändern eines Containers. Der Rückgabewert wird mit der
Methode Next vor dem Löschen berechnet. Wurde der der Reihenfolge nach letzte Eintrag gelöscht
(Methode Last), ist der Rückgabewert gleich Null.

Löschen von Objekten
t_Position DelFirstObj ();

Entfernt das erste Objekt aus dem Container und ruft dessen Destruktor auf. Der Container muß
mindestens ein Objekt enthalten. Die Methode liefert die Position des neuen ersten Eintrags oder Null,
wenn kein Eintrag mehr vorhanden ist.

Spirick Tuning Referenzhandbuch Seite 54

t_Position DelLastObj ();

Entfernt das letzte Objekt aus dem Container und ruft dessen Destruktor auf. Der Container muß
mindestens ein Objekt enthalten. Die Methode liefert Null, da der letzte Eintrag gelöscht wurde.

t_Position DelNextObj (t_Position o_pos);

Entfernt das Objekt Next (o_pos) aus dem Container und ruft dessen Destruktor auf. o_pos und Next
(o_pos) müssen gültige Positionen sein. Die Methode liefert die Position des Nachfolgers des gelöschten
Eintrags oder Null, wenn der letzte Eintrag gelöscht wurde.

t_Position DelPrevObj (t_Position o_pos);

Entfernt das Objekt Prev (o_pos) aus dem Container und ruft dessen Destruktor auf. o_pos und Prev
(o_pos) müssen gültige Positionen sein. Die Methode liefert o_pos zurück, denn o_pos ist der Nachfolger
des gelöschten Eintrags.

t_Position DelNthObj (t_Length u_idx);

Entfernt das Objekt Nth (u_idx) aus dem Container und ruft dessen Destruktor auf. Der Index u_idx muß
zwischen Eins und GetLen liegen. Die Methode liefert die Position des Nachfolgers des gelöschten
Eintrags oder Null, wenn der letzte Eintrag gelöscht wurde.

t_Position FreeFirstObj ();

Entfernt das erste Objekt aus dem Container, ohne dessen Destruktor aufzurufen. Der Container muß
mindestens ein Objekt enthalten. Die Methode liefert die Position des neuen ersten Eintrags oder Null,
wenn kein Eintrag mehr vorhanden ist.

t_Position FreeLastObj ();

Entfernt das letzte Objekt aus dem Container, ohne dessen Destruktor aufzurufen. Der Container muß
mindestens ein Objekt enthalten. Die Methode liefert Null, da der letzte Eintrag gelöscht wurde.

t_Position FreeNextObj (t_Position o_pos);

Entfernt das Objekt Next (o_pos) aus dem Container, ohne dessen Destruktor aufzurufen. o_pos und Next
(o_pos) müssen gültige Positionen sein. Die Methode liefert die Position des Nachfolgers des gelöschten
Eintrags oder Null, wenn der letzte Eintrag gelöscht wurde.

t_Position FreePrevObj (t_Position o_pos);

Entfernt das Objekt Prev (o_pos) aus dem Container, ohne dessen Destruktor aufzurufen. o_pos und Prev
(o_pos) müssen gültige Positionen sein. Die Methode liefert o_pos zurück, denn o_pos ist der Nachfolger
des gelöschten Eintrags.

t_Position FreeNthObj (t_Length u_idx);

Entfernt das Objekt Nth (u_idx) aus dem Container, ohne dessen Destruktor aufzurufen. Der Index u_idx
muß zwischen Eins und GetLen liegen. Die Methode liefert die Position des Nachfolgers des gelöschten
Eintrags oder Null, wenn der letzte Eintrag gelöscht wurde.

2.2 Arrays und Listen

2.2.1 Array (tuning/array.h)

Der Arraycontainer ist auf eine bestmögliche Speicherauslastung optimiert. Er bringt seine Objekte ohne
Zwischenraum in einem Block unter. Beim Einfügen oder Löschen von Objekten werden alle
dahinterliegenden im Speicher verschoben, und es ändern sich deren Positionszeiger. In einem
Arraycontainer ist der direkte Zugriff auf das n-te Element möglich. Die Methode AddObj fügt das neue
Objekt am Ende des Containers an.

Spirick Tuning Referenzhandbuch Seite 55

Das Klassentemplate gct_Array besitzt zwei Parameter. t_obj ist der Objekttyp. t_block ist eine
Blockklasse mit Elementblock-Schnittstelle, und dient dem Arraycontainer als Basisklasse. Bei einem
Arraycontainer läßt sich die Elementgröße relativ einfach zur Übersetzungszeit ermitteln. Das
Klassentemplate gct_FixItemArray vereinfacht die Handhabung, indem es die passenden Parameter für
das Template gct_FixItemBlock bereitstellt.

Basisklassen
gct_...ItemBlock (siehe Abschnitt ‘Elementblock’)

Templatedeklaration
template <class t_obj, class t_block>
 class gct_Array: public t_block
 {
 public:
 typedef t_block::t_Size t_Length;
 typedef t_block::t_Size t_Position;
 typedef t_obj t_Object;

 inline gct_Array ();
 inline gct_Array (const gct_Array & co_init);
 inline ~gct_Array ();
 inline gct_Array & operator = (const gct_Array & co_asgn);

 inline bool IsEmpty () const;
 inline t_Length GetMaxLen () const;
 inline t_Length GetLen () const;

 inline t_Position First () const;
 inline t_Position Last () const;
 inline t_Position Next (t_Position o_pos) const;
 inline t_Position Prev (t_Position o_pos) const;
 inline t_Position Nth (t_Length u_idx) const;

 inline t_Object * GetObj (t_Position o_pos) const;
 inline t_Position AddObj (const t_Object * po_obj = 0);
 inline t_Position AddObjBefore (t_Position o_pos, const t_Object * po_obj = 0);
 t_Position AddObjAfter (t_Position o_pos, const t_Object * po_obj = 0);

 void AppendObj (const t_Object * po_obj = 0, t_Length o_count = 1);
 void TruncateObj (t_Length o_count = 1);

 t_Position DelObj (t_Position o_pos);
 void DelAll ();
 inline t_Position FreeObj (t_Position o_pos);
 inline void FreeAll ();

 inline void SetPageSize (t_Size o_size);
 };

Zusätzliche Methoden
t_Length GetMaxLen () const;

Liefert die maximale Anzahl der Objekte im Container.

void SetPageSize (t_Size o_size);

Setzt die Größe der Pages, wenn als Parameter t_block die Klasse ct_PageBlock angegeben wurde.

Spirick Tuning Referenzhandbuch Seite 56

Templatedeklaration
template <class t_obj, class t_block>
 class gct_FixItemArray:
 public gct_Array <t_obj, gct_FixItemBlock <t_block, sizeof (gct_ArrayNode <t_obj>)> >
 {
 };

2.2.2 Array-Instanzen (tuning/xxx/array.h)

Zur Erleichterung des Umgangs mit Arraycontainern werden in der Bibliothek Spirick Tuning einige
Standardinstanzen des Klassentemplates gct_Array vordefiniert. Das Makro ARRAY_DCLS(Obj) generiert
ähnlich wie BLOCK_DCLS(Obj) für jede der vier Wrapperklassen eines globalen Storeobjekts je ein
Arraytemplate, das nur noch den Parameter t_obj besitzt. Die Makroverwendung

ARRAY_DCLS (Any)

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t_obj> class gct_Any_Array:
 public gct_ExtContainer <gct_FixItemArray <t_obj, ct_Any_Block> > { };
template <class t_obj> class gct_Any8Array:
 public gct_ExtContainer <gct_FixItemArray <t_obj, ct_Any8Block> > { };
template <class t_obj> class gct_Any16Array:
 public gct_ExtContainer <gct_FixItemArray <t_obj, ct_Any16Block> > { };
template <class t_obj> class gct_Any32Array:
 public gct_ExtContainer <gct_FixItemArray <t_obj, ct_Any32Block> > { };

Jedes Verzeichnis eines dynamischen Stores enthält eine Datei 'array.h'. Darin werden mit Hilfe des
Makros ARRAY_DCLS nach obigem Muster vier Arraytemplates deklariert.

In der Datei 'tuning/std/array.h' werden deklariert:

template <class t_obj> class gct_Std_Array;
template <class t_obj> class gct_Std8Array;
template <class t_obj> class gct_Std16Array;
template <class t_obj> class gct_Std32Array;

In der Datei 'tuning/rnd/array.h' werden deklariert:

template <class t_obj> class gct_Rnd_Array;
template <class t_obj> class gct_Rnd8Array;
template <class t_obj> class gct_Rnd16Array;
template <class t_obj> class gct_Rnd32Array;

In der Datei 'tuning/chn/array.h' werden deklariert:

template <class t_obj> class gct_Chn_Array;
template <class t_obj> class gct_Chn8Array;
template <class t_obj> class gct_Chn16Array;
template <class t_obj> class gct_Chn32Array;

2.2.3 Liste (tuning/dlist.h)

Der Listencontainer verwaltet seine Objekte in Knoten (Nodes). Der Speicher für jedes einzelne Node
wird von einem Store angefordert. Nodes und die darin enthaltenen Objekte werden mit Hilfe der
Positionszeiger des Stores identifiziert. Deshalb behalten die Positionszeiger nach Änderungen des

Spirick Tuning Referenzhandbuch Seite 57

Containers ihre Gültigkeit. Ob zusätzlich auch die Speicheradressen ihre Gültigkeit behalten, hängt vom
verwendeten Store ab.

Der Listencontainer ist als eine doppelt verkettete Liste (double linked list) implementiert. Jedes Node
enthält neben dem Objekt je einen Positionszeiger auf Vorgänger und Nachfolger. Die doppelte
Verkettung ermöglicht das Durchlaufen des Containers in beiden Richtungen und beschleunigt das
Einfügen und Löschen von Elementen. Zum Ermitteln des n-ten Elements müssen jedoch die Nodes
einzeln abgezählt werden.

Das Klassentemplate gct_DList besitzt zwei Parameter. t_obj ist der Objekttyp. t_store ist eine
Storeklasse. Der Listencontainer enthält ein Attribut dieses Typs und fordert von ihm den Speicher für
seine Nodes an. Die zusätzliche Methode GetStore ermöglicht den Zugriff auf das Storeobjekt. Die
Methode AddObj fügt das neue Objekt am Ende des Containers an.

Templatedeklaration
template <class t_obj, class t_store>
 class gct_DList
 {
 public:
 typedef t_store::t_Size t_Length;
 typedef t_store::t_Position t_Position;
 typedef t_obj t_Object;

 inline gct_DList ();
 inline gct_DList (const gct_DList & co_init);
 inline ~gct_DList ();
 inline gct_DList & operator = (const gct_DList & co_asgn);
 void Swap (gct_DList & co_swap);

 inline bool IsEmpty () const;
 inline t_Length GetLen () const;

 inline t_Position First () const;
 inline t_Position Last () const;
 inline t_Position Next (t_Position o_pos) const;
 inline t_Position Prev (t_Position o_pos) const;
 t_Position Nth (t_Length u_idx) const;

 inline t_Object * GetObj (t_Position o_pos) const;
 inline t_Position AddObj (const t_Object * po_obj = 0);
 inline t_Position AddObjBefore (t_Position o_pos, const t_Object * po_obj = 0);
 t_Position AddObjAfter (t_Position o_pos, const t_Object * po_obj = 0);

 void AppendObj (const t_Object * po_obj = 0, t_Length o_count = 1);
 void TruncateObj (t_Length o_count = 1);

 t_Position DelObj (t_Position o_pos);
 void DelAll ();
 t_Position FreeObj (t_Position o_pos);
 void FreeAll ();

 inline t_store * GetStore ();
 };

2.2.4 Listen-Instanzen (tuning/xxx/dlist.h)

Zur Erleichterung des Umgangs mit Listencontainern werden in der Bibliothek Spirick Tuning einige
Standardinstanzen des Klassentemplates gct_DList vordefiniert. Das Makro DLIST_DCLS(Obj) generiert
ähnlich wie BLOCK_DCLS(Obj) für jede der vier Wrapperklassen eines globalen Storeobjekts je ein
Listentemplate, das nur noch den Parameter t_obj besitzt. Diese Listen fordern den Speicher jedes Nodes

Spirick Tuning Referenzhandbuch Seite 58

einzeln von einem globalen Storeobjekt an. Die Speicheradressen der enthaltenen Objekte behalten nach
Änderungen des Containers ihre Gültigkeit. Die Makroverwendung

DLIST_DCLS (Any)

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t_obj> class gct_Any_DList:
 public gct_ExtContainer <gct_DList <t_obj, ct_Any_Store> > { };
template <class t_obj> class gct_Any8DList:
 public gct_ExtContainer <gct_DList <t_obj, ct_Any8Store> > { };
template <class t_obj> class gct_Any16DList:
 public gct_ExtContainer <gct_DList <t_obj, ct_Any16Store> > { };
template <class t_obj> class gct_Any32DList:
 public gct_ExtContainer <gct_DList <t_obj, ct_Any32Store> > { };

Jedes Verzeichnis eines dynamischen Stores enthält eine Datei 'dlist.h'. Darin werden mit Hilfe des
Makros DLIST_DCLS nach obigem Muster vier Listentemplates deklariert.

In der Datei 'tuning/std/dlist.h' werden deklariert:

template <class t_obj> class gct_Std_DList;
template <class t_obj> class gct_Std8DList;
template <class t_obj> class gct_Std16DList;
template <class t_obj> class gct_Std32DList;

In der Datei 'tuning/rnd/dlist.h' werden deklariert:

template <class t_obj> class gct_Rnd_DList;
template <class t_obj> class gct_Rnd8DList;
template <class t_obj> class gct_Rnd16DList;
template <class t_obj> class gct_Rnd32DList;

In der Datei 'tuning/chn/dlist.h' werden deklariert:

template <class t_obj> class gct_Chn_DList;
template <class t_obj> class gct_Chn8DList;
template <class t_obj> class gct_Chn16DList;
template <class t_obj> class gct_Chn32DList;

2.3 Sortierte Container

2.3.1 Sortiertes Array (tuning/sortarr.h)

Der sortierte Arraycontainer ist analog zum einfachen Arraycontainer implementiert. Auch er bringt seine
Objekte ohne Zwischenraum in einem Block unter. Beim Einfügen oder Löschen von Objekten werden
alle dahinterliegenden im Speicher verschoben, und es ändern sich deren Positionszeiger. Der direkte
Zugriff auf das n-te Element ist möglich.

Das Klassentemplate gct_SortedArray besitzt wie gct_Array zwei Parameter. t_obj ist der Objekttyp.
t_block ist eine Blockklasse mit Elementblock-Schnittstelle, und dient dem Arraycontainer als
Basisklasse. Bei einem Arraycontainer läßt sich die Elementgröße relativ einfach zur Übersetzungszeit
ermitteln. Das Klassentemplate gct_FixItemSortedArray vereinfacht die Handhabung, indem es die
passenden Parameter für das Template gct_FixItemBlock bereitstellt.

Im Gegensatz zum einfachen Arraycontainer ordnet gct_SortedArray die Elemente in aufsteigender
Reihenfolge an. Dazu muß der Objekttyp t_obj den Vergleichsoperator 'operator <' bereitstellen.
Positioniertes Einfügen mit den Methoden AddObjBefore und AddObjAfter ist nur möglich, wenn das Objekt

Spirick Tuning Referenzhandbuch Seite 59

an dieser Stelle einzuordnen ist. Beim sortierten Arraycontainer werden neue Objekte normalerweise mit
der Methode AddObj eingefügt. Diese sortiert das Objekt automatisch an der richtigen Stelle ein. Mehrere
gleiche Objekte werden hintereinander angeordnet. Ihre Reihenfolge entspricht der des Einfügens. Das
zuletzt eingefügte Objekt steht in der Folge der gleichen Objekte an letzter Stelle.

Besitzt der Objekttyp t_obj zusätzlich den Gleichheitsoperator 'operator ==', kann der Container um die
Vergleichscontainerschnittstelle erweitert werden. Im sortierten Arraycontainer wird zum Suchen der
Objekte eine binäre Suche verwendet, die wesentlich effizienter als die lineare Suche im einfachen
Arraycontainer ist.

Basisklassen
gct_...ItemBlock (siehe Abschnitt ‘Elementblock’)

Templatedeklaration
template <class t_obj, class t_block >
 class gct_SortedArray: public t_block
 {
 public:
 typedef t_block::t_Size t_Length;
 typedef t_block::t_Size t_Position;
 typedef t_obj t_Object;

 inline gct_SortedArray ();
 inline gct_SortedArray (const gct_SortedArray & co_init);
 inline ~gct_SortedArray ();
 inline gct_SortedArray & operator = (const gct_SortedArray & co_asgn);

 inline bool IsEmpty () const;
 inline t_Length GetMaxLen () const;
 inline t_Length GetLen () const;

 inline t_Position First () const;
 inline t_Position Last () const;
 inline t_Position Next (t_Position o_pos) const;
 inline t_Position Prev (t_Position o_pos) const;
 inline t_Position Nth (t_Length u_idx) const;

 inline t_Object * GetObj (t_Position o_pos) const;

 t_Position AddObj (const t_Object * po_obj);
 inline t_Position AddObjBefore (t_Position o_pos, const t_Object * po_obj);
 t_Position AddObjAfter (t_Position o_pos, const t_Object * po_obj);

 void AppendObj (const t_Object * po_obj = 0, t_Length o_count = 1);
 void TruncateObj (t_Length o_count = 1);

 t_Position DelObj (t_Position o_pos);
 void DelAll ();

 inline t_Position FreeObj (t_Position o_pos);
 inline void FreeAll ();

 inline void SetPageSize (t_Size o_size);
 t_Position Before (const t_Object * po_obj) const;
 };

Zusätzliche Methoden
t_Length GetMaxLen () const;

Liefert die maximale Anzahl der Objekte im Container.

Spirick Tuning Referenzhandbuch Seite 60

void SetPageSize (t_Size o_size);

Setzt die Größe der Pages, wenn als Parameter t_block die Klasse ct_PageBlock angegeben wurde.

t_Position Before (const t_Object * po_obj) const;

Liefert die Position des letzten Objektes, das kleiner oder gleich * po_obj ist. Liefert Null, wenn das
Objekt kleiner als das erste Objekt im Container ist. Liefert Last (), wenn das Objekt nicht kleiner als das
letzte Objekt im Container ist.

Templatedeklaration
template <class t_obj, class t_block>
 class gct_FixItemSortedArray:
 public gct_SortedArray <t_obj, gct_FixItemBlock <t_block, sizeof (gct_SortedArrayNode <t_obj>)> >
 {
 };

2.3.2 Sortierte Array-Instanzen (tuning/xxx/sortedarray.h)

Zur Erleichterung des Umgangs mit sortierten Arraycontainern werden in der Bibliothek Spirick Tuning
einige Standardinstanzen des Klassentemplates gct_SortedArray vordefiniert. Das Makro
SORTEDARRAY_DCLS(Obj) generiert ähnlich wie BLOCK_DCLS(Obj) für jede der vier Wrapperklassen eines
globalen Storeobjekts je ein Arraytemplate, das nur noch den Parameter t_obj besitzt. Die
Makroverwendung

SORTEDARRAY_DCLS (Any)

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t_obj> class gct_Any_SortedArray:
 public gct_ExtContainer <gct_FixItemSortedArray <t_obj, ct_Any_Block> > { };
template <class t_obj> class gct_Any8SortedArray:
 public gct_ExtContainer <gct_FixItemSortedArray <t_obj, ct_Any8Block> > { };
template <class t_obj> class gct_Any16SortedArray:
 public gct_ExtContainer <gct_FixItemSortedArray <t_obj, ct_Any16Block> > { };
template <class t_obj> class gct_Any32SortedArray:
 public gct_ExtContainer <gct_FixItemSortedArray <t_obj, ct_Any32Block> > { };

Jedes Verzeichnis eines dynamischen Stores enthält eine Datei 'sortedarray.h'. Darin werden mit Hilfe
des Makros SORTEDARRAY_DCLS nach obigem Muster vier Arraytemplates deklariert.

In der Datei 'tuning/std/sortedarray.h' werden deklariert:

template <class t_obj> class gct_Std_SortedArray;
template <class t_obj> class gct_Std8SortedArray;
template <class t_obj> class gct_Std16SortedArray;
template <class t_obj> class gct_Std32SortedArray;

In der Datei 'tuning/rnd/sortedarray.h' werden deklariert:

template <class t_obj> class gct_Rnd_SortedArray;
template <class t_obj> class gct_Rnd8SortedArray;
template <class t_obj> class gct_Rnd16SortedArray;
template <class t_obj> class gct_Rnd32SortedArray;

In der Datei 'tuning/chn/sortedarray.h' werden deklariert:

template <class t_obj> class gct_Chn_SortedArray;
template <class t_obj> class gct_Chn8SortedArray;

Spirick Tuning Referenzhandbuch Seite 61

template <class t_obj> class gct_Chn16SortedArray;
template <class t_obj> class gct_Chn32SortedArray;

2.3.3 Hashtabelle (tuning/hashtable.h)

Hashtabellen sind spezialisierte Container mit einer Zugriffsbeschleunigung. Sie können sehr
unterschiedlich implementiert werden. Das Grundprinzip besteht darin, Objekte gleichen Hashwertes
(modulo der Hashtabellengröße) in einer lokalen Liste anzuordnen. Gelingt es, die Hashwerte breit zu
streuen, und verwendet man eine Primzahl für die Hashtabellengröße, werden die lokalen Listen im
Durchschnitt sehr klein. Bei der Suche nach einem Objekt kann mit seinem Hashwert direkt auf die
lokale Liste zugegriffen werden, wo es sehr schnell zu finden ist.

Hashtabellen sind sortierte Container, da die enthaltenen Objekte in der Reihenfolge ihrer Hashwerte
angeordnet werden. Ein positioniertes Einfügen mit AddObjBefore oder AddObjAfter ist nicht möglich. Neue
Objekte können nur mit der Methode AddObj eingefügt werden.

Das Klassentemplate gct_HashTable ist als geschachtelter Arraycontainer implementiert. Es besitzt zwei
Parameter. t_obj ist der Objekttyp. Er muß eine Methode GetHash bereitstellen, die einen ganzzahligen
numerischen Wert liefert. t_block ist eine Blockklasse mit einfacher Schnittstelle, z. B. ct_Chn16Block. Sie
dient der Implementierung des umfassenden und der lokalen Arraycontainer.

Solange der Container noch keine Elemente enthält, kann mit der Methode SetHashSize die Größe der
Hashtabelle eingestellt werden. Die zusammen mit dem Klassentemplate definierten Konstanten
u_HashPrime1 bis u_HashPrime16 sind Primzahlen, die den umfassenden Arraycontainer auf eine Größe knapp
unterhalb einer Zweierpotenz bringen. Als Standardeinstellung dient die Konstante u_HashPrime4.

Besitzt der Objekttyp t_obj zusätzlich den Gleichheitsoperator 'operator ==', kann der Container um die
Vergleichscontainerschnittstelle erweitert werden. In der Hashtabelle werden Objekte mit Hilfe ihres
Hashwertes gesucht. Die Suche ist wesentlich effizienter als im einfachen Arraycontainer oder im
Listencontainer.

Templatedeklaration
const unsigned u_HashPrime1 = 1013;
const unsigned u_HashPrime2 = 2039;
const unsigned u_HashPrime4 = 4079;
const unsigned u_HashPrime8 = 8179;
const unsigned u_HashPrime16 = 16369;

template <class t_obj, class t_block>
 class gct_HashTable
 {
 public:
 typedef t_block::t_Size t_Length;
 typedef gct_HashTablePosition <t_block> t_Position;
 typedef t_obj t_Object;

 gct_HashTable ();
 void Swap (gct_HashTable & co_swap);

 inline bool IsEmpty () const;
 inline t_Length GetLen () const;

 t_Position First () const;
 t_Position Last () const;
 t_Position Next (t_Position o_pos) const;
 t_Position Prev (t_Position o_pos) const;
 t_Position Nth (t_Length u_idx) const;

 inline t_Object * GetObj (t_Position o_pos) const;

Spirick Tuning Referenzhandbuch Seite 62

 t_Position AddObj (const t_Object * po_obj);
 t_Position AddObjBefore (t_Position o_pos, const t_Object * po_obj);
 t_Position AddObjAfter (t_Position o_pos, const t_Object * po_obj);

 void AppendObj (const t_Object * po_obj = 0, t_Length o_count = 1);
 void TruncateObj (t_Length o_count = 1);

 t_Position DelObj (t_Position o_pos);
 void DelAll ();

 t_Position FreeObj (t_Position o_pos);
 void FreeAll ();

 void SetHashSize (t_Length o_size);
 inline t_Length GetHashSize () const;
 };

Konstanten
const unsigned cu_HashPrime1 = 1013;
const unsigned cu_HashPrime2 = 2039;
const unsigned cu_HashPrime4 = 4079;
const unsigned cu_HashPrime8 = 8179;
const unsigned cu_HashPrime16 = 16369;

Diese Konstanten sind empfohlene Vorgabewerte für die Größe der Hashtabelle. Es sind Primzahlen, die
den umfassenden Arraycontainer auf eine Größe knapp unterhalb einer Zweierpotenz bringen.

Zusätzliche Methoden
void SetHashSize (t_Length o_size);

Setzt bei einem leeren Container die Größe der Hashtabelle. Alle Objekte werden mit ihrem Hashwert
modulo der Größe der Hashtabelle einsortiert.

t_Length GetHashSize () const;

Liefert die Größe der Hashtabelle.

2.3.4 Hashtabellen-Instanzen (tuning/xxx/hashtable.h)

Zur Erleichterung des Umgangs mit Hashtabellencontainern werden in der Bibliothek Spirick Tuning einige
Standardinstanzen des Klassentemplates gct_HashTable vordefiniert. Das Makro HASHTABLE_DCLS(Obj)
generiert ähnlich wie BLOCK_DCLS(Obj) für jede der vier Wrapperklassen eines globalen Storeobjekts je ein
Hashtabellentemplate, das nur noch den Parameter t_obj besitzt. Die Makroverwendung

HASHTABLE_DCLS (Any)

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t_obj> class gct_Any_HashTable:
 public gct_ExtContainer <gct_HashTable <t_obj, ct_Any_Block> > { };
template <class t_obj> class gct_Any8HashTable:
 public gct_ExtContainer <gct_HashTable <t_obj, ct_Any8Block> > { };
template <class t_obj> class gct_Any16HashTable:
 public gct_ExtContainer <gct_HashTable <t_obj, ct_Any16Block> > { };
template <class t_obj> class gct_Any32HashTable:
 public gct_ExtContainer <gct_HashTable <t_obj, ct_Any32Block> > { };

Jedes Verzeichnis eines dynamischen Stores enthält eine Datei 'hashtable.h'. Darin werden mit Hilfe des
Makros HASHTABLE_DCLS nach obigem Muster vier Hashtabellentemplates deklariert.

Spirick Tuning Referenzhandbuch Seite 63

In der Datei 'tuning/std/hashtable.h' werden deklariert:

template <class t_obj> class gct_Std_HashTable;
template <class t_obj> class gct_Std8HashTable;
template <class t_obj> class gct_Std16HashTable;
template <class t_obj> class gct_Std32HashTable;

In der Datei 'tuning/rnd/hashtable.h' werden deklariert:

template <class t_obj> class gct_Rnd_HashTable;
template <class t_obj> class gct_Rnd8HashTable;
template <class t_obj> class gct_Rnd16HashTable;
template <class t_obj> class gct_Rnd32HashTable;

In der Datei 'tuning/chn/hashtable.h' werden deklariert:

template <class t_obj> class gct_Chn_HashTable;
template <class t_obj> class gct_Chn8HashTable;
template <class t_obj> class gct_Chn16HashTable;
template <class t_obj> class gct_Chn32HashTable;

2.4 Block- und Reflisten

2.4.1 Blockliste

Übergibt man dem Containertemplate gct_DList als Parameter t_store eine Blockstoreklasse, erhält man
eine Blockliste. Sie verbindet die Bedieneigenschaften einer doppelt verketteten Liste mit der
Speichereffizienz eines Blockstores. Dieser bringt die Nodes kompakt in einem zusammenhängenden
Speicherblock unter. Bei der Verwendung von Blocklisten ist zu beachten, daß sich die Speicheradressen
der Objekte ändern können.

In Blocklisten ist der Längentyp gleich dem Positionstyp. Durch Auswahl eines geeigneten Positionstyps
kann der Speicherbedarf reduziert werden. Ist z. B. von Instanzen eines bestimmten Listentyps bekannt,
daß die enthaltenen Objekte zusammengenommen nicht mehr als 64 KB Speicher benötigen, kann ein
16-Bit-Blockstore genutzt werden. Gegenüber einem 32-Bit-Blockstore verringert sich der Speicherbedarf
jedes Nodes um vier Bytes, denn Nodes enthalten je zwei Positionszeiger.

2.4.2 Blocklisten-Instanzen (tuning/xxx/blockdlist.h)

Zur Erleichterung des Umgangs mit Blocklisten werden in der Bibliothek Spirick Tuning einige
Standardinstanzen vordefiniert. Das Makro BLOCK_DLIST_DCLS(Obj) generiert ähnlich wie BLOCK_DCLS(Obj) für
jede der vier Wrapperklassen eines globalen Storeobjekts je ein Blocklistentemplate, das nur noch den
Parameter t_obj besitzt. Die Makroverwendung

BLOCK_DLIST_DCLS (Any)

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t_obj> class gct_Any_BlockDList:
 public gct_ExtContainer <gct_DList <t_obj, ct_Any_BlockStore> > { };
template <class t_obj> class gct_Any8BlockDList:
 public gct_ExtContainer <gct_DList <t_obj, ct_Any8BlockStore> > { };
template <class t_obj> class gct_Any16BlockDList:
 public gct_ExtContainer <gct_DList <t_obj, ct_Any16BlockStore> > { };
template <class t_obj> class gct_Any32BlockDList:

Spirick Tuning Referenzhandbuch Seite 64

 public gct_ExtContainer <gct_DList <t_obj, ct_Any32BlockStore> > { };

Jedes Verzeichnis eines dynamischen Stores enthält eine Datei 'blockdlist.h'. Darin werden mit Hilfe des
Makros BLOCK_DLIST_DCLS nach obigem Muster vier Listentemplates deklariert.

In der Datei 'tuning/std/blockdlist.h' werden deklariert:

template <class t_obj> class gct_Std_BlockDList;
template <class t_obj> class gct_Std8BlockDList;
template <class t_obj> class gct_Std16BlockDList;
template <class t_obj> class gct_Std32BlockDList;

In der Datei 'tuning/rnd/blockdlist.h' werden deklariert:

template <class t_obj> class gct_Rnd_BlockDList;
template <class t_obj> class gct_Rnd8BlockDList;
template <class t_obj> class gct_Rnd16BlockDList;
template <class t_obj> class gct_Rnd32BlockDList;

In der Datei 'tuning/chn/blockdlist.h' werden deklariert:

template <class t_obj> class gct_Chn_BlockDList;
template <class t_obj> class gct_Chn8BlockDList;
template <class t_obj> class gct_Chn16BlockDList;
template <class t_obj> class gct_Chn32BlockDList;

2.4.3 Refliste (tuning/refdlist.h)

Das Containertemplate gct_DList nutzt nur die normale Storeschnittstelle des Parameters t_store.
Verwendet man einen Refstore, müßte der Anwender der Liste mit Hilfe der Methode GetStore auf die
erweiterten Storemethoden (z. B. IncRef) zugreifen. Das Template gct_RefDList vereinfacht diesen Zugriff.
Es übernimmt die Ref-Methoden des Storeobjekts in die Listenschnittstelle und besitzt dieselben
Templateparameter wie gct_DList. Die Definition der Methode IncRef demonstriert die Implementierung
des Reflistentemplates.

Basisklassen
gct_DList (siehe Abschnitt ‘Liste’)
 gct_ExtContainer (siehe Abschnitt ‘Erweiterter Container’)

Templatedeklaration
template <class t_obj, class t_store>
 class gct_RefDList:
 public gct_ExtContainer <gct_DList <t_obj, t_store> >
 {
 public:
 inline void IncRef (t_Position o_pos);
 inline void DecRef (t_Position o_pos);
 inline t_RefCount GetRef (t_Position o_pos) const;
 inline bool IsAlloc (t_Position o_pos) const;
 inline bool IsFree (t_Position o_pos) const;
 };

template <class t_obj, class t_store>
 inline void gct_RefDList <t_obj, t_store>::IncRef (t_Position o_pos)
 {
 o_Store. IncRef (o_pos);
 }

Spirick Tuning Referenzhandbuch Seite 65

In einer Refliste wird jedem einzelnen Node ein Referenzzähler zugeordnet. Dieser ermöglicht die
Implementierung von sicheren Zeigern auf Listeneinträge. Ein sicherer Zeiger erhöht den Referenzzähler
des Eintrags, auf den er verweist.

Ein Positionszeiger einer Refliste behält seine Gültigkeit, solange der Eintrag nicht (z. B. mit DelObj)
gelöscht wurde oder der Referenzzähler ungleich Null ist. Wurde das Element mit DelObj aus der Liste
entfernt, liefert IsAlloc den Wert false, und es kann nicht mehr mit GetObj auf das Objekt zugegriffen
werden. Erreicht der Referenzzähler mit DecRef den Wert Null, wird auch der zugehörige Speicher
freigegeben, und der Positionszeiger verliert seine Gültigkeit.

Methoden
void IncRef (t_Position o_pos);

Erhöht den zum Listeneintrag o_pos gehörenden Referenzzähler. o_pos muß eine gültige Position sein.

void DecRef (t_Position o_pos);

Verkleinert den zum Listeneintrag o_pos gehörenden Referenzzähler. o_pos muß eine gültige Position sein.

t_RefCount GetRef (t_Position o_pos) const;

Liefert den Wert des zum Listeneintrag o_pos gehörenden Referenzzählers. o_pos muß eine gültige
Position sein.

bool IsAlloc (t_Position o_pos) const;

Liefert true, wenn der zum Positionszeiger o_pos gehörende Listeneintrag nicht (z. B. mit DelObj) gelöscht
wurde und mit GetObj darauf zugegriffen werden kann. o_pos muß eine gültige Position sein.

bool IsFree (t_Position o_pos) const;

Diese Methode ist die logische Negation von IsAlloc. o_pos muß eine gültige Position sein.

2.4.4 Reflisten-Instanzen (tuning/xxx/refdlist.h)

Zur Erleichterung des Umgangs mit Reflisten werden in der Bibliothek Spirick Tuning einige
Standardinstanzen des Klassentemplates gct_RefDList vordefiniert. Das Makro REF_DLIST_DCLS(Obj)
generiert ähnlich wie BLOCK_DCLS(Obj) für jede der vier Wrapperklassen eines globalen Storeobjekts je ein
Listentemplate, das nur noch den Parameter t_obj besitzt. Diese Reflisten fordern den Speicher jedes
Nodes einzeln von einem globalen Storeobjekt an. Die Speicheradressen der enthaltenen Objekte
behalten nach Änderungen des Containers ihre Gültigkeit. Die Makroverwendung

REF_DLIST_DCLS (Any)

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t_obj> class gct_Any_RefDList:
 public gct_RefDList <t_obj, ct_Any_RefStore> { };
template <class t_obj> class gct_Any8RefDList:
 public gct_RefDList <t_obj, ct_Any8RefStore> { };
template <class t_obj> class gct_Any16RefDList:
 public gct_RefDList <t_obj, ct_Any16RefStore> { };
template <class t_obj> class gct_Any32RefDList:
 public gct_RefDList <t_obj, ct_Any32RefStore> { };

Jedes Verzeichnis eines dynamischen Stores enthält eine Datei 'refdlist.h'. Darin werden mit Hilfe des
Makros REF_DLIST_DCLS nach obigem Muster vier Reflistentemplates deklariert.

In der Datei 'tuning/std/refdlist.h' werden deklariert:

Spirick Tuning Referenzhandbuch Seite 66

template <class t_obj> class gct_Std_RefDList;
template <class t_obj> class gct_Std8RefDList;
template <class t_obj> class gct_Std16RefDList;
template <class t_obj> class gct_Std32RefDList;

In der Datei 'tuning/rnd/refdlist.h' werden deklariert:

template <class t_obj> class gct_Rnd_RefDList;
template <class t_obj> class gct_Rnd8RefDList;
template <class t_obj> class gct_Rnd16RefDList;
template <class t_obj> class gct_Rnd32RefDList;

In der Datei 'tuning/chn/refdlist.h' werden deklariert:

template <class t_obj> class gct_Chn_RefDList;
template <class t_obj> class gct_Chn8RefDList;
template <class t_obj> class gct_Chn16RefDList;
template <class t_obj> class gct_Chn32RefDList;

2.4.5 Blockreflisten-Instanzen (tuning/xxx/blockrefdlist.h)

Übergibt man dem Containertemplate gct_RefDList als Parameter t_store eine Blockrefstoreklasse, erhält
man eine Blockrefliste. Zur Erleichterung des Umgangs mit Blockreflisten werden in der Bibliothek Spirick
Tuning einige Standardinstanzen vordefiniert. Das Makro BLOCKREF_DLIST_DCLS(Obj) generiert ähnlich wie
BLOCK_DCLS(Obj) für jede der vier Wrapperklassen eines globalen Storeobjekts je ein
Blockreflistentemplate, das nur noch den Parameter t_obj besitzt. Die Makroverwendung

BLOCKREF_DLIST_DCLS (Any)

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t_obj> class gct_Any_BlockRefDList:
 public gct_RefDList <t_obj, ct_Any_BlockRefStore> { };
template <class t_obj> class gct_Any8BlockRefDList:
 public gct_RefDList <t_obj, ct_Any8BlockRefStore> { };
template <class t_obj> class gct_Any16BlockRefDList:
 public gct_RefDList <t_obj, ct_Any16BlockRefStore> { };
template <class t_obj> class gct_Any32BlockRefDList:
 public gct_RefDList <t_obj, ct_Any32BlockRefStore> { };

Jedes Verzeichnis eines dynamischen Stores enthält eine Datei 'blockrefdlist.h'. Darin werden mit Hilfe
des Makros BLOCKREF_DLIST_DCLS nach obigem Muster vier Listentemplates deklariert.

In der Datei 'tuning/std/blockrefdlist.h' werden deklariert:

template <class t_obj> class gct_Std_BlockRefDList;
template <class t_obj> class gct_Std8BlockRefDList;
template <class t_obj> class gct_Std16BlockRefDList;
template <class t_obj> class gct_Std32BlockRefDList;

In der Datei 'tuning/rnd/blockrefdlist.h' werden deklariert:

template <class t_obj> class gct_Rnd_BlockRefDList;
template <class t_obj> class gct_Rnd8BlockRefDList;
template <class t_obj> class gct_Rnd16BlockRefDList;
template <class t_obj> class gct_Rnd32BlockRefDList;

In der Datei 'tuning/chn/blockrefdlist.h' werden deklariert:

template <class t_obj> class gct_Chn_BlockRefDList;
template <class t_obj> class gct_Chn8BlockRefDList;

Spirick Tuning Referenzhandbuch Seite 67

template <class t_obj> class gct_Chn16BlockRefDList;
template <class t_obj> class gct_Chn32BlockRefDList;

2.5 Vergleichs-, Zeiger- und Mapcontainer

2.5.1 Vergleichscontainer (tuning/compcontainer.h)

Die normale Containerschnittstelle ist auf universelle Anwendbarkeit ausgelegt und stellt nur geringe
Anforderungen an die enthaltenen Objekte. Diese müssen nur einen normalen und einen
Kopierkonstruktor zur Verfügung stellen. Einige Objektklassen besitzen jedoch einen Gleichheitsoperator
(operator ==). Dieser ist implizit auch für alle primitiven Datentypen, z. B. int oder void *, definiert. Der
Gleichheitsoperator ermöglicht zahlreiche weitere Containermethoden, z. B. das bedingte Einfügen und
das Suchen eines Elements.

Das Klassentemplate gct_CompContainer erwartet als Parameter eine Containerklasse, deren Objekttyp
einen Gleichheitsoperator enthält, z. B. gct_Std32Array <float>. Sie dient dem Vergleichscontainer als
Basisklasse.

Basisklassen
gct_AnyContainer (siehe Abschnitt ‘Containerschnittstelle’)
[gct_ExtContainer (optional, siehe Abschnitt ‘Erweiterter Container’)]

Templatedeklaration
template <class t_container>
 class gct_CompContainer: public t_container
 {
 public:
 inline bool ContainsObj (const t_Object * po_obj) const;
 t_Length CountObjs (const t_Object * po_obj) const;

 t_Position SearchFirstObj (const t_Object * po_obj) const;
 t_Position SearchLastObj (const t_Object * po_obj) const;
 t_Position SearchNextObj (t_Position o_pos, const t_Object * po_obj) const;
 t_Position SearchPrevObj (t_Position o_pos, const t_Object * po_obj) const;

 inline t_Object * GetFirstEqualObj (const t_Object * po_obj) const;
 inline t_Object * GetLastEqualObj (const t_Object * po_obj) const;

 inline t_Position AddObjCond (const t_Object * po_obj);
 inline t_Position AddObjBeforeFirstCond (const t_Object * po_obj);
 inline t_Position AddObjAfterLastCond (const t_Object * po_obj);

 inline t_Position DelFirstEqualObj (const t_Object * po_obj);
 inline t_Position DelLastEqualObj (const t_Object * po_obj);
 inline t_Position DelFirstEqualObjCond (const t_Object * po_obj);
 inline t_Position DelLastEqualObjCond (const t_Object * po_obj);
 };

Suche nach Objekten
bool ContainsObj (const t_Object * po_obj) const;

Liefert true, wenn der Container ein Objekt enthält, das gleich * po_obj ist.

t_Length CountObjs (const t_Object * po_obj) const;

Liefert die Anzahl der Objekte, die gleich * po_obj sind.

Spirick Tuning Referenzhandbuch Seite 68

t_Position SearchFirstObj (const t_Object * po_obj) const;

Liefert die Position des ersten Objekts, das gleich * po_obj ist, oder Null, wenn kein Objekt gefunden
wurde.

t_Position SearchLastObj (const t_Object * po_obj) const;

Liefert die Position des letzten Objekts, das gleich * po_obj ist, oder Null, wenn kein Objekt gefunden
wurde.

t_Position SearchNextObj (t_Position o_pos, const t_Object * po_obj) const;

Liefert die Position des nächsten Objekts, das gleich * po_obj ist, oder Null, wenn kein Objekt gefunden
wurde. o_pos muß eine gültige Position sein. Die Suche beginnt bei Next (o_pos).

t_Position SearchPrevObj (t_Position o_pos, const t_Object * po_obj) const;

Liefert die Position des vorhergehenden Objekts, das gleich * po_obj ist, oder Null, wenn kein Objekt
gefunden wurde. o_pos muß eine gültige Position sein. Die Suche beginnt bei Prev (o_pos).

Zugriff auf gefundene Objekte
t_Object * GetFirstEqualObj (const t_Object * po_obj) const;

Liefert einen typisierten Zeiger des ersten Objekts, das gleich * po_obj ist. Es muß mindestens ein
gleiches Objekt enthalten sein.

t_Object * GetLastEqualObj (const t_Object * po_obj) const;

Liefert einen typisierten Zeiger des letzten Objekts, das gleich * po_obj ist. Es muß mindestens ein
gleiches Objekt enthalten sein.

Bedingtes Einfügen
t_Position AddObjCond (const t_Object * po_obj);

Liefert die Position des ersten Objekts, das gleich * po_obj ist, oder die Position eines neu eingefügten
Objekts, wenn kein Objekt gefunden wurde. Zum Einfügen des neuen Objekts wird die Methode AddObj
aufgerufen.

t_Position AddObjBeforeFirstCond (const t_Object * po_obj);

Liefert die Position des ersten Objekts, das gleich * po_obj ist, oder die Position eines neu eingefügten
Objekts, wenn kein Objekt gefunden wurde. Zum Einfügen des neuen Objekts wird die Methode
AddObjBeforeFirst aufgerufen.

t_Position AddObjAfterLastCond (const t_Object * po_obj);

Liefert die Position des ersten Objekts, das gleich * po_obj ist, oder die Position eines neu eingefügten
Objekts, wenn kein Objekt gefunden wurde. Zum Einfügen des neuen Objekts wird die Methode
AddObjAfterLast aufgerufen.

Rückgabewert von Löschmethoden
Löschmethoden liefern stets die Position des Nachfolgers des gelöschten Eintrags. Diese Technik
ermöglicht das gleichzeitige Iterieren und Verändern eines Containers. Der Rückgabewert wird mit der
Methode Next vor dem Löschen berechnet. Wurde der der Reihenfolge nach letzte Eintrag gelöscht
(Methode Last), ist der Rückgabewert gleich Null.

Spirick Tuning Referenzhandbuch Seite 69

Löschen gefundener Objekte
t_Position DelFirstEqualObj (const t_Object * po_obj);

Löscht das erste Objekt, das gleich * po_obj ist. Es muß mindestens ein gleiches Objekt enthalten sein.
Die Methode liefert die Position des Nachfolgers des gelöschten Objekts oder Null, wenn das letzte
Objekt gelöscht wurde.

t_Position DelLastEqualObj (const t_Object * po_obj);

Löscht das letzte Objekt, das gleich * po_obj ist. Es muß mindestens ein gleiches Objekt enthalten sein.
Die Methode liefert die Position des Nachfolgers des gelöschten Objekts oder Null, wenn das letzte
Objekt gelöscht wurde.

Bedingtes Löschen gefundener Objekte
t_Position DelFirstEqualObjCond (const t_Object * po_obj);

Löscht das erste Objekt, das gleich * po_obj ist, sofern ein gleiches Objekt gefunden wurde. Die Methode
liefert die Position des Nachfolgers des gelöschten Objekts oder Null, wenn kein Objekt gefunden wurde
oder das gelöschte Objekt das letzte war.

t_Position DelLastEqualObjCond (const t_Object * po_obj);

Löscht das letzte Objekt, das gleich * po_obj ist, sofern ein gleiches Objekt gefunden wurde. Die
Methode liefert die Position des Nachfolgers des gelöschten Objekts oder Null, wenn kein Objekt
gefunden wurde oder das gelöschte Objekt das letzte war.

2.5.2 Zeigercontainer (tuning/ptrcontainer.h)

Container können nicht nur Objekte (z. B. ct_String) und primitive Datentypen (z. B. int, float) enthalten,
sondern auch C++-Zeiger (z. B. ct_String *). Viele Methoden der normalen und erweiterten
Containerschnittstelle sind in diesem Fall unhandlich. Z. B. liefert die Methode GetObj einen Zeiger auf ein
Objekt. Ist das Objekt selbst ein Zeiger, liefert sie einen Zeiger auf einen Zeiger. Analog erwartet die
Methode AddObj einen Zeiger auf einen Zeiger.

gct_Rnd16Array <ct_String *> co_array;
gct_Rnd16Array <ct_String *>::t_Position o_pos;
ct_String * pco_str = new ct_String;
o_pos = co_array. AddObj (& pco_str);
pco_str = * co_array. GetObj (o_pos);

Das Klassentemplate gct_PtrContainer stellt eine komfortable Schnittstelle für Zeigercontainer bereit. Es
mappt viele Methoden der normalen, erweiterten und Vergleichscontainer-Schnittstelle und enthält einige
zusätzliche Methoden. Zur besseren Unterscheidung von den Objektmethoden (z. B. GetObj) enthalten die
zugehörigen Zeigermethoden die Abkürzung Ptr (z. B. GetPtr). Die Methode DelPtr wird auf FreeObj
zurückgeführt und löscht einen Zeiger aus dem Container. Die Methode DelPtrAndObj löscht zusätzlich
das referenzierte Objekt.

Beim Instantiieren von gleichartigen Containern, die Zeiger enthalten (z. B. gct_Chn16DList <int *> und
gct_Chn16DList <ct_String *>), entsteht stets derselbe binäre Programmcode. Diese Templateinstanzen
unterscheiden sich nur im Typ der Parameter und Rückgabewerte. Um das unnötige Duplizieren von
Programmcode zu vermeiden, erwartet das Template gct_PtrContainer die Objektklasse und eine
Containerklasse mit dem Objekttyp void *. Z. B. ist gct_PtrContainer <int, gct_Chn16DList <void *> > ein
Container, der Objekte des Typs int * verwaltet. Der Zeigercontainer selbst enthält nur Inline-Methoden,
die im binären Programmcode nicht separat instantiiert werden.

Für C++-Zeiger ist der Gleichheitsoperator definiert. Deshalb wird die übergebene Containerklasse
zunächst um die Vergleichscontainer-Schnittstelle erweitert. Der Vergleichscontainer dient dem
Zeigercontainer als Basisklasse. Alle dort deklarierten Methoden stehen dem Anwender des

Spirick Tuning Referenzhandbuch Seite 70

Zeigercontainers auch zur Verfügung. Zur Illustration der Implementierung des Zeigercontainers werden
die Definitionen der Methoden GetPtr und DelPtrAndObj angefügt.

Basisklassen
gct_AnyContainer (siehe Abschnitt ‘Containerschnittstelle’)
 gct_ExtContainer (siehe Abschnitt ‘Erweiterter Container’)
 gct_CompContainer (siehe Abschnitt ‘Vergleichscontainer’)

Templatedeklaration
template <class t_obj, class t_container>
 class gct_PtrContainer: public gct_CompContainer <t_container>
 {
 public:
 typedef t_obj t_RefObject;

 inline ~gct_PtrContainer ();

 inline t_obj * GetPtr (t_Position o_pos) const;
 inline t_obj * GetFirstPtr () const;
 inline t_obj * GetLastPtr () const;
 inline t_obj * GetNextPtr (t_Position o_pos) const;
 inline t_obj * GetPrevPtr (t_Position o_pos) const;
 inline t_obj * GetNthPtr (t_Length u_idx) const;

 inline t_Position AddPtr (const t_obj * po_obj);
 inline t_Position AddPtrBefore (t_Position o_pos, const t_obj * po_obj);
 inline t_Position AddPtrAfter (t_Position o_pos, const t_obj * po_obj);
 inline t_Position AddPtrBeforeFirst (const t_obj * po_obj);
 inline t_Position AddPtrAfterLast (const t_obj * po_obj);
 inline t_Position AddPtrBeforeNth (t_Length u_idx, const t_obj * po_obj);
 inline t_Position AddPtrAfterNth (t_Length u_idx, const t_obj * po_obj);

 inline t_Position DelPtr (t_Position o_pos);
 inline t_Position DelFirstPtr ();
 inline t_Position DelLastPtr ();
 inline t_Position DelNextPtr (t_Position o_pos);
 inline t_Position DelPrevPtr (t_Position o_pos);
 inline t_Position DelNthPtr (t_Length u_idx);
 inline void DelAllPtr ();

 inline t_Position DelPtrAndObj (t_Position o_pos);
 inline t_Position DelFirstPtrAndObj ();
 inline t_Position DelLastPtrAndObj ();
 inline t_Position DelNextPtrAndObj (t_Position o_pos);
 inline t_Position DelPrevPtrAndObj (t_Position o_pos);
 inline t_Position DelNthPtrAndObj (t_Length u_idx);
 inline void DelAllPtrAndObj ();

 inline bool ContainsPtr (const t_obj * po_obj) const;
 inline t_Length CountPtrs (const t_obj * po_obj) const;

 inline t_Position SearchFirstPtr (const t_obj * po_obj) const;
 inline t_Position SearchLastPtr (const t_obj * po_obj) const;
 inline t_Position SearchNextPtr (t_Position o_pos, const t_obj * po_obj) const;
 inline t_Position SearchPrevPtr (t_Position o_pos, const t_obj * po_obj) const;

 inline t_Position AddPtrCond (const t_obj * po_obj);
 inline t_Position AddPtrBeforeFirstCond (const t_obj * po_obj);
 inline t_Position AddPtrAfterLastCond (const t_obj * po_obj);

 inline t_Position DelFirstEqualPtr (const t_obj * po_obj);
 inline t_Position DelLastEqualPtr (const t_obj * po_obj);

Spirick Tuning Referenzhandbuch Seite 71

 inline t_Position DelFirstEqualPtrCond (const t_obj * po_obj);
 inline t_Position DelLastEqualPtrCond (const t_obj * po_obj);

 inline t_Position DelFirstEqualPtrAndObj (const t_obj * po_obj);
 inline t_Position DelLastEqualPtrAndObj (const t_obj * po_obj);
 inline t_Position DelFirstEqualPtrAndObjCond (const t_obj * po_obj);
 inline t_Position DelLastEqualPtrAndObjCond (const t_obj * po_obj);
 };

template <class t_obj, class t_container>
 inline t_obj * gct_PtrContainer <t_obj, t_container>::
 GetPtr (t_Position o_pos) const
 {
 return (t_obj *) * GetObj (o_pos);
 }

template <class t_obj, class t_container>
 inline gct_PtrContainer <t_obj, t_container>::t_Position
 gct_PtrContainer <t_obj, t_container>::
 DelPtrAndObj (t_Position o_pos)
 {
 delete GetPtr (o_pos);
 return FreeObj (o_pos);
 }

Datentypen
typedef t_obj t_RefObject;

Der geschachtelte Typ t_RefObject beschreibt den Typ der referenzierten Objekte und ist für die
Verwendung in abgeleiteten Klassen bestimmt.

Destruktor
~gct_PtrContainer ();

Da C++-Zeiger keinen Destruktor besitzen, ruft der Destruktor des Zeigercontainers die Methode FreeAll
auf. Der vom Container belegte Speicher wird effizient freigegeben. Es werden jedoch keine
Destruktoren referenzierter Objekte aufgerufen.

Zugriff auf referenzierte Objekte
t_obj * GetPtr (t_Position o_pos) const;

Liefert einen typisierten Zeiger auf das durch o_pos identifizierte Objekt. o_pos muß eine gültige Position
sein.

t_obj * GetFirstPtr () const;

Liefert einen typisierten Zeiger auf das erste Objekt. Der Container muß mindestens ein Objekt
enthalten.

t_obj * GetLastPtr () const;

Liefert einen typisierten Zeiger auf das letzte Objekt. Der Container muß mindestens ein Objekt
enthalten.

t_obj * GetNextPtr (t_Position o_pos) const;

Liefert einen typisierten Zeiger auf das folgende Objekt. o_pos und Next (o_pos) müssen gültige Positionen
sein.

Spirick Tuning Referenzhandbuch Seite 72

t_obj * GetPrevPtr (t_Position o_pos) const;

Liefert einen typisierten Zeiger auf das vorhergehende Objekt. o_pos und Prev (o_pos) müssen gültige
Positionen sein.

t_obj * GetNthPtr (t_Length u_idx) const;

Liefert einen typisierten Zeiger auf das n-te Objekt. Der Index u_idx muß zwischen Eins und GetLen liegen.

Einfügen von Zeigern
t_Position AddPtr (const t_obj * po_obj);

Fügt den Zeiger po_obj in den Container ein und liefert dessen Position. Die Stelle des Einfügens ist
abhängig von der Implementierung.

t_Position AddPtrBefore (t_Position o_pos, const t_obj * po_obj);

Fügt den Zeiger po_obj vor einem anderen ein und liefert dessen Position. Ist o_pos gleich Null, wird der
Zeiger nach dem letzten plaziert, d. h. er ist das neue letzte Element.

t_Position AddPtrAfter (t_Position o_pos, const t_obj * po_obj);

Fügt den Zeiger po_obj nach einem anderen ein und liefert dessen Position. Ist o_pos gleich Null, wird der
Zeiger vor dem ersten plaziert, d. h. er ist das neue erste Element.

t_Position AddPtrBeforeFirst (const t_obj * po_obj);

Fügt den Zeiger po_obj vor dem ersten ein und liefert dessen Position. po_obj ist das neue erste Element.

t_Position AddPtrAfterLast (const t_obj * po_obj);

Fügt den Zeiger po_obj nach dem letzten ein und liefert dessen Position. po_obj ist das neue letzte
Element.

t_Position AddPtrBeforeNth (t_Length u_idx, const t_obj * po_obj);

Fügt den Zeiger po_obj vor einem anderen ein und liefert dessen Position. Der Index u_idx muß zwischen
Eins und GetLen liegen.

t_Position AddPtrAfterNth (t_Length u_idx, const t_obj * po_obj);

Fügt den Zeiger po_obj nach einem anderen ein und liefert dessen Position. Der Index u_idx muß
zwischen Eins und GetLen liegen.

Rückgabewert von Löschmethoden
Löschmethoden liefern stets die Position des Nachfolgers des gelöschten Eintrags. Diese Technik
ermöglicht das gleichzeitige Iterieren und Verändern eines Containers. Der Rückgabewert wird mit der
Methode Next vor dem Löschen berechnet. Wurde der der Reihenfolge nach letzte Eintrag gelöscht
(Methode Last), ist der Rückgabewert gleich Null.

Löschen von Zeigern
t_Position DelPtr (t_Position o_pos);

Die Methode ist identisch mit FreeObj. Sie entfernt einen Zeiger aus dem Container und beeinflußt nicht
das referenzierte Objekt. o_pos muß eine gültige Position sein. Die Methode liefert Next (o_pos), also die
Position des nächsten Eintrags oder Null, wenn der letzte Eintrag gelöscht wurde.

t_Position DelFirstPtr ();

Die Methode ist identisch mit FreeFirstObj. Sie entfernt den ersten Zeiger aus dem Container und
beeinflußt nicht das referenzierte Objekt. Der Container muß mindestens ein Objekt enthalten. Die
Methode liefert die Position des neuen ersten Eintrags oder Null, wenn kein Eintrag mehr vorhanden ist.

Spirick Tuning Referenzhandbuch Seite 73

t_Position DelLastPtr ();

Die Methode ist identisch mit FreeLastObj. Sie entfernt den letzten Zeiger aus dem Container und
beeinflußt nicht das referenzierte Objekt. Der Container muß mindestens ein Objekt enthalten. Die
Methode liefert Null, da der letzte Eintrag gelöscht wurde.

t_Position DelNextPtr (t_Position o_pos);

Die Methode ist identisch mit FreeNextObj. Sie entfernt den Zeiger Next (o_pos) aus dem Container und
beeinflußt nicht das referenzierte Objekt. o_pos und Next (o_pos) müssen gültige Positionen sein. Die
Methode liefert die Position des Nachfolgers des gelöschten Eintrags oder Null, wenn der letzte Eintrag
gelöscht wurde.

t_Position DelPrevPtr (t_Position o_pos);

Die Methode ist identisch mit FreePrevObj. Sie entfernt den Zeiger Prev (o_pos) aus dem Container und
beeinflußt nicht das referenzierte Objekt. o_pos und Prev (o_pos) müssen gültige Positionen sein. Die
Methode liefert o_pos zurück, denn o_pos ist der Nachfolger des gelöschten Eintrags.

t_Position DelNthPtr (t_Length u_idx);

Die Methode ist identisch mit FreeNthObj. Sie entfernt den Zeiger Nth (u_idx) aus dem Container und
beeinflußt nicht das referenzierte Objekt. Der Index u_idx muß zwischen Eins und GetLen liegen. Die
Methode liefert die Position des Nachfolgers des gelöschten Eintrags oder Null, wenn der letzte Eintrag
gelöscht wurde.

void DelAllPtr ();

Die Methode ist identisch mit FreeAll. Der vom Container belegte Speicher wird effizient freigegeben. Es
werden jedoch keine Destruktoren referenzierter Objekte aufgerufen.

Löschen von Zeigern und referenzierten Objekten
t_Position DelPtrAndObj (t_Position o_pos);

Wirkt wie DelPtr und löscht zusätzlich das referenzierte Objekt.

t_Position DelFirstPtrAndObj ();

Wirkt wie DelFirstPtr und löscht zusätzlich das referenzierte Objekt.

t_Position DelLastPtrAndObj ();

Wirkt wie DelLastPtr und löscht zusätzlich das referenzierte Objekt.

t_Position DelNextPtrAndObj (t_Position o_pos);

Wirkt wie DelNextPtr und löscht zusätzlich das referenzierte Objekt.

t_Position DelPrevPtrAndObj (t_Position o_pos);

Wirkt wie DelPrevPtr und löscht zusätzlich das referenzierte Objekt.

t_Position DelNthPtrAndObj (t_Length u_idx);

Wirkt wie DelNthPtr und löscht zusätzlich das referenzierte Objekt.

void DelAllPtrAndObj ();

Wirkt wie DelAllPtr und löscht zusätzlich die referenzierten Objekte.

Vergleich im Zeigercontainer
Ein Zeigercontainer basiert auf einem Container des Typs gct_AnyContainer <void *>. Die enthaltenen
Objekte sind untypisierte C++-Zeiger. Methoden des Vergleichscontainers, z. B. SearchFirstObj,

Spirick Tuning Referenzhandbuch Seite 74

vergleichen Objekte des Typs void * miteinander. Die folgenden Methoden des Zeigercontainers, z. B.
SearchFirstPtr, werden auf die Methoden des Vergleichscontainers zurückgeführt und vergleichen die im
Container enthaltenen C++-Zeiger miteinander, nicht die referenzierten Objekte.

Suche nach Zeigern
bool ContainsPtr (const t_obj * po_obj) const;

Liefert true, wenn der Container einen Zeiger enthält, der gleich po_obj ist.

t_Length CountPtrs (const t_obj * po_obj) const;

Liefert die Anzahl der Zeiger, die gleich po_obj sind.

t_Position SearchFirstPtr (const t_obj * po_obj) const;

Liefert die Position des ersten Zeigers, der gleich po_obj ist, oder Null, wenn kein Zeiger gefunden wurde.

t_Position SearchLastPtr (const t_obj * po_obj) const;

Liefert die Position des letzten Zeigers, der gleich po_obj ist, oder Null, wenn kein Zeiger gefunden
wurde.

t_Position SearchNextPtr (t_Position o_pos, const t_obj * po_obj) const;

Liefert die Position des nächsten Zeigers, der gleich po_obj ist, oder Null, wenn kein Zeiger gefunden
wurde. o_pos muß eine gültige Position sein. Die Suche beginnt bei Next (o_pos).

t_Position SearchPrevPtr (t_Position o_pos, const t_obj * po_obj) const;

Liefert die Position des vorhergehenden Zeigers, der gleich po_obj ist, oder Null, wenn kein Zeiger
gefunden wurde. o_pos muß eine gültige Position sein. Die Suche beginnt bei Prev (o_pos).

Bedingtes Einfügen von Zeigern
t_Position AddPtrCond (const t_obj * po_obj);

Liefert die Position des ersten Zeigers, der gleich po_obj ist, oder die Position eines neu eingefügten
Zeigers, wenn kein Zeiger gefunden wurde. Zum Einfügen des neuen Zeigers wird die Methode AddPtr
aufgerufen.

t_Position AddPtrBeforeFirstCond (const t_obj * po_obj);

Liefert die Position des ersten Zeigers, der gleich po_obj ist, oder die Position eines neu eingefügten
Zeigers, wenn kein Zeiger gefunden wurde. Zum Einfügen des neuen Zeigers wird die Methode
AddPtrBeforeFirst aufgerufen.

t_Position AddPtrAfterLastCond (const t_obj * po_obj);

Liefert die Position des ersten Zeigers, der gleich po_obj ist, oder die Position eines neu eingefügten
Zeigers, wenn kein Zeiger gefunden wurde. Zum Einfügen des neuen Zeigers wird die Methode
AddPtrAfterLast aufgerufen.

Löschen gefundener Zeiger
t_Position DelFirstEqualPtr (const t_obj * po_obj);

Löscht den ersten Zeiger, der gleich po_obj ist. Es muß mindestens ein gleicher Zeiger enthalten sein. Die
Methode liefert die Position des Nachfolgers des gelöschten Zeigers oder Null, wenn der letzte Zeiger
gelöscht wurde.

Spirick Tuning Referenzhandbuch Seite 75

t_Position DelLastEqualPtr (const t_obj * po_obj);

Löscht den letzten Zeiger, der gleich po_obj ist. Es muß mindestens ein gleicher Zeiger enthalten sein.
Die Methode liefert die Position des Nachfolgers des gelöschten Zeigers oder Null, wenn der letzte
Zeiger gelöscht wurde.

Bedingtes Löschen gefundener Zeiger
t_Position DelFirstEqualPtrCond (const t_obj * po_obj);

Löscht den ersten Zeiger, der gleich po_obj ist, sofern ein gleicher Zeiger gefunden wurde. Die Methode
liefert die Position des Nachfolgers des gelöschten Zeigers oder Null, wenn kein Zeiger gefunden wurde
oder der letzte Zeiger gelöscht wurde.

t_Position DelLastEqualPtrCond (const t_obj * po_obj);

Löscht den letzten Zeiger, der gleich po_obj ist, sofern ein gleicher Zeiger gefunden wurde. Die Methode
liefert die Position des Nachfolgers des gelöschten Zeigers oder Null, wenn kein Zeiger gefunden wurde
oder der letzte Zeiger gelöscht wurde.

Löschen gefundener Zeiger und referenzierter Objekte
t_Position DelFirstEqualPtrAndObj (const t_obj * po_obj);

Wirkt wie DelFirstEqualPtr und löscht zusätzlich das referenzierte Objekt.

t_Position DelLastEqualPtrAndObj (const t_obj * po_obj);

Wirkt wie DelLastEqualPtr und löscht zusätzlich das referenzierte Objekt.

Bedingtes Löschen gefundener Zeiger und referenzierter Objekte
t_Position DelFirstEqualPtrAndObjCond (const t_obj * po_obj);

Wirkt wie DelFirstEqualPtrCond und löscht zusätzlich das referenzierte Objekt.

t_Position DelLastEqualPtrAndObjCond (const t_obj * po_obj);

Wirkt wie DelLastEqualPtrCond und löscht zusätzlich das referenzierte Objekt.

2.5.3 Operationen mit Zeigercontainern

Objekte einfügen, kopieren und löschen
Das folgende Programmbeispiel demonstriert das Einfügen, Kopieren und Löschen von Objekten in einem
Zeigercontainer. Die Klasse ct_Int wird im Abschnitt ‘Beispielprogramme’ beschrieben.

ct_Int co_int = 1;
ct_Int * pco_int;
gct_AnyPtrContainer <ct_Int> co_ptrContainer;
gct_AnyPtrContainer <ct_Int>::t_Position o_pos;

// Neues Objekt im Zeigercontainer mit Defaultkonstruktor erzeugen
o_pos = co_ptrContainer. AddPtr (new ct_Int);

// Auf das Objekt zugreifen und es und initialisieren
pco_int = co_ptrContainer. GetPtr (o_pos);
(* pco_int) = 2;

// Vorhandenes Objekt in den Zeigercontainer kopieren
o_pos = co_ptrContainer. AddPtr (new ct_Int (co_int));

Spirick Tuning Referenzhandbuch Seite 76

// Objekt aus dem Zeigercontainer nehmen und löschen
co_ptrContainer. DelPtrAndObj (o_pos);

Vorwärts iterieren
Zum Iterieren eines Zeigercontainers in aufsteigender Reihenfolge der Einträge wird eine for-Schleife
nach folgendem Muster empfohlen:

gct_AnyPtrContainer <float> co_ptrContainer;
gct_AnyPtrContainer <float>::t_Position o_pos;

for (o_pos = co_ptrContainer. First ();
 o_pos != 0;
 o_pos = co_ptrContainer. Next (o_pos))
 {
 float * pf = co_ptrContainer. GetPtr (o_pos);
 // ...
 }

Rückwärts iterieren
Zum Iterieren eines Zeigercontainers in absteigender Reihenfolge der Einträge wird eine for-Schleife nach
folgendem Muster empfohlen:

gct_AnyPtrContainer <float> co_ptrContainer;
gct_AnyPtrContainer <float>::t_Position o_pos;

for (o_pos = co_ptrContainer. Last ();
 o_pos != 0;
 o_pos = co_ptrContainer. Prev (o_pos))
 {
 float * pf = co_ptrContainer. GetPtr (o_pos);
 // ...
 }

Iterieren und verändern
Zum Iterieren und Verändern eines Zeigercontainers wird eine for-Schleife nach folgendem Muster
empfohlen:

gct_AnyPtrContainer <float> co_ptrContainer;
gct_AnyPtrContainer <float>::t_Position o_pos;

for (o_pos = co_ptrContainer. First ();
 o_pos != 0;
 o_pos = /* delete entry ? */ ?
 co_ptrContainer. DelPtrAndObj (o_pos) :
 co_ptrContainer. Next (o_pos))
 {
 float * pf = co_ptrContainer. GetPtr (o_pos);
 // ...
 }

Statt der for-Schleife kann auch eine while-Schleife nach folgendem Muster verwendet werden:

gct_AnyPtrContainer <float> co_ptrContainer;
gct_AnyPtrContainer <float>::t_Position o_pos;

o_pos = co_ptrContainer. First ();

while (o_pos != 0)
 {
 float * pf = co_ptrContainer. GetPtr (o_pos);

Spirick Tuning Referenzhandbuch Seite 77

 // ...
 if (/* delete entry ? */)
 o_pos = co_ptrContainer. DelPtrAndObj (o_pos);
 else
 o_pos = co_ptrContainer. Next (o_pos);
 }

2.5.4 Zeigervergleichscontainer (tuning/ptrcompcontainer.h)

Die normale Zeigercontainerschnittstelle ist auf universelle Anwendbarkeit ausgelegt und stellt nur
geringe Anforderungen an die referenzierten Objekte. Diese müssen nur einen Destruktor (für die
Methode DelPtrAndObj) zur Verfügung stellen. Einige Objektklassen besitzen jedoch einen
Gleichheitsoperator (operator ==). Dieser ist implizit auch für alle primitiven Datentypen, z. B. int oder
void *, definiert. Der Gleichheitsoperator ermöglicht zahlreiche weitere Containermethoden, z. B. das
bedingte Einfügen und das Suchen eines Elements.

Das Klassentemplate gct_PtrCompContainer erwartet als Parameter eine Zeigercontainerklasse, deren
Objekttyp einen Gleichheitsoperator enthält, z. B. gct_Std32PtrArray <float>. Sie dient dem
Zeigervergleichscontainer als Basisklasse.

Basisklassen
gct_AnyContainer (siehe Abschnitt ‘Containerschnittstelle’)
 gct_ExtContainer (siehe Abschnitt ‘Erweiterter Container’)
 gct_CompContainer (siehe Abschnitt ‘Vergleichscontainer’)
 gct_PtrContainer (siehe Abschnitt ‘Zeigercontainer’)

Templatedeklaration
template <class t_container>
 class gct_PtrCompContainer: public t_container
 {
 public:
 inline bool ContainsRef (const t_RefObject * po_obj) const;
 t_Length CountRefs (const t_RefObject * po_obj) const;

 t_Position SearchFirstRef (const t_RefObject * po_obj) const;
 t_Position SearchLastRef (const t_RefObject * po_obj) const;
 t_Position SearchNextRef (t_Position o_pos, const t_RefObject * po_obj) const;
 t_Position SearchPrevRef (t_Position o_pos, const t_RefObject * po_obj) const;

 inline t_RefObject * GetFirstEqualRef (const t_RefObject * po_obj) const;
 inline t_RefObject * GetLastEqualRef (const t_RefObject * po_obj) const;

 inline t_Position AddRefCond (const t_RefObject * po_obj);
 inline t_Position AddRefBeforeFirstCond (const t_RefObject * po_obj);
 inline t_Position AddRefAfterLastCond (const t_RefObject * po_obj);

 inline t_Position DelFirstEqualRef (const t_RefObject * po_obj);
 inline t_Position DelLastEqualRef (const t_RefObject * po_obj);
 inline t_Position DelFirstEqualRefCond (const t_RefObject * po_obj);
 inline t_Position DelLastEqualRefCond (const t_RefObject * po_obj);

 inline t_Position DelFirstEqualRefAndObj (const t_RefObject * po_obj);
 inline t_Position DelLastEqualRefAndObj (const t_RefObject * po_obj);
 inline t_Position DelFirstEqualRefAndObjCond (const t_RefObject * po_obj);
 inline t_Position DelLastEqualRefAndObjCond (const t_RefObject * po_obj);
 };

Spirick Tuning Referenzhandbuch Seite 78

Suche nach referenzierten Objekten
bool ContainsRef (const t_RefObject * po_obj) const;

Liefert true, wenn der Container ein Objekt enthält, das gleich * po_obj ist.

t_Length CountRefs (const t_RefObject * po_obj) const;

Liefert die Anzahl der Objekte, die gleich * po_obj sind.

t_Position SearchFirstRef (const t_RefObject * po_obj) const;

Liefert die Position des ersten Objekts, das gleich * po_obj ist, oder Null, wenn kein Objekt gefunden
wurde.

t_Position SearchLastRef (const t_RefObject * po_obj) const;

Liefert die Position des letzten Objekts, das gleich * po_obj ist, oder Null, wenn kein Objekt gefunden
wurde.

t_Position SearchNextRef (t_Position o_pos, const t_RefObject * po_obj) const;

Liefert die Position des nächsten Objekts, das gleich * po_obj ist, oder Null, wenn kein Objekt gefunden
wurde. o_pos muß eine gültige Position sein. Die Suche beginnt bei Next (o_pos).

t_Position SearchPrevRef (t_Position o_pos, const t_RefObject * po_obj) const;

Liefert die Position des vorhergehenden Objekts, das gleich * po_obj ist, oder Null, wenn kein Objekt
gefunden wurde. o_pos muß eine gültige Position sein. Die Suche beginnt bei Prev (o_pos).

Zugriff auf gefundene Objekte
t_RefObject * GetFirstEqualRef (const t_RefObject * po_obj) const;

Liefert einen typisierten Zeiger auf das erste Objekt, das gleich * po_obj ist. Es muß mindestens ein
gleiches Objekt enthalten sein.

t_RefObject * GetLastEqualRef (const t_RefObject * po_obj) const;

Liefert einen typisierten Zeiger auf das letzte Objekt, das gleich * po_obj ist. Es muß mindestens ein
gleiches Objekt enthalten sein.

Bedingtes Einfügen von Zeigern
t_Position AddRefCond (const t_RefObject * po_obj);

Liefert die Position des ersten Objekts, das gleich * po_obj ist, oder die Position eines neu eingefügten
Zeigers, wenn kein Objekt gefunden wurde. Zum Einfügen des neuen Zeigers wird die Methode AddPtr
aufgerufen.

t_Position AddRefBeforeFirstCond (const t_RefObject * po_obj);

Liefert die Position des ersten Objekts, das gleich * po_obj ist, oder die Position eines neu eingefügten
Zeigers, wenn kein Objekt gefunden wurde. Zum Einfügen des neuen Zeigers wird die Methode
AddPtrBeforeFirst aufgerufen.

t_Position AddRefAfterLastCond (const t_RefObject * po_obj);

Liefert die Position des ersten Objekts, das gleich * po_obj ist, oder die Position eines neu eingefügten
Zeigers, wenn kein Objekt gefunden wurde. Zum Einfügen des neuen Zeigers wird die Methode
AddPtrAfterLast aufgerufen.

Rückgabewert von Löschmethoden
Löschmethoden liefern stets die Position des Nachfolgers des gelöschten Eintrags. Diese Technik
ermöglicht das gleichzeitige Iterieren und Verändern eines Containers. Der Rückgabewert wird mit der

Spirick Tuning Referenzhandbuch Seite 79

Methode Next vor dem Löschen berechnet. Wurde der der Reihenfolge nach letzte Eintrag gelöscht
(Methode Last), ist der Rückgabewert gleich Null.

Löschen von Zeigern gefundener Objekte
t_Position DelFirstEqualRef (const t_RefObject * po_obj);

Löscht den Zeiger auf das erste Objekt, das gleich * po_obj ist. Es muß mindestens ein gleiches Objekt
enthalten sein. Die Methode liefert die Position des Nachfolgers des gelöschten Zeigers oder Null, wenn
der letzte Zeiger gelöscht wurde.

t_Position DelLastEqualRef (const t_RefObject * po_obj);

Löscht den Zeiger auf das letzte Objekt, das gleich * po_obj ist. Es muß mindestens ein gleiches Objekt
enthalten sein. Die Methode liefert die Position des Nachfolgers des gelöschten Zeigers oder Null, wenn
der letzte Zeiger gelöscht wurde.

Bedingtes Löschen von Zeigern gefundener Objekte
t_Position DelFirstEqualRefCond (const t_RefObject * po_obj);

Löscht den Zeiger auf das erste Objekt, das gleich * po_obj ist, sofern ein gleiches Objekt gefunden
wurde. Die Methode liefert die Position des Nachfolgers des gelöschten Zeigers oder Null, wenn kein
Objekt gefunden wurde oder der gelöschte Zeiger der letzte war.

t_Position DelLastEqualRefCond (const t_RefObject * po_obj);

Löscht den Zeiger auf das letzte Objekt, das gleich * po_obj ist, sofern ein gleiches Objekt gefunden
wurde. Die Methode liefert die Position des Nachfolgers des gelöschten Zeigers oder Null, wenn kein
Objekt gefunden wurde oder der gelöschte Zeiger der letzte war.

Löschen gefundener Zeiger und referenzierter Objekte
t_Position DelFirstEqualRefAndObj (const t_RefObject * po_obj);

Wirkt wie DelFirstEqualRef und löscht zusätzlich das referenzierte Objekt.

t_Position DelLastEqualRefAndObj (const t_RefObject * po_obj);

Wirkt wie DelLastEqualRef und löscht zusätzlich das referenzierte Objekt.

Bedingtes Löschen gefundener Zeiger und referenzierter Objekte
t_Position DelFirstEqualRefAndObjCond (const t_RefObject * po_obj);

Wirkt wie DelFirstEqualRefCond und löscht zusätzlich das referenzierte Objekt.

t_Position DelLastEqualRefAndObjCond (const t_RefObject * po_obj);

Wirkt wie DelLastEqualRefCond und löscht zusätzlich das referenzierte Objekt.

2.5.5 Mapcontainer (tuning/map.h)

Der Mapcontainer ist ähnlich wie der Vergleichscontainer eine Erweiterung der normalen
Containerschnittstelle. Er verwaltet jedoch keine einzelnen Objekte, sondern Schlüssel-Wert-Paare. An
die Wertobjekte werden nur geringe Anforderungen gestellt. Sie müssen nur einen normalen und einen
Kopierkonstruktor zur Verfügung stellen. Die Schlüsselobjekte müssen zusätzlich einen
Gleichheitsoperator (operator ==) besitzen. Er ermöglicht das Suchen nach einem Wert mit einem
gegebenen Schlüssel.

Spirick Tuning Referenzhandbuch Seite 80

Das Klassentemplate gct_Map erwartet als Parameter eine Containerklasse, deren Objekttyp ein Schlüssel-
Wert-Paar ist, z. B. gct_Std32Array <gct_MapEntry <ct_String, ct_Int> >. Sie dient dem Mapcontainer als
Basisklasse. Mit dem Hilfstemplate gct_MapEntry können Schlüssel-Wert-Paare gebildet werden. Wird als
Basiscontainer ein sortiertes Array verwendet, müssen die Schlüsselobjekte zusätzlich den
Vergleichsoperator 'operator <' besitzen. Wird als Basiscontainer eine Hashtabelle verwendet, müssen die
Schlüsselobjekte zusätzlich die Methode GetHash besitzen.

Das Schlüsselobjekt dient dem Hilfstemplate gct_MapEntry als Basisklasse. Primitive Datentypen, z. B. int
oder char, können nicht direkt als Schlüssel verwendet werden. Das Hilfstemplate gct_Key wandelt einen
ganzzahligen Zahlentyp in einen Schlüsseltyp um, z. B. gct_MapEntry <gct_Key <int>, ct_String>.

Basisklassen
gct_AnyContainer (siehe Abschnitt ‘Containerschnittstelle’)
[gct_ExtContainer (optional, siehe Abschnitt ‘Erweiterter Container’)]

Templatedeklaration
template <class t_container>
 class gct_Map: public t_container
 {
 public:
 typedef t_Object::t_Key t_Key;
 typedef t_Object::t_Value t_Value;

 inline bool ContainsKey (t_Key o_key) const;
 t_Length CountKeys (t_Key o_key) const;

 t_Position SearchFirstKey (t_Key o_key) const;
 t_Position SearchLastKey (t_Key o_key) const;
 t_Position SearchNextKey (t_Position o_pos, t_Key o_key) const;
 t_Position SearchPrevKey (t_Position o_pos, t_Key o_key) const;

 inline t_Key GetKey (t_Position o_pos) const;
 inline t_Value * GetValue (t_Position o_pos) const;
 inline t_Value * GetFirstValue (t_Key o_key) const;
 inline t_Value * GetLastValue (t_Key o_key) const;

 t_Position AddKeyAndValue (t_Key o_key, const t_Value * po_value = 0);
 t_Position AddKeyAndValueCond (t_Key o_key, const t_Value * po_value = 0);

 inline t_Position DelKeyAndValue (t_Position o_pos);
 inline t_Position DelFirstKeyAndValue (t_Key o_key);
 inline t_Position DelLastKeyAndValue (t_Key o_key);
 inline t_Position DelFirstKeyAndValueCond (t_Key o_key);
 inline t_Position DelLastKeyAndValueCond (t_Key o_key);
 inline void DelAllKeyAndValue ();
 };

Datentypen
typedef t_Object::t_Key t_Key;

Der geschachtelte Typ t_Key ist der Datentyp der Schlüsselobjekte und wird vom Hilfstemplate
gct_MapEntry übernommen.

typedef t_Object::t_Value t_Value;

Der geschachtelte Typ t_Value ist der Datentyp der Wertobjekte und wird vom Hilfstemplate gct_MapEntry
übernommen.

Spirick Tuning Referenzhandbuch Seite 81

Suche nach Paaren
bool ContainsKey (t_Key o_key) const;

Liefert true, wenn der Container einen Schlüssel enthält, der gleich o_key ist.

t_Length CountKeys (t_Key o_key) const;

Liefert die Anzahl der Schlüssel, die gleich o_key sind.

t_Position SearchFirstKey (t_Key o_key) const;

Liefert die Position des ersten Schlüssel-Wert-Paares, dessen Schlüssel gleich o_key ist, oder Null, wenn
kein Schlüssel gefunden wurde.

t_Position SearchLastKey (t_Key o_key) const;

Liefert die Position des letzten Schlüssel-Wert-Paares, dessen Schlüssel gleich o_key ist, oder Null, wenn
kein Schlüssel gefunden wurde.

t_Position SearchNextKey (t_Position o_pos, t_Key o_key) const;

Liefert die Position des nächsten Schlüssel-Wert-Paares, dessen Schlüssel gleich o_key ist, oder Null,
wenn kein Schlüssel gefunden wurde. o_pos muß eine gültige Position sein. Die Suche beginnt bei Next
(o_pos).

t_Position SearchPrevKey (t_Position o_pos, t_Key o_key) const;

Liefert die Position des vorhergehenden Schlüssel-Wert-Paares, dessen Schlüssel gleich o_key ist, oder
Null, wenn kein Schlüssel gefunden wurde. o_pos muß eine gültige Position sein. Die Suche beginnt bei
Prev (o_pos).

Zugriff auf Schlüssel und Wert
t_Key GetKey (t_Position o_pos) const;

Liefert den Schlüssel des durch o_pos identifizierten Schlüssel-Wert-Paares. o_pos muß eine gültige
Position sein.

t_Value * GetValue (t_Position o_pos) const;

Liefert einen typisierten Zeiger auf den Wert des durch o_pos identifizierten Schlüssel-Wert-Paares. o_pos
muß eine gültige Position sein.

Zugriff auf gefundene Objekte
t_Value * GetFirstValue (t_Key o_key) const;

Liefert einen typisierten Zeiger auf den Wert des ersten Schlüssel-Wert-Paares, dessen Schlüssel gleich
o_key ist. Es muß mindestens ein gleicher Schlüssel enthalten sein.

t_Value * GetLastValue (t_Key o_key) const;

Liefert einen typisierten Zeiger auf den Wert des letzen Schlüssel-Wert-Paares, dessen Schlüssel gleich
o_key ist. Es muß mindestens ein gleicher Schlüssel enthalten sein.

Einfügen von Paaren
t_Position AddKeyAndValue (t_Key o_key, const t_Value * po_value = 0);

Fügt ein neues Schlüssel-Wert-Paar in den Container ein und liefert dessen Position. Ist der Zeiger
po_value gleich Null, wird das Wertobjekt mit seinem normalen Konstruktor erzeugt. Andernfalls wird sein
Kopierkonstruktor mit dem Parameter * po_value aufgerufen.

Spirick Tuning Referenzhandbuch Seite 82

t_Position AddKeyAndValueCond (t_Key o_key, const t_Value * po_value = 0);

Liefert die Position des ersten Schlüssel-Wert-Paares, dessen Schlüssel gleich o_key ist, oder die Position
eines neu eingefügten Paares, wenn kein Paar gefunden wurde. Zum Einfügen des neuen Paares wird die
Methode AddKeyAndValue aufgerufen.

Rückgabewert von Löschmethoden
Löschmethoden liefern stets die Position des Nachfolgers des gelöschten Eintrags. Diese Technik
ermöglicht das gleichzeitige Iterieren und Verändern eines Containers. Der Rückgabewert wird mit der
Methode Next vor dem Löschen berechnet. Wurde der der Reihenfolge nach letzte Eintrag gelöscht
(Methode Last), ist der Rückgabewert gleich Null.

Löschen von Paaren
t_Position DelKeyAndValue (t_Position o_pos);

Ruft den Destruktor des Schlüssel-Wert-Paares auf und gibt den zugehörigen Speicher frei. o_pos muß
eine gültige Position sein. Die Methode liefert Next (o_pos), also die Position des nächsten Paares oder
Null, wenn das letzte Paar gelöscht wurde.

void DelAllKeyAndValue ();

Ruft die Destruktoren aller Schlüssel-Wert-Paare auf und gibt deren Speicher frei. DelAllKeyAndValue ist i.
a. schneller als das mehrfache Löschen mit DelKeyAndValue.

Löschen gefundener Paare
t_Position DelFirstKeyAndValue (t_Key o_key);

Löscht das erste Schlüssel-Wert-Paar, dessen Schlüssel gleich o_key ist. Es muß mindestens ein gleicher
Schlüssel enthalten sein. Die Methode liefert die Position des Nachfolgers des gelöschten Paares oder
Null, wenn das letzte Paar gelöscht wurde.

t_Position DelLastKeyAndValue (t_Key o_key);

Löscht das letzte Schlüssel-Wert-Paar, dessen Schlüssel gleich o_key ist. Es muß mindestens ein gleicher
Schlüssel enthalten sein. Die Methode liefert die Position des Nachfolgers des gelöschten Paares oder
Null, wenn das letzte Paar gelöscht wurde.

Bedingtes Löschen gefundener Paare
t_Position DelFirstKeyAndValueCond (t_Key o_key);

Löscht das erste Schlüssel-Wert-Paar, dessen Schlüssel gleich o_key ist, sofern ein gleicher Schlüssel
gefunden wurde. Die Methode liefert die Position des Nachfolgers des gelöschten Paares oder Null,
wenn kein Schlüssel gefunden wurde oder das gelöschte Paar das letzte war.

t_Position DelLastKeyAndValueCond (t_Key o_key);

Löscht das letzte Schlüssel-Wert-Paar, dessen Schlüssel gleich o_key ist, sofern ein gleicher Schlüssel
gefunden wurde. Die Methode liefert die Position des Nachfolgers des gelöschten Paares oder Null,
wenn kein Schlüssel gefunden wurde oder das gelöschte Paar das letzte war.

2.5.6 Zeigermapcontainer (tuning/ptrmap.h)

Der Zeigermapcontainer ist ähnlich wie der Mapcontainer eine Erweiterung der normalen
Containerschnittstelle. Er verwaltet jedoch keine Schlüssel-Wert-Paare, sondern Schlüssel-Zeiger-Paare.
Die Schlüsselobjekte müssen einen Gleichheitsoperator (operator ==) besitzen. Er ermöglicht das Suchen
nach einem Zeiger mit einem gegebenen Schlüssel.

Spirick Tuning Referenzhandbuch Seite 83

Das Klassentemplate gct_PtrMap erwartet als Parameter eine Containerklasse, deren Objekttyp ein
Schlüssel-Zeiger-Paar ist, z. B. gct_Std32Array <gct_PtrMapEntry <ct_String> >, und den Datentyp des
Zeigers. Die Containerklasse dient dem Zeigermapcontainer als Basisklasse. Mit dem Hilfstemplate
gct_PtrMapEntry wird ein Schlüssel-Zeiger-Paar gebildet. Der Zeiger ist untypisiert (void *) und wird erst in
den Zugriffsmethoden in einen typisierten Zeiger umgewandelt. Wird als Basiscontainer ein sortiertes
Array verwendet, müssen die Schlüsselobjekte zusätzlich den Vergleichsoperator 'operator <' besitzen.
Wird als Basiscontainer eine Hashtabelle verwendet, müssen die Schlüsselobjekte zusätzlich die
Methode GetHash besitzen.

Das Schlüsselobjekt dient dem Hilfstemplate gct_PtrMapEntry als Basisklasse. Primitive Datentypen, z. B.
int oder char, können nicht direkt als Schlüssel verwendet werden. Das Hilfstemplate gct_Key wandelt
einen ganzzahligen Zahlentyp in einen Schlüsseltyp um, z. B. gct_PtrMapEntry <gct_Key <int> >.

Basisklassen
gct_AnyContainer (siehe Abschnitt ‘Containerschnittstelle’)
[gct_ExtContainer (optional, siehe Abschnitt ‘Erweiterter Container’)]

Templatedeklaration
template <class t_container, class t_value>
 class gct_PtrMap: public t_container
 {
 public:
 typedef t_Object::t_Key t_Key;
 typedef t_value t_Value;

 inline bool ContainsKey (t_Key o_key) const;
 t_Length CountKeys (t_Key o_key) const;

 t_Position SearchFirstKey (t_Key o_key) const;
 t_Position SearchLastKey (t_Key o_key) const;
 t_Position SearchNextKey (t_Position o_pos,
 t_Key o_key) const;
 t_Position SearchPrevKey (t_Position o_pos,
 t_Key o_key) const;

 inline t_Key GetKey (t_Position o_pos) const;
 inline t_Value * GetValPtr (t_Position o_pos) const;
 inline t_Value * GetFirstValPtr (t_Key o_key) const;
 inline t_Value * GetLastValPtr (t_Key o_key) const;

 t_Position AddKeyAndValPtr (t_Key o_key,
 const t_Value * po_value);
 t_Position AddKeyAndValPtrCond (t_Key o_key,
 const t_Value * po_value);

 inline t_Position DelKey (t_Position o_pos);
 inline t_Position DelFirstKey (t_Key o_key);
 inline t_Position DelLastKey (t_Key o_key);
 inline t_Position DelFirstKeyCond (t_Key o_key);
 inline t_Position DelLastKeyCond (t_Key o_key);
 inline void DelAllKey ();

 inline t_Position DelKeyAndValue (t_Position o_pos);
 inline t_Position DelFirstKeyAndValue (t_Key o_key);
 inline t_Position DelLastKeyAndValue (t_Key o_key);
 inline t_Position DelFirstKeyAndValueCond (t_Key o_key);
 inline t_Position DelLastKeyAndValueCond (t_Key o_key);
 void DelAllKeyAndValue ();
 };

Spirick Tuning Referenzhandbuch Seite 84

Datentypen
typedef t_Object::t_Key t_Key;

Der geschachtelte Typ t_Key ist der Datentyp der Schlüsselobjekte und wird vom Hilfstemplate
gct_PtrMapEntry übernommen.

typedef t_value t_Value;

Der geschachtelte Typ t_Value ist der Datentyp der Wertobjekte und wird als Templateparameter
übergeben.

Suche nach Paaren
bool ContainsKey (t_Key o_key) const;

Liefert true, wenn der Container einen Schlüssel enthält, der gleich o_key ist.

t_Length CountKeys (t_Key o_key) const;

Liefert die Anzahl der Schlüssel, die gleich o_key sind.

t_Position SearchFirstKey (t_Key o_key) const;

Liefert die Position des ersten Schlüssel-Zeiger-Paares, dessen Schlüssel gleich o_key ist, oder Null, wenn
kein Schlüssel gefunden wurde.

t_Position SearchLastKey (t_Key o_key) const;

Liefert die Position des letzten Schlüssel-Zeiger-Paares, dessen Schlüssel gleich o_key ist, oder Null,
wenn kein Schlüssel gefunden wurde.

t_Position SearchNextKey (t_Position o_pos, t_Key o_key) const;

Liefert die Position des nächsten Schlüssel-Zeiger-Paares, dessen Schlüssel gleich o_key ist, oder Null,
wenn kein Schlüssel gefunden wurde. o_pos muß eine gültige Position sein. Die Suche beginnt bei Next
(o_pos).

t_Position SearchPrevKey (t_Position o_pos, t_Key o_key) const;

Liefert die Position des vorhergehenden Schlüssel-Zeiger-Paares, dessen Schlüssel gleich o_key ist, oder
Null, wenn kein Schlüssel gefunden wurde. o_pos muß eine gültige Position sein. Die Suche beginnt bei
Prev (o_pos).

Zugriff auf Schlüssel und Wert
t_Key GetKey (t_Position o_pos) const;

Liefert den Schlüssel des durch o_pos identifizierten Schlüssel-Zeiger-Paares. o_pos muß eine gültige
Position sein.

t_Value * GetValPtr (t_Position o_pos) const;

Liefert einen typisierten Zeiger auf den Wert des durch o_pos identifizierten Schlüssel-Zeiger-Paares. o_pos
muß eine gültige Position sein.

Zugriff auf gefundene Objekte
t_Value * GetFirstValPtr (t_Key o_key) const;

Liefert einen typisierten Zeiger auf den Wert des ersten Schlüssel-Zeiger-Paares, dessen Schlüssel gleich
o_key ist. Es muß mindestens ein gleicher Schlüssel enthalten sein.

Spirick Tuning Referenzhandbuch Seite 85

t_Value * GetLastValPtr (t_Key o_key) const;

Liefert einen typisierten Zeiger auf den Wert des letzen Schlüssel-Zeiger-Paares, dessen Schlüssel gleich
o_key ist. Es muß mindestens ein gleicher Schlüssel enthalten sein.

Einfügen von Paaren
t_Position AddKeyAndValPtr (t_Key o_key, const t_Value * po_value);

Fügt ein neues Schlüssel-Zeiger-Paar in den Container ein und liefert dessen Position.

t_Position AddKeyAndValPtrCond (t_Key o_key, const t_Value * po_value);

Liefert die Position des ersten Schlüssel-Zeiger-Paares, dessen Schlüssel gleich o_key ist, oder die
Position eines neu eingefügten Paares, wenn kein Paar gefunden wurde. Zum Einfügen des neuen Paares
wird die Methode AddKeyAndValPtr aufgerufen.

Rückgabewert von Löschmethoden
Löschmethoden liefern stets die Position des Nachfolgers des gelöschten Eintrags. Diese Technik
ermöglicht das gleichzeitige Iterieren und Verändern eines Containers. Der Rückgabewert wird mit der
Methode Next vor dem Löschen berechnet. Wurde der der Reihenfolge nach letzte Eintrag gelöscht
(Methode Last), ist der Rückgabewert gleich Null.

Löschen von Paaren
t_Position DelKey (t_Position o_pos);

Ruft den Destruktor des Schlüssel-Zeiger-Paares auf und gibt den zugehörigen Speicher frei. o_pos muß
eine gültige Position sein. Die Methode liefert Next (o_pos), also die Position des nächsten Paares oder
Null, wenn das letzte Paar gelöscht wurde.

void DelAllKey ();

Ruft die Destruktoren aller Schlüssel-Zeiger-Paare auf und gibt deren Speicher frei. DelAllKey ist i. a.
schneller als das mehrfache Löschen mit DelKey.

Löschen gefundener Paare
t_Position DelFirstKey (t_Key o_key);

Löscht das erste Schlüssel-Zeiger-Paar, dessen Schlüssel gleich o_key ist. Es muß mindestens ein
gleicher Schlüssel enthalten sein. Die Methode liefert die Position des Nachfolgers des gelöschten Paares
oder Null, wenn das letzte Paar gelöscht wurde.

t_Position DelLastKey (t_Key o_key);

Löscht das letzte Schlüssel-Zeiger-Paar, dessen Schlüssel gleich o_key ist. Es muß mindestens ein
gleicher Schlüssel enthalten sein. Die Methode liefert die Position des Nachfolgers des gelöschten Paares
oder Null, wenn das letzte Paar gelöscht wurde.

Bedingtes Löschen gefundener Paare
t_Position DelFirstKeyCond (t_Key o_key);

Löscht das erste Schlüssel-Zeiger-Paar, dessen Schlüssel gleich o_key ist, sofern ein gleicher Schlüssel
gefunden wurde. Die Methode liefert die Position des Nachfolgers des gelöschten Paares oder Null,
wenn kein Schlüssel gefunden wurde oder das gelöschte Paar das letzte war.

Spirick Tuning Referenzhandbuch Seite 86

t_Position DelLastKeyCond (t_Key o_key);

Löscht das letzte Schlüssel-Zeiger-Paar, dessen Schlüssel gleich o_key ist, sofern ein gleicher Schlüssel
gefunden wurde. Die Methode liefert die Position des Nachfolgers des gelöschten Paares oder Null,
wenn kein Schlüssel gefunden wurde oder das gelöschte Paar das letzte war.

Löschen von Paaren und referenzierten Objekten
t_Position DelKeyAndValue (t_Position o_pos);

Wirkt wie DelKey und löscht zusätzlich das referenzierte Objekt.

void DelAllKeyAndValue ();

Wirkt wie DelAllKey und löscht zusätzlich die referenzierten Objekte.

Löschen gefundener Paare und referenzierter Objekte
t_Position DelFirstKeyAndValue (t_Key o_key);

Wirkt wie DelFirstKey und löscht zusätzlich das referenzierte Objekt.

t_Position DelLastKeyAndValue (t_Key o_key);

Wirkt wie DelLastKey und löscht zusätzlich das referenzierte Objekt.

Bedingtes Löschen gefundener Paare und referenzierter Objekte
t_Position DelFirstKeyAndValueCond (t_Key o_key);

Wirkt wie DelFirstKeyCond und löscht zusätzlich das referenzierte Objekt.

t_Position DelLastKeyAndValueCond (t_Key o_key);

Wirkt wie DelLastKeyCond und löscht zusätzlich das referenzierte Objekt.

2.6 Zeigercontainer-Instanzen

2.6.1 Zeigerarray-Instanzen (tuning/xxx/ptrarray.h)

Zur Erleichterung des Umgangs mit Zeigerarraycontainern werden in der Bibliothek Spirick Tuning einige
Standardinstanzen vordefiniert. Das Makro PTR_ARRAY_DCLS(Obj) generiert ähnlich wie BLOCK_DCLS(Obj) für
jede der vier Wrapperklassen eines globalen Storeobjekts je ein Zeigerarraytemplate, das nur noch den
Parameter t_obj besitzt. Die Makroverwendung

PTR_ARRAY_DCLS (Any)

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t_obj> class gct_Any_PtrArray:
 public gct_PtrContainer <t_obj, gct_Any_Array <void *> > { };
template <class t_obj> class gct_Any8PtrArray:
 public gct_PtrContainer <t_obj, gct_Any8Array <void *> > { };
template <class t_obj> class gct_Any16PtrArray:
 public gct_PtrContainer <t_obj, gct_Any16Array <void *> > { };
template <class t_obj> class gct_Any32PtrArray:
 public gct_PtrContainer <t_obj, gct_Any32Array <void *> > { };

Jedes Verzeichnis eines dynamischen Stores enthält eine Datei 'ptrarray.h'. Darin werden mit Hilfe des
Makros PTR_ARRAY_DCLS nach obigem Muster vier Zeigerarraytemplates deklariert.

Spirick Tuning Referenzhandbuch Seite 87

In der Datei 'tuning/std/ptrarray.h' werden deklariert:

template <class t_obj> class gct_Std_PtrArray;
template <class t_obj> class gct_Std8PtrArray;
template <class t_obj> class gct_Std16PtrArray;
template <class t_obj> class gct_Std32PtrArray;

In der Datei 'tuning/rnd/ptrarray.h' werden deklariert:

template <class t_obj> class gct_Rnd_PtrArray;
template <class t_obj> class gct_Rnd8PtrArray;
template <class t_obj> class gct_Rnd16PtrArray;
template <class t_obj> class gct_Rnd32PtrArray;

In der Datei 'tuning/chn/ptrarray.h' werden deklariert:

template <class t_obj> class gct_Chn_PtrArray;
template <class t_obj> class gct_Chn8PtrArray;
template <class t_obj> class gct_Chn16PtrArray;
template <class t_obj> class gct_Chn32PtrArray;

2.6.2 Zeigerlisten-Instanzen (tuning/xxx/ptrdlist.h)

Zur Erleichterung des Umgangs mit Zeigerlistencontainern werden in der Bibliothek Spirick Tuning einige
Standardinstanzen vordefiniert. Das Makro PTR_DLIST_DCLS(Obj) generiert ähnlich wie BLOCK_DCLS(Obj) für
jede der vier Wrapperklassen eines globalen Storeobjekts je ein Zeigerlistentemplate, das nur noch den
Parameter t_obj besitzt. Die Makroverwendung

PTR_DLIST_DCLS (Any)

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t_obj> class gct_Any_PtrDList:
 public gct_PtrContainer <t_obj, gct_Any_DList <void *> > { };
template <class t_obj> class gct_Any8PtrDList:
 public gct_PtrContainer <t_obj, gct_Any8DList <void *> > { };
template <class t_obj> class gct_Any16PtrDList:
 public gct_PtrContainer <t_obj, gct_Any16DList <void *> > { };
template <class t_obj> class gct_Any32PtrDList:
 public gct_PtrContainer <t_obj, gct_Any32DList <void *> > { };

Jedes Verzeichnis eines dynamischen Stores enthält eine Datei 'ptrdlist.h'. Darin werden mit Hilfe des
Makros PTR_DLIST_DCLS nach obigem Muster vier Zeigerlistentemplates deklariert.

In der Datei 'tuning/std/ptrdlist.h' werden deklariert:

template <class t_obj> class gct_Std_PtrDList;
template <class t_obj> class gct_Std8PtrDList;
template <class t_obj> class gct_Std16PtrDList;
template <class t_obj> class gct_Std32PtrDList;

In der Datei 'tuning/rnd/ptrdlist.h' werden deklariert:

template <class t_obj> class gct_Rnd_PtrDList;
template <class t_obj> class gct_Rnd8PtrDList;
template <class t_obj> class gct_Rnd16PtrDList;
template <class t_obj> class gct_Rnd32PtrDList;

In der Datei 'tuning/chn/ptrdlist.h' werden deklariert:

Spirick Tuning Referenzhandbuch Seite 88

template <class t_obj> class gct_Chn_PtrDList;
template <class t_obj> class gct_Chn8PtrDList;
template <class t_obj> class gct_Chn16PtrDList;
template <class t_obj> class gct_Chn32PtrDList;

2.6.3 Sortierte Zeigerarray-Instanzen
(tuning/xxx/ptrsortedarray.h)

Zur Erleichterung des Umgangs mit sortierten Zeigerarraycontainern werden in der Bibliothek Spirick
Tuning einige Standardinstanzen vordefiniert. Das Makro PTR_SORTEDARRAY_DCLS(Obj) generiert ähnlich wie
BLOCK_DCLS(Obj) für jede der vier Wrapperklassen eines globalen Storeobjekts je ein Zeigerarraytemplate,
das nur noch den Parameter t_obj besitzt. Die Makroverwendung

PTR_SORTEDARRAY_DCLS (Any)

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t_obj> class gct_Any_PtrSortedArray:
 public gct_PtrContainer <t_obj, gct_Any_SortedArray <gct_SortedArrayRef <t_obj> > > { };
template <class t_obj> class gct_Any8PtrSortedArray:
 public gct_PtrContainer <t_obj, gct_Any8SortedArray <gct_SortedArrayRef <t_obj> > > { };
template <class t_obj> class gct_Any16PtrSortedArray:
 public gct_PtrContainer <t_obj, gct_Any16SortedArray <gct_SortedArrayRef <t_obj> > > { };
template <class t_obj> class gct_Any32PtrSortedArray:
 public gct_PtrContainer <t_obj, gct_Any32SortedArray <gct_SortedArrayRef <t_obj> > > { };

Jedes Verzeichnis eines dynamischen Stores enthält eine Datei 'ptrsortedarray.h'. Darin werden mit Hilfe
des Makros PTR_SORTEDARRAY_DCLS nach obigem Muster vier Zeigerarraytemplates deklariert.

In der Datei 'tuning/std/ptrsortedarray.h' werden deklariert:

template <class t_obj> class gct_Std_PtrSortedArray;
template <class t_obj> class gct_Std8PtrSortedArray;
template <class t_obj> class gct_Std16PtrSortedArray;
template <class t_obj> class gct_Std32PtrSortedArray;

In der Datei 'tuning/rnd/ptrsortedarray.h' werden deklariert:

template <class t_obj> class gct_Rnd_PtrSortedArray;
template <class t_obj> class gct_Rnd8PtrSortedArray;
template <class t_obj> class gct_Rnd16PtrSortedArray;
template <class t_obj> class gct_Rnd32PtrSortedArray;

In der Datei 'tuning/chn/ptrsortedarray.h' werden deklariert:

template <class t_obj> class gct_Chn_PtrSortedArray;
template <class t_obj> class gct_Chn8PtrSortedArray;
template <class t_obj> class gct_Chn16PtrSortedArray;
template <class t_obj> class gct_Chn32PtrSortedArray;

2.6.4 Zeigerhashtabellen-Instanzen (tuning/xxx/ptrhashtable.h)

Zur Erleichterung des Umgangs mit Zeigerhashtabellencontainern werden in der Bibliothek Spirick Tuning
einige Standardinstanzen vordefiniert. Das Makro PTR_HASHTABLE_DCLS(Obj) generiert ähnlich wie
BLOCK_DCLS(Obj) für jede der vier Wrapperklassen eines globalen Storeobjekts je ein
Zeigerhashtabellentemplate, das nur noch den Parameter t_obj besitzt. Die Makroverwendung

PTR_HASHTABLE_DCLS (Any)

Spirick Tuning Referenzhandbuch Seite 89

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t_obj> class gct_Any_PtrHashTable:
 public gct_PtrContainer <t_obj, gct_Any_HashTable <gct_HashTableRef <t_obj> > > { };
template <class t_obj> class gct_Any8PtrHashTable:
 public gct_PtrContainer <t_obj, gct_Any8HashTable <gct_HashTableRef <t_obj> > > { };
template <class t_obj> class gct_Any16PtrHashTable:
 public gct_PtrContainer <t_obj, gct_Any16HashTable <gct_HashTableRef <t_obj> > > { };
template <class t_obj> class gct_Any32PtrHashTable:
 public gct_PtrContainer <t_obj, gct_Any32HashTable <gct_HashTableRef <t_obj> > > { };

Jedes Verzeichnis eines dynamischen Stores enthält eine Datei 'ptrhashtable.h'. Darin werden mit Hilfe
des Makros PTR_HASHTABLE_DCLS nach obigem Muster vier Zeigerhashtabellentemplates deklariert.

In der Datei 'tuning/std/ptrhashtable.h' werden deklariert:

template <class t_obj> class gct_Std_PtrHashTable;
template <class t_obj> class gct_Std8PtrHashTable;
template <class t_obj> class gct_Std16PtrHashTable;
template <class t_obj> class gct_Std32PtrHashTable;

In der Datei 'tuning/rnd/ptrhashtable.h' werden deklariert:

template <class t_obj> class gct_Rnd_PtrHashTable;
template <class t_obj> class gct_Rnd8PtrHashTable;
template <class t_obj> class gct_Rnd16PtrHashTable;
template <class t_obj> class gct_Rnd32PtrHashTable;

In der Datei 'tuning/chn/ptrhashtable.h' werden deklariert:

template <class t_obj> class gct_Chn_PtrHashTable;
template <class t_obj> class gct_Chn8PtrHashTable;
template <class t_obj> class gct_Chn16PtrHashTable;
template <class t_obj> class gct_Chn32PtrHashTable;

2.6.5 Blockzeigerlisten-Instanzen (tuning/xxx/blockptrdlist.h)

Zur Erleichterung des Umgangs mit Blockzeigerlisten werden in der Bibliothek Spirick Tuning einige
Standardinstanzen vordefiniert. Das Makro BLOCKPTR_DLIST_DCLS(Obj) generiert ähnlich wie BLOCK_DCLS(Obj)
für jede der vier Wrapperklassen eines globalen Storeobjekts je ein Blockzeigerlistentemplate, das nur
noch den Parameter t_obj besitzt. Die Makroverwendung

BLOCKPTR_DLIST_DCLS (Any)

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t_obj> class gct_Any_BlockPtrDList:
 public gct_PtrContainer <t_obj, gct_Any_BlockDList <void *> > { };
template <class t_obj> class gct_Any8BlockPtrDList:
 public gct_PtrContainer <t_obj, gct_Any8BlockDList <void *> > { };
template <class t_obj> class gct_Any16BlockPtrDList:
 public gct_PtrContainer <t_obj, gct_Any16BlockDList <void *> > { };
template <class t_obj> class gct_Any32BlockPtrDList:
 public gct_PtrContainer <t_obj, gct_Any32BlockDList <void *> > { };

Jedes Verzeichnis eines dynamischen Stores enthält eine Datei 'blockptrdlist.h'. Darin werden mit Hilfe
des Makros BLOCKPTR_DLIST_DCLS nach obigem Muster vier Blockzeigerlistentemplates deklariert.

In der Datei 'tuning/std/blockptrdlist.h' werden deklariert:

Spirick Tuning Referenzhandbuch Seite 90

template <class t_obj> class gct_Std_BlockPtrDList;
template <class t_obj> class gct_Std8BlockPtrDList;
template <class t_obj> class gct_Std16BlockPtrDList;
template <class t_obj> class gct_Std32BlockPtrDList;

In der Datei 'tuning/rnd/blockptrdlist.h' werden deklariert:

template <class t_obj> class gct_Rnd_BlockPtrDList;
template <class t_obj> class gct_Rnd8BlockPtrDList;
template <class t_obj> class gct_Rnd16BlockPtrDList;
template <class t_obj> class gct_Rnd32BlockPtrDList;

In der Datei 'tuning/chn/blockptrdlist.h' werden deklariert:

template <class t_obj> class gct_Chn_BlockPtrDList;
template <class t_obj> class gct_Chn8BlockPtrDList;
template <class t_obj> class gct_Chn16BlockPtrDList;
template <class t_obj> class gct_Chn32BlockPtrDList;

2.6.6 Refzeigerlisten-Instanzen (tuning/xxx/refptrdlist.h)

Zur Erleichterung des Umgangs mit Refzeigerlisten werden in der Bibliothek Spirick Tuning einige
Standardinstanzen vordefiniert. Das Makro REFPTR_DLIST_DCLS(Obj) generiert ähnlich wie BLOCK_DCLS(Obj)
für jede der vier Wrapperklassen eines globalen Storeobjekts je ein Refzeigerlistentemplate, das nur noch
den Parameter t_obj besitzt. Die Makroverwendung

REFPTR_DLIST_DCLS (Any)

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t_obj> class gct_Any_RefPtrDList:
 public gct_PtrContainer <t_obj, gct_Any_RefDList <void *> > { };
template <class t_obj> class gct_Any8RefPtrDList:
 public gct_PtrContainer <t_obj, gct_Any8RefDList <void *> > { };
template <class t_obj> class gct_Any16RefPtrDList:
 public gct_PtrContainer <t_obj, gct_Any16RefDList <void *> > { };
template <class t_obj> class gct_Any32RefPtrDList:
 public gct_PtrContainer <t_obj, gct_Any32RefDList <void *> > { };

Jedes Verzeichnis eines dynamischen Stores enthält eine Datei 'refptrdlist.h'. Darin werden mit Hilfe des
Makros REFPTR_DLIST_DCLS nach obigem Muster vier Refzeigerlistentemplates deklariert.

In der Datei 'tuning/std/refptrdlist.h' werden deklariert:

template <class t_obj> class gct_Std_RefPtrDList;
template <class t_obj> class gct_Std8RefPtrDList;
template <class t_obj> class gct_Std16RefPtrDList;
template <class t_obj> class gct_Std32RefPtrDList;

In der Datei 'tuning/rnd/refptrdlist.h' werden deklariert:

template <class t_obj> class gct_Rnd_RefPtrDList;
template <class t_obj> class gct_Rnd8RefPtrDList;
template <class t_obj> class gct_Rnd16RefPtrDList;
template <class t_obj> class gct_Rnd32RefPtrDList;

In der Datei 'tuning/chn/refptrdlist.h' werden deklariert:

template <class t_obj> class gct_Chn_RefPtrDList;
template <class t_obj> class gct_Chn8RefPtrDList;
template <class t_obj> class gct_Chn16RefPtrDList;

Spirick Tuning Referenzhandbuch Seite 91

template <class t_obj> class gct_Chn32RefPtrDList;

2.6.7 Blockrefzeigerlisten-Instanzen
(tuning/xxx/blockrefptrdlist.h)

Zur Erleichterung des Umgangs mit Blockrefzeigerlisten werden in der Bibliothek Spirick Tuning einige
Standardinstanzen vordefiniert. Das Makro BLOCKREFPTR_DLIST_DCLS(Obj) generiert ähnlich wie
BLOCK_DCLS(Obj) für jede der vier Wrapperklassen eines globalen Storeobjekts je ein
Blockrefzeigerlistentemplate, das nur noch den Parameter t_obj besitzt. Die Makroverwendung

BLOCKREFPTR_DLIST_DCLS (Any)

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t_obj> class gct_Any_BlockRefPtrDList: public
 gct_PtrContainer <t_obj, gct_Any_BlockRefDList <void *> > { };
template <class t_obj> class gct_Any8BlockRefPtrDList: public
 gct_PtrContainer <t_obj, gct_Any8BlockRefDList <void *> > { };
template <class t_obj> class gct_Any16BlockRefPtrDList: public
 gct_PtrContainer <t_obj, gct_Any16BlockRefDList <void *> > { };
template <class t_obj> class gct_Any32BlockRefPtrDList: public
 gct_PtrContainer <t_obj, gct_Any32BlockRefDList <void *> > { };

Jedes Verzeichnis eines dynamischen Stores enthält eine Datei 'blockrefptrdlist.h'. Darin werden mit
Hilfe des Makros BLOCKREFPTR_DLIST_DCLS nach obigem Muster vier Blockrefzeigerlistentemplates deklariert.

In der Datei 'tuning/std/blockrefptrdlist.h' werden deklariert:

template <class t_obj> class gct_Std_BlockRefPtrDList;
template <class t_obj> class gct_Std8BlockRefPtrDList;
template <class t_obj> class gct_Std16BlockRefPtrDList;
template <class t_obj> class gct_Std32BlockRefPtrDList;

In der Datei 'tuning/rnd/blockrefptrdlist.h' werden deklariert:

template <class t_obj> class gct_Rnd_BlockRefPtrDList;
template <class t_obj> class gct_Rnd8BlockRefPtrDList;
template <class t_obj> class gct_Rnd16BlockRefPtrDList;
template <class t_obj> class gct_Rnd32BlockRefPtrDList;

In der Datei 'tuning/chn/blockrefptrdlist.h' werden deklariert:

template <class t_obj> class gct_Chn_BlockRefPtrDList;
template <class t_obj> class gct_Chn8BlockRefPtrDList;
template <class t_obj> class gct_Chn16BlockRefPtrDList;
template <class t_obj> class gct_Chn32BlockRefPtrDList;

2.7 Übersicht Container-Instanzen

2.7.1 Vordefinierte Templateinstanzen

Zur besseren Orientierung in der großen Menge vordefinierter Standardinstanzen wurde eine einheitliche
Namensgebung verwendet. Die mit einem DCLS-Makro generierten Namen bestehen aus sieben Teilen.

Spirick Tuning Referenzhandbuch Seite 92

1. Präfix
Jeder vordefinierte Container ist ein Template, besitzt das Präfix gct_ und genau einen
Templateparameter, den Typ der verwalteten Objekte.

2. Globaler Store
Es folgt das Kürzel für das globale Storeobjekt, von dem der Container seinen Speicher anfordert.
Vordefiniert sind Std, Rnd und Chn.

3. Längentyp
Es folgt das Kürzel für den geschachtelten Längentyp. Dieser beeinflußt nicht nur die Anzahl
verarbeitbarer Objekte, sondern auch den Speicherbedarf. Bei Arrays und Blocklisten ist der Längentyp
gleich dem Positionstyp. Vordefiniert sind _, 8, 16 und 32.

4. Optional Block
Bei Listencontainern kann an dieser Stelle optional Block angegeben werden. Blocklisten bringen ihre
Nodes kompakt in einem Blockstore unter.

5. Optional Ref
Bei Listencontainern kann an dieser Stelle optional Ref angegeben werden. Reflisten ordnen jedem Node
einen Referenzzähler zu. Damit können sichere Zeiger auf Listeneinträge implementiert werden.

6. Optional Ptr
An dieser Stelle kann optional Ptr angegeben werden. Zeigercontainer enthalten ihre Objekte nicht
selbst, sondern verwalten nur Zeiger darauf.

7. Containertyp
Am Ende wird der Containertyp Array, DList, SortedArray oder HashTable angegeben.

Die folgende Tabelle faßt die Namensbildung der vordefinierten Container zusammen.

Präfix Glob. Store t_Length Opt. Block Opt. Ref Opt. Ptr Cont.typ

gct_ Std _ Block Ref Ptr Array

Rnd 8 - - - DList

Chn 16 SortedArray

32 HashTable

2.7.2 Selbstdefinierte Templateinstanzen

Die vordefinierten Templateinstanzen basieren auf den drei dynamischen Stores Standardstore,
Roundstore und Chainstore sowie dem allgemeinen Blocktemplate gct_Block. Neben den vordefinierten
Instanzen können natürlich auch beliebige andere Instanzen gebildet werden, indem z. B. statt gct_Block
gct_FixBlock, gct_MiniBlock oder gct_ResBlock verwendet wird. Weiterhin können auch selbstdefinierte
Store- und Blockimplementierungen zum Einsatz kommen. Wegen der großen Zahl möglicher

Spirick Tuning Referenzhandbuch Seite 93

Kombinationen können weitere Templateinstanzen nicht vordefiniert werden. Man sollte sich bei
selbstdefinierten Templateinstanzen aber an die Struktur und Namensgebung der vordefinierten
Instanzen halten, damit aus dem Namen die Eigenschaften der Instanzen erkennbar sind. Auf diese
Weise können z. B. die folgenden Instanzen definiert werden:

typedef gct_EmptyBaseMiniBlock <ct_Chn_Store> ct_Chn_MiniBlock;
typedef gct_EmptyBaseMiniBlock <ct_Chn32Store> ct_Chn32MiniBlock;
typedef gct_BlockStore <ct_PageBlock, gct_CharBlock <ct_Chn_MiniBlock, char> > ct_Chn_PageBlockStore;

template <class t_obj>
 class gct_Chn_MiniArray: public gct_ExtContainer
 <gct_FixItemArray <t_obj, ct_Chn_MiniBlock> > { };

template <class t_obj>
 class gct_Chn_MiniSortedArray: public gct_ExtContainer
 <gct_FixItemSortedArray <t_obj, ct_Chn_MiniBlock> > { };

template <class t_obj>
 class gct_Chn_MiniPtrArray:
 public gct_PtrContainer <t_obj, gct_Chn_MiniArray <void *> > { };

template <class t_obj>
 class gct_Chn32MiniHashTable:
 public gct_ExtContainer <gct_HashTable <t_obj, ct_Chn32MiniBlock> > { };

template <class t_obj>
 class gct_Chn32MiniPtrHashTable:
 public gct_PtrContainer <t_obj, gct_Chn32MiniHashTable
 <gct_HashTableRef <t_obj> > > { };

2.8 Collections

2.8.1 Abstraktes Objekt (tuning/object.hpp)

Container sind homogen und enthalten stets gleichartige Objekte. Collections sind hingegen polymorph.
Sie können Objekte unterschiedlichen Typs verwalten. Zum typisierten Zugriff auf diese Objekte wird die
abstrakte Basisklasse ct_Object definiert. Sie enthält einen virtuellen Destruktor. Dieser stellt sicher, daß
beim Zerstören abgeleiteter Objekte der richtige Destruktor aufgerufen wird. Alle von ct_Object
abgeleiteten Klassen können in Collections verwaltet werden.

Klassendeklaration
class ct_Object
 {
public:
 virtual ~ct_Object ();
 virtual bool operator < (const ct_Object & co_comp) const;
 virtual t_UInt GetHash () const;
 };

Methoden
~ct_Object ();

Die Klasse ct_Object dient als eine abstrakte Basisklasse. Der virtuelle Destruktor sichert das korrekte
Zerstören abgeleiteter Objekte in einem polymorphen Kontext.

Spirick Tuning Referenzhandbuch Seite 94

bool operator < (const ct_Object & co_comp) const;

Der Vergleichsoperator 'operator <' wird in der Collection ct_SortedArray zum sortierten Einfügen eines
neuen Elements benötigt.

t_UInt GetHash () const;

Die Methode GetHash wird in einem Hashtabellencontainer zum Einfügen eines neuen Elements benötigt.

2.8.2 Abstrakte Collection (tuning/collection.hpp)

Collections können nicht nur polymorphe Objekte verwalten, sondern bilden auch selber einen
polymorphen Klassenbaum. Sie erben von der abstrakten Basisklasse ct_Collection. Die
Collectionschnittstelle gleicht syntaktisch und semantisch der eines Zeigercontainers, z. B.
gct_Chn_PtrArray <ct_Object>.

Die Verwendung einer einheitlichen Schnittstelle erleichtert dem Anwender das Austauschen von
Containern und Collections. Sie ermöglicht zudem eine einfache Implementierung von Collections durch
Mappen der Funktionalität eines Zeigercontainers. Im Gegensatz zu einem Zeigercontainer sind jedoch
sämtliche Methoden der Klasse ct_Collection rein virtuell deklariert. Sie müssen in abgeleiteten Klassen
(konkreten Collections) definiert werden.

Basisklasse
ct_Object (siehe Abschnitt ‘Abstraktes Objekt’)

Klassendeklaration
class ct_Collection: public ct_Object
 {
public:
 typedef t_UInt t_Length;
 typedef t_UInt t_Position;

 virtual bool IsEmpty () const = 0;
 virtual t_Length GetLen () const = 0;

 virtual t_Position First () const = 0;
 virtual t_Position Last () const = 0;
 virtual t_Position Next (t_Position o_pos) const = 0;
 virtual t_Position Prev (t_Position o_pos) const = 0;
 virtual t_Position Nth (t_Length u_idx) const = 0;

 virtual ct_Object * GetPtr (t_Position o_pos) const = 0;
 virtual ct_Object * GetFirstPtr () const = 0;
 virtual ct_Object * GetLastPtr () const = 0;
 virtual ct_Object * GetNextPtr (t_Position o_pos) const = 0;
 virtual ct_Object * GetPrevPtr (t_Position o_pos) const = 0;
 virtual ct_Object * GetNthPtr (t_Length u_idx) const = 0;

 virtual t_Position AddPtr (const ct_Object * po_obj) = 0;
 virtual t_Position AddPtrBefore (t_Position o_pos, const ct_Object * po_obj) = 0;
 virtual t_Position AddPtrAfter (t_Position o_pos, const ct_Object * po_obj) = 0;
 virtual t_Position AddPtrBeforeFirst (const ct_Object * po_obj) = 0;
 virtual t_Position AddPtrAfterLast (const ct_Object * po_obj) = 0;
 virtual t_Position AddPtrBeforeNth (t_Length u_idx, const ct_Object * po_obj) = 0;
 virtual t_Position AddPtrAfterNth (t_Length u_idx, const ct_Object * po_obj) = 0;

 virtual t_Position DelPtr (t_Position o_pos) = 0;
 virtual t_Position DelFirstPtr () = 0;
 virtual t_Position DelLastPtr () = 0;
 virtual t_Position DelNextPtr (t_Position o_pos) = 0;
 virtual t_Position DelPrevPtr (t_Position o_pos) = 0;

Spirick Tuning Referenzhandbuch Seite 95

 virtual t_Position DelNthPtr (t_Length u_idx) = 0;
 virtual void DelAllPtr () = 0;

 virtual t_Position DelPtrAndObj (t_Position o_pos) = 0;
 virtual t_Position DelFirstPtrAndObj () = 0;
 virtual t_Position DelLastPtrAndObj () = 0;
 virtual t_Position DelNextPtrAndObj (t_Position o_pos) = 0;
 virtual t_Position DelPrevPtrAndObj (t_Position o_pos) = 0;
 virtual t_Position DelNthPtrAndObj (t_Length u_idx) = 0;
 virtual void DelAllPtrAndObj () = 0;

 virtual bool ContainsPtr (const ct_Object * po_obj) const = 0;
 virtual t_Length CountPtrs (const ct_Object * po_obj) const = 0;

 virtual t_Position SearchFirstPtr (const ct_Object * po_obj) const = 0;
 virtual t_Position SearchLastPtr (const ct_Object * po_obj) const = 0;
 virtual t_Position SearchNextPtr (t_Position o_pos, const ct_Object * po_obj) const = 0;
 virtual t_Position SearchPrevPtr (t_Position o_pos, const ct_Object * po_obj) const = 0;

 virtual t_Position AddPtrCond (const ct_Object * po_obj) = 0;
 virtual t_Position AddPtrBeforeFirstCond (const ct_Object * po_obj) = 0;
 virtual t_Position AddPtrAfterLastCond (const ct_Object * po_obj) = 0;

 virtual t_Position DelFirstEqualPtr (const ct_Object * po_obj) = 0;
 virtual t_Position DelLastEqualPtr (const ct_Object * po_obj) = 0;
 virtual t_Position DelFirstEqualPtrCond (const ct_Object * po_obj) = 0;
 virtual t_Position DelLastEqualPtrCond (const ct_Object * po_obj) = 0;

 virtual t_Position DelFirstEqualPtrAndObj (const ct_Object * po_obj) = 0;
 virtual t_Position DelLastEqualPtrAndObj (const ct_Object * po_obj) = 0;
 virtual t_Position DelFirstEqualPtrAndObjCond (const ct_Object * po_obj) = 0;
 virtual t_Position DelLastEqualPtrAndObjCond (const ct_Object * po_obj) = 0;
 };

Methoden
Die Beschreibung der Methoden ist identisch mit der Schnittstelle des Zeigercontainers und wird nicht
wiederholt (siehe Abschnitt 'Zeigercontainer', Template gct_PtrContainer).

2.8.3 Operationen mit Collections

Objekte einfügen, kopieren und löschen
Das folgende Programmbeispiel demonstriert das Einfügen, Kopieren und Löschen von Objekten in einer
Collection. Die Klasse ct_Int wird im Abschnitt ‘Beispielprogramme’ beschrieben.

ct_Int co_int = 1;
ct_Int * pco_int;
ct_AnyCollection co_collection;
ct_AnyCollection::t_Position o_pos;

// Neues Objekt in der Collection mit Defaultkonstruktor erzeugen
o_pos = co_collection. AddPtr (new ct_Int);

// Auf das Objekt zugreifen und es und initialisieren
pco_int = (ct_Int *) co_collection. GetPtr (o_pos);
(* pco_int) = 2;

// Vorhandenes Objekt in die Collection kopieren
o_pos = co_collection. AddPtr (new ct_Int (co_int));

// Objekt aus der Collection nehmen und löschen

Spirick Tuning Referenzhandbuch Seite 96

co_collection. DelPtrAndObj (o_pos);

Vorwärts iterieren
Zum Iterieren einer Collection in aufsteigender Reihenfolge der Einträge wird eine for-Schleife nach
folgendem Muster empfohlen:

ct_AnyCollection co_collection;
ct_AnyCollection::t_Position o_pos;

for (o_pos = co_collection. First ();
 o_pos != 0;
 o_pos = co_collection. Next (o_pos))
 {
 ct_Object * pco_object = co_collection. GetPtr (o_pos);
 // ...
 }

Rückwärts iterieren
Zum Iterieren einer Collection in absteigender Reihenfolge der Einträge wird eine for-Schleife nach
folgendem Muster empfohlen:

ct_AnyCollection co_collection;
ct_AnyCollection::t_Position o_pos;

for (o_pos = co_collection. Last ();
 o_pos != 0;
 o_pos = co_collection. Prev (o_pos))
 {
 ct_Object * pco_object = co_collection. GetPtr (o_pos);
 // ...
 }

Iterieren und verändern
Zum Iterieren und Verändern einer Collection wird eine for-Schleife nach folgendem Muster empfohlen:

ct_AnyCollection co_collection;
ct_AnyCollection::t_Position o_pos;

for (o_pos = co_collection. First ();
 o_pos != 0;
 o_pos = /* delete entry ? */ ?
 co_collection. DelPtrAndObj (o_pos) :
 co_collection. Next (o_pos))
 {
 ct_Object * pco_object = co_collection. GetPtr (o_pos);
 // ...
 }

Statt der for-Schleife kann auch eine while-Schleife nach folgendem Muster verwendet werden:

ct_AnyCollection co_collection;
ct_AnyCollection::t_Position o_pos;

o_pos = co_collection. First ();

while (o_pos != 0)
 {
 ct_Object * pco_object = co_collection. GetPtr (o_pos);
 // ...
 if (/* delete entry ? */)

Spirick Tuning Referenzhandbuch Seite 97

 o_pos = co_collection. DelPtrAndObj (o_pos);
 else
 o_pos = co_collection. Next (o_pos);
 }

2.8.4 Abstrakte Refcollection (tuning/refcollection.hpp)

Die Klasse ct_RefCollection erweitert die Collectionschnittstelle um Methoden zum Verarbeiten von
Referenzzählern. Eine Refcollection wird mit Hilfe eines Refzeigercontainers, z. B. gct_Chn_RefPtrDList
<ct_Object>, implementiert (siehe Abschnitt 'Refliste', Template gct_RefDList). Die erweiterte Schnittstelle
entspricht syntaktisch und semantisch der des zugehörigen Containers.

Basisklassen
ct_Object (siehe Abschnitt ‘Abstraktes Objekt’)
 ct_Collection (siehe Abschnitt ‘Abstrakte Collection’)

Klassendeklaration
class ct_RefCollection: public ct_Collection
 {
public:
 virtual void IncRef (t_Position o_pos) = 0;
 virtual void DecRef (t_Position o_pos) = 0;
 virtual t_RefCount GetRef (t_Position o_pos) const = 0;
 virtual bool IsAlloc (t_Position o_pos) const = 0;
 virtual bool IsFree (t_Position o_pos) const = 0;
 };

In einer Refcollection wird jedem einzelnen Node ein Referenzzähler zugeordnet. Dieser ermöglicht die
Implementierung von sicheren Zeigern auf Collectioneinträge. Ein sicherer Zeiger erhöht den
Referenzzähler des Eintrags, auf den er verweist.

Ein Positionszeiger einer Refcollection behält seine Gültigkeit, solange der Eintrag nicht (z. B. mit DelPtr)
gelöscht wurde oder der Referenzzähler ungleich Null ist. Wurde das Element mit DelPtr aus der
Collection entfernt, liefert IsAlloc den Wert false, und es kann nicht mehr mit GetPtr auf das Objekt
zugegriffen werden. Erreicht der Referenzzähler mit DecRef den Wert Null, wird auch der zugehörige
Speicher freigegeben, und der Positionszeiger verliert seine Gültigkeit.

Methoden
void IncRef (t_Position o_pos);

Erhöht den zum Collectioneintrag o_pos gehörenden Referenzzähler. o_pos muß eine gültige Position sein.

void DecRef (t_Position o_pos);

Verkleinert den zum Collectioneintrag o_pos gehörenden Referenzzähler. o_pos muß eine gültige Position
sein.

t_RefCount GetRef (t_Position o_pos) const;

Liefert den Wert des zum Collectioneintrag o_pos gehörenden Referenzzählers. o_pos muß eine gültige
Position sein.

bool IsAlloc (t_Position o_pos) const;

Liefert true, wenn der zum Positionszeiger o_pos gehörende Collectioneintrag nicht (z. B. mit DelPtr)
gelöscht wurde und mit GetPtr darauf zugegriffen werden kann. o_pos muß eine gültige Position sein.

Spirick Tuning Referenzhandbuch Seite 98

bool IsFree (t_Position o_pos) const;

Diese Methode ist die logische Negation von IsAlloc. o_pos muß eine gültige Position sein.

2.8.5 Konkrete Collections

Zur Erleichterung des Umgangs mit der Collectionschnittstelle werden in der Bibliothek Spirick Tuning
einige konkrete Collections vordefiniert. Das Makro COLLMAP_DCL deklariert eine Collectionklasse. Ihre
Implementierung erfolgt mit Hilfe des Makros COLLMAP_DEF. Beide Makros werden in der Datei
'tuning/collmap.hpp' definiert.

Die Deklaration einer Collectionklasse wurde so gestaltet, daß keine Einbeziehung von Headerdateien mit
Templates notwendig ist. Damit erhöht sich die Übersetzungsgeschwindigkeit gegenüber der
Verwendung von Containern.

Verwaltungsart Implementierung Übersetzungszeit Laufzeit

Container Templates,
Inline-Methoden

langsam schnell

Collection virtuelle Methoden schnell langsam

Zum Deklarieren einer konkreten Collectionklasse wird in einer Headerdatei das Makro COLLMAP_DCL
plaziert. Z. B. expandiert die Makroverwendung

COLLMAP_DCL (Array)

zu folgendem Text (der Makroparameter ist fett hervorgehoben):

class ct_Array: public ct_Collection
 {
 // ...
 };

Die Implementierung erfolgt in einer anderen Datei. Dabei ist die Einbeziehung des zugehörigen
Zeigercontainers notwendig. Dieser wird beim Makro COLLMAP_DEF als zweiter Parameter angegeben.

#include "tuning/chn/ptrarray.h"
COLLMAP_DEF (Array, gct_Chn_PtrArray)

Zum Deklarieren und Implementieren einer Refcollection dienen die Makros REFCOLLMAP_DCL und
REFCOLLMAP_DEF aus der Datei 'tuning/refcollmap.hpp'. Die vordefinierten Collection- und
Refcollectionklassen werden auf Zeigercontainer des Typs gct_Chn_... zurückgeführt.

In der Datei 'tuning/array.hpp' wird deklariert:

class ct_Array: public ct_Collection { /*...*/ };

In der Datei 'tuning/dlist.hpp' wird deklariert:

class ct_DList: public ct_Collection { /*...*/ };

In der Datei 'tuning/sortedarray.hpp' wird deklariert:

class ct_SortedArray: public ct_Collection { /*...*/ };

In der Datei 'tuning/blockdlist.hpp' wird deklariert:

Spirick Tuning Referenzhandbuch Seite 99

class ct_BlockDList: public ct_Collection { /*...*/ };

In der Datei 'tuning/refdlist.hpp' wird deklariert:

class ct_RefDList: public ct_RefCollection { /*...*/ };

In der Datei 'tuning/blockrefdlist.hpp' wird deklariert:

class ct_BlockRefDList: public ct_RefCollection { /*...*/ };

Spirick Tuning Referenzhandbuch Seite 100

3 ZEICHENKETTEN UND SYSTEMDIENSTE

3.1 Systemschnittstelle

3.1.1 Ressourcenfehler (tuning/sys/creserror.hpp)

Die Datei 'tuning/sys/creserror.hpp' enthält Fehlercodes, die bei der Verwendung systemnaher
Ressourcen auftreten können.

Aufzählung
enum et_ResError
 {
 ec_ResOK = 0,
 ec_ResUnknownError,
 ec_ResUninitialized,
 ec_ResAlreadyInitialized,
 ec_ResInvalidKey,
 ec_ResInvalidValue,
 ec_ResNoKey,
 ec_ResAlreadyExists,
 ec_ResAccessDenied,
 ec_ResNotFound,
 ec_ResLockCountMismatch,
 ec_ResLockFailed,
 ec_ResUnlockFailed,
 ec_ResMemMapFailed,
 ec_ResUnmapFailed,
 ec_ResQuerySizeFailed
 };

ec_ResOK

Es ist kein Fehler aufgetreten.

ec_ResUnknownError

Es ist ein unbekannter Fehler aufgetreten.

ec_ResUninitialized

Es wurde versucht, ein nicht initialisiertes Objekt zu verwenden.

ec_ResAlreadyInitialized

Es wurde versucht, ein bereits initialisiertes Objekt erneut zu initialisieren.

ec_ResInvalidKey

Der Schlüssel ist ungültig.

ec_ResInvalidValue

Ein Funktionsparameter ist ungültig.

Spirick Tuning Referenzhandbuch Seite 101

ec_ResNoKey

Es wurde versucht, ein Objekt ohne Schlüssel zu verwenden.

ec_ResAlreadyExists

Beim Erzeugen eines Objektes wurde festgestellt, daß bereits ein Objekt mit demselben Schlüssel
existiert.

ec_ResAccessDenied

Beim Erzeugen oder Öffnen eines Objektes wurde der Zugriff verweigert.

ec_ResNotFound

Beim Öffnen eines Objektes wurde keine Ressource mit dem angegebenen Schlüssel gefunden.

ec_ResLockCountMismatch

Bei einem Mutexobjekt wurden Sperr-/Freigabe-Aufrufe nicht paarweise verwendet.

ec_ResLockFailed

Das Sperren eines Mutexobjektes ist fehlgeschlagen.

ec_ResUnlockFailed

Das Freigeben eines Mutexobjektes ist fehlgeschlagen.

ec_ResMemMapFailed

Das Zuordnen von Shared Memory in den lokalen Speicher ist fehlgeschlagen.

ec_ResUnmapFailed

Das Freigeben von Shared Memory ist fehlgeschlagen.

ec_ResQuerySizeFailed

Die Abfrage der Größe von Shared Memory ist fehlgeschlagen.

3.1.2 Zeichen und Zeichenketten (tuning/sys/cstring.hpp)

Die Systemschnittstelle für Zeichenketten enthält Funktionen zum Umwandeln von Zeichenketten sowie
zur Längen- und Hashwertberechnung. Von allen Funktionen existiert jeweils eine Version für die
Datentypen char und wchar_t. Alle Längenangaben beziehen sich auf die Anzahl der Zeichen und nicht auf
die Anzahl der Bytes.

Die Umwandlung von Klein- in Großbuchstaben ist auf eine hohe Rechengeschwindigkeit ausgelegt und
verwendet keine Systemrufe, die vom aktiven Locale abhängen. Sie arbeitet mit einem reinen 8-Bit-
Zeichensatz und ist nicht auf Unicodezeichen anwendbar (UTF-8 oder UTF-16). Es wird je eine Tabelle
nach der Windows-1252 Kodierung verwendet. Das ist eine Obermenge von ISO 8859-1 (Latin-1).

Die zweite Version dieser Umwandlungsfunktionen (tl_ToUpper2/tl_ToLower2) existiert zunächst nur für
wchar_t. Die Implementierung verwendet performante, systemnahe Funktionen, die in den meisten Fällen
auch für Unicodezeichen ein korrektes Resultat liefern (MS Windows: CharUpperW, Linux: towupper). Auf
der Grundlage der Widecharacter-Funktionen wurden auch zwei Umwandlungsfunktionen für UTF-8-
Strings implementiert. Dabei wird der String intern temporär in einen Widecharacter-String umgewandelt.

Für die Umwandlungen zwischen Multibytecharacters (UTF-8) und Widecharacters (MS Windows: UTF-
16, Linux: UTF-16 oder UTF-32) existieren zunächst einmal die Richtungen char in wchar_t und wchar_t in
char. Wegen der späteren Verwendung in char- und wchar_t-basierten Templates sind auch die
Richtungen char in char und wchar_t in wchar_t als reine Kopieroperationen implementiert.

Spirick Tuning Referenzhandbuch Seite 102

Funktionen
char tl_ToUpper (char c);
wchar_t tl_ToUpper (wchar_t c);

Wandelt das Zeichen c in einen Großbuchstaben um.

char tl_ToLower (char c);
wchar_t tl_ToLower (wchar_t c);

Wandelt das Zeichen c in einen Kleinbuchstaben um.

bool tl_ToUpper (char * pc_str);
bool tl_ToUpper (wchar_t * pc_str);

Wandelt die nullterminierte Zeichenkette pc_str in Großbuchstaben um. Die Umwandlung erfolgt inplace,
also in der übergebenen Zeichenkette selbst.

bool tl_ToLower (char * pc_str);
bool tl_ToLower (wchar_t * pc_str);

Wandelt die nullterminierte Zeichenkette pc_str in Kleinbuchstaben um. Die Umwandlung erfolgt inplace,
also in der übergebenen Zeichenkette selbst.

wchar_t tl_ToUpper2 (wchar_t c);

Wandelt das Zeichen c in einen Großbuchstaben um (Unicode-konform, s.o.).

wchar_t tl_ToLower2 (wchar_t c);

Wandelt das Zeichen c in einen Kleinbuchstaben um (Unicode-konform, s.o.).

bool tl_ToUpper2 (char * pc_str);
bool tl_ToUpper2 (wchar_t * pc_str);

Wandelt die nullterminierte Zeichenkette pc_str in Großbuchstaben um. Die Umwandlung erfolgt inplace,
also in der übergebenen Zeichenkette selbst (Unicode-konform, s.o.).

bool tl_ToLower2 (char * pc_str);
bool tl_ToLower2 (wchar_t * pc_str);

Wandelt die nullterminierte Zeichenkette pc_str in Kleinbuchstaben um. Die Umwandlung erfolgt inplace,
also in der übergebenen Zeichenkette selbst (Unicode-konform, s.o.).

t_UInt tl_StringLength (const char * pc);
t_UInt tl_StringLength (const wchar_t * pc);

Ermittelt die Länge der nullterminierten Zeichenkette pc.

unsigned tl_StringHash (const char * pc, t_UInt u_length);
unsigned tl_StringHash (const wchar_t * pc, t_UInt u_length);

Berechnet einen Hashwert für die Zeichenkette.

t_UInt tl_MbConvertCount (wchar_t *, const char * pc_src);

Berechnet die Anzahl der Widecharacters im Zielspeicher inklusive des abschließenden Nullzeichens für
die Umwandlung der nullterminierten Zeichenkette pc_src in Widecharacters.

bool tl_MbConvert (wchar_t * pc_dst, const char * pc_src, t_UInt u_count);

Wandelt die nullterminierten Multibytecharacters pc_src in die Widecharacters pc_dst inklusive des
abschließenden Nullzeichens um. Der Parameter u_count gibt die Anzahl der Widecharacters in pc_dst an.

t_UInt tl_MbConvertCount (char *, const wchar_t * pc_src);

Berechnet die Anzahl der Bytes im Zielspeicher inklusive des abschließenden Nullzeichens für die
Umwandlung der nullterminierten Widecharacters pc_src in Multibytecharacters.

Spirick Tuning Referenzhandbuch Seite 103

bool tl_MbConvert (char * pc_dst, const wchar_t * pc_src, t_UInt u_count);

Wandelt die nullterminierten Widecharacters pc_src in die Multibytecharacters pc_dst inklusive des
abschließenden Nullzeichens um. Der Parameter u_count gibt die Anzahl der Bytes in pc_dst an.

Zugehörige Klassen
Die globalen Funktionen dieser Schnittstelle dienen als Grundlage der Klassen ct_String und ct_WString.

3.1.3 Unicode (UTF) (tuning/sys/cutf.hpp)

Die Systemschnittstelle für Unicode enthält Funktionen zum Umwandeln von Zeichenketten sowie zur
Längenberechnung und zur Groß-/Kleinschreibung. Bei den meisten Funktionen werden nullterminierte
Zeichenketten anders behandelt als nicht-nullterminierte. Ist der Parameter b_null gleich true, dann wird
am Ende der Zeichenkette ein Nullzeichen erwartet, und innerhalb der Zeichenkette dürfen sich keine
Nullzeichen befinden. Andernfalls werden Nullzeichen wie normale Steuerzeichen behandelt.

Die UTF-Funktionen liefern im Fehlerfall einen genauen Fehlercode. In einigen Funktionen wird der Zeiger
auf die Quelldaten als Referenz übergeben. Im Fehlerfall verweist dieser Zeiger dann auf die betroffene
Stelle in der Zeichenkette.

Aufzählung
enum et_UtfError
 {
 ec_UtfOK = 0,
 ec_UtfMissingNull, // Missing null character
 ec_UtfNullInside, // Null character inside of string
 ec_UtfMbMissingStart, // Multibyte (10xx xxxx) without startbyte (11xx xxxx)
 ec_UtfMbInvalidStart, // Invalid startbyte (1111 1xxx)
 ec_UtfMbExpected, // Multibyte (10xx xxxx) expected
 ec_UtfMbEnd, // String end in multibyte sequence
 ec_UtfWideRange, // Wide character out of range
 ec_UtfSurrogate, // UTF-16 surrogate in wide character
 ec_UtfHighSurrExpected, // High surrogate expected
 ec_UtfLowSurrExpected, // Low surrogate expected
 ec_UtfSurrEnd, // String end in surrogate
 ec_UtfDestTooSmall, // Destination buffer size too small
 ec_UtfDestTooLarge, // Destination buffer size too large
 ec_UtfEOS, // End of string
 ec_UtfLastError
 };

Für UTF-8 wird der Datentyp t_UInt8 verwendet, für UTF-16 t_UInt16 und für UTF-32 t_UInt32. Alle
Längenangaben beziehen sich auf den jeweiligen Datentyp und nicht auf die Größe in Bytes.

Zum Umwandeln verschiedener UTF-Kodierungen gibt es die Richtungen UTF-8 <-> UTF-32, UTF-16 <->
UTF-32 und UTF-8 <-> UTF-16. Für jede Richtung gibt es jeweils eine Count- und eine Convert-Funktion.
Die Count-Funktion berechnet die Größe des Zielpuffers für die Umwandlung, in der Convert-Funktion
wird die Umwandlung ausgeführt (inkl. Nullzeichen, falls der Parameter b_null gleich true ist).

Für die Count-Funktion wird eigentlich kein Zeiger auf den Zielpuffer benötigt. Zur Unterscheidung der
überladenen Funktionen muß aber der Datentyp dieses Zeigers angegeben werden. Der Zeiger selbst
wird in der Count-Funktion nicht verwendet, es kann z.B. ein Null-Zeiger angegeben werden.

Die Length-Funktionen berechnen die Anzahl der Unicode-Zeichen in einer UTF-kodierten Zeichenkette.
Ist der Parameter b_null gleich true, dann wird das abschließende Nullzeichen mitgezählt. Bei UTF-32 ist
diese Anzahl gleich der Länge der Zeichenkette. Die Length-Funktion für UTF-32 prüft jedoch, ob die
Zeichenkette fehlerfrei ist, und liefert nur dann diese Anzahl.

Spirick Tuning Referenzhandbuch Seite 104

Die Upper/Lower-Funktionen wandeln eine UTF-kodierte Zeichenkette in Groß- bzw. Kleinbuchstaben
um. Die Konvertierung erfolgt direkt in der Zeichenkette. Es werden nur Zeichen aus der Basic
Multilingual Plane (< 0x10000) umgewandelt, und die Konvertierung erfolgt auch nur dann, wenn sich
dadurch die Länge der Zeichenkette nicht verändert.

Funktionen
et_UtfError tl_UtfConvertCount (t_UIntY *, t_UInt & u_dstLen, const t_UIntX * & pu_src, t_UInt u_srcLen, bool
b_null = true);

Liefert im Parameter u_dstLen die Größe des Puffers für die Umwandlung der Zeichenkette pu_src (UTF-X)
mit der Länge u_srcLen in eine Zeichenkette vom Typ UTF-Y.

et_UtfError tl_UtfConvert (t_UIntY * pu_dst, t_UInt u_dstLen, const t_UIntX * pu_src, t_UInt u_srcLen, bool
b_null = true);

Konvertiert die Zeichenkette pu_src (UTF-X) mit der Länge u_srcLen in den Zielpuffer pu_dst (UTF-Y) mit
der Länge u_dstLen.

et_UtfError tl_UtfLength (t_UInt & u_len, const t_UIntX * & pu_src, t_UInt u_srcLen, bool b_null = true);

Liefert im Parameter u_len die Anzahl der Unicode-Zeichen der Zeichenkette pu_src (UTF-X) mit der Länge
u_srcLen.

et_UtfError tl_UtfToUpper (t_UIntX * & pu_src, t_UInt u_srcLen);

Wandelt die Zeichenkette pu_src (UTF-X) mit der Länge u_srcLen in Großbuchstaben um.

et_UtfError tl_UtfToLower (t_UIntX * & pu_src, t_UInt u_srcLen);

Wandelt die Zeichenkette pu_src (UTF-X) mit der Länge u_srcLen in Kleinbuchstaben um.

3.1.4 Unicode-Const-Iterator (tuning/utfcit.h)

Mit dem UTF-Const-Iterator kann man konstante UTF-Strings zeichenweise iterieren. Das Template kann
für UTF-8, UTF-16 und UTF-32 verwendet werden und liefert jedes einzelne Zeichen als UTF-32. Für
UTF-8 wird der Datentyp t_UInt8 verwendet, für UTF-16 t_UInt16 und für UTF-32 t_UInt32. Alle
Längenangaben beziehen sich auf den jeweiligen Datentyp und nicht auf die Größe in Bytes. Nullzeichen
werden vom UTF-Const-Iterator wie normale Steuerzeichen behandelt. Das Verändern der Zeichenkette
ist während des Iterierens nicht möglich.

Templatedeklaration
template <class t_char>
 class gct_UtfCit
 {
 public:
 typedef t_char t_Char;

 inline gct_UtfCit ();
 inline gct_UtfCit (const t_Char * pu_src, t_UInt u_srcLen);

 void First (const t_Char * pu_src, t_UInt u_srcLen);
 bool Ready () const;
 void Next ();

 t_UInt32 GetChar () const;
 t_UInt GetCharPos () const;
 t_UInt GetRawPos () const;
 t_UInt GetRawLen () const;
 et_UtfError GetError () const;
 };

Spirick Tuning Referenzhandbuch Seite 105

Methoden
gct_UtfCit ();

Initialisiert ein leeres Objekt.

gct_UtfCit (const t_UIntX * pu_src, t_UInt u_srcLen);

Initialisiert das Objekt und liest aus der Zeichenkette pu_src (UTF-X) mit der Länge u_srcLen das erste
UTF-Zeichen.

void First (const t_UIntX * pu_src, t_UInt u_srcLen);

Liest aus der Zeichenkette pu_src (UTF-X) mit der Länge u_srcLen das erste UTF-Zeichen.

bool Ready () const;

Liefert true, wenn aus der Zeichenkette erfolgreich ein UTF-Zeichen gelesen wurde.

void Next ();

Liest aus der Zeichenkette das nächste UTF-Zeichen.

t_UInt32 GetChar () const;

Liefert das aktuelle UTF-Zeichen im Format UTF-32.

t_UInt GetCharPos () const;

Liefert die fortlaufende Nummer vom aktuellen UTF-Zeichen.

t_UInt GetRawPos () const;

Liefert die Position vom aktuellen UTF-Zeichen im Format t_UIntX.

t_Uint GetRawLen () const;

Liefert die Länge vom aktuellen UTF-Zeichen im Format t_UIntX.

et_UtfError GetError () const;

Liefert den Fehlercode vom aktuellen Lesevorgang. Dabei gibt es die folgenden Möglichkeiten:
ec_UtfOK: Das UTF-Zeichen wurde erfolgreich gelesen.
ec_UtfEOS: Das Ende der Zeichenkette wurde erreicht.
Anderer Fehlercode: In der Zeichenkette befindet sich ein fehlerhaftes UTF-Zeichen. Das Iterieren kann
nicht fortgesetzt werden.

Beispiel
Zum Iterieren einer Zeichenkette wird eine for-Schleife nach folgendem Muster empfohlen:

gct_UtfCit <t_UIntX> co_cit;

for (co_cit. First (pu_src, u_srcLen);
 co_cit. Ready ();
 co_cit. Next ())
 {
 t_UInt32 u_char = co_cit. GetChar ();
 // ...
 }

if (co_cit. GetError () != ec_UtfEOS)
 {
 // error handling
 }

Spirick Tuning Referenzhandbuch Seite 106

3.1.5 Präzisionszeit (tuning/sys/ctimedate.hpp)

Die Systemuhrzeit ist im Millisekundenbereich meisten ungenau. Deshalb unterstützen einige
Betriebssysteme zusätzlich eine Präzisionszeit. Diese leistet bei Zeitmessungen z. B. für das
Performancetuning gute Dienste.

Datentypen
typedef t_Int64 t_MicroTime;

t_MicroTime ist ein Datentyp zur Zeitmessung in Mikrosekunden.

Funktionen
t_MicroTime tl_QueryPrecisionTime ();

Liefert die Anzahl der seit dem ersten Aufruf dieser Funktion verstrichenen Mikrosekunden.

3.1.6 Uhrzeit und Datum (tuning/sys/ctimedate.hpp)

In dieser Rubrik befinden sich Funktionen zur Abfrage und Umrechnung von Zeitwerten. Die Zeit wird in
Mikrosekunden seit dem 01.01.1970 0 Uhr angegeben. Es kann sowohl die koordinierte Weltzeit (UTC)
als auch die lokale Zeit verwendet werden, die der im Betriebssystem eingestellten Zeitzone entspricht.

Datentypen, Konstanten
typedef t_Int64 t_MicroTime;

t_MicroTime ist ein Datentyp zur Zeitmessung in Mikrosekunden.

const t_MicroTime co_MicroSecondFactor = 1ll;
const t_MicroTime co_MilliSecondFactor = 1000ll;
const t_MicroTime co_SecondFactor = 1000000ll;
const t_MicroTime co_MinuteFactor = 60000000ll;
const t_MicroTime co_HourFactor = 3600000000ll;
const t_MicroTime co_DayFactor = 86400000000ll;

Diese Konstanten dienen der Umrechnung von Mikrosekunden in Millisekunden, Sekunden, Minuten,
Stunden und Tage.

Funktionen
t_MicroTime tl_QueryUTCTime ();

Liefert die aktuelle UTC Systemzeit.

t_MicroTime tl_QueryLocalTime ();

Liefert die aktuelle lokale Systemzeit.

t_MicroTime tl_UTCToLocalTime (t_MicroTime i_time);

Rechnet eine UTC Zeit in lokale Zeit um.

t_MicroTime tl_LocalToUTCTime (t_MicroTime i_time);

Rechnet eine lokale Zeit in UTC Zeit um.

Zugehörige Klasse
Die globalen Funktionen dieser Schnittstelle dienen als Grundlage der Klasse ct_TimeDate.

Spirick Tuning Referenzhandbuch Seite 107

3.1.7 Prozessorzeit (tuning/sys/ctimedate.hpp)

In dieser Rubrik befinden sich zwei Funktionen zur Abfrage der Zeit, die ein Thread oder Prozeß auf
einem Prozessor aktiv gewesen ist. Die Zeit wird in Mikrosekunden angegeben.

Strukturdeklaration
struct st_UserKernelTime
 {
 t_MicroTime o_UserTime;
 t_MicroTime o_KernelTime;
 };

Die Struktur st_UserKernelTime enthält je eine Zeitangabe über verstrichene Mikrosekunden im Usermode
und im Kernelmode.

Funktionen
bool tl_QueryProcessTimes (st_UserKernelTime * pso_times);

Ermittelt die Zeit, die der aktuelle Prozeß (inklusive aller Threads) auf einem Prozessor aktiv gewesen ist,
und liefert bei Erfolg true.

bool tl_QueryThreadTimes (st_UserKernelTime * pso_times);

Ermittelt die Zeit, die der aktuelle Thread aktiv gewesen ist, und liefert bei Erfolg true.

3.1.8 Taskumgebung (tuning/sys/cprocess.hpp)

In dieser Rubrik befinden sich Abfrage- und Steuerungsfunktionen für Threads und Prozesse.

Funktionen
t_Int32 tl_InterlockedRead (volatile t_Int32 * pi_value);

Liest einen t_Int32 Wert aus dem Speicher und liefert diesen Wert. Es wird eine atomare
Hardwareoperation ausgeführt. Dadurch können mehrere Threads und Prozesse ohne Synchronisation
auf denselben Speicher zugreifen.

t_Int32 tl_InterlockedWrite (volatile t_Int32 * pi_value, t_Int32 i_new);

Schreibt einen t_Int32 Wert in den Speicher und liefert den alten Wert. Es wird eine atomare
Hardwareoperation ausgeführt.

t_Int32 tl_InterlockedAdd (volatile t_Int32 * pi_value, t_Int32 i_add);

Addiert zu einem t_Int32 Wert im Speicher einen anderen und liefert den neuen Wert. Es wird eine
atomare Hardwareoperation ausgeführt.

t_Int32 tl_InterlockedIncrement (volatile t_Int32 * pi_value);
t_Int32 tl_InterlockedDecrement (volatile t_Int32 * pi_value);

Vergrößert bzw. verkleinert einen t_Int32 Wert im Speicher um Eins und liefert den neuen Wert. Es wird
eine atomare Hardwareoperation ausgeführt.

Spirick Tuning Referenzhandbuch Seite 108

void tl_Delay (int i_milliSec);

Unterbricht die Ausführung des aktuellen Threads für i_milliSec Millisekunden. Andere Threads können
jedoch weiterarbeiten.

void tl_RelinquishTimeSlice ();

Beendet die Zeitscheibe des aktuellen Threads. Das führt zur unmittelbaren Aktivierung eines anderen
Threads.

ct_String tl_GetEnv (const char * pc_name);

Liefert den Wert der Umgebungsvariablen pc_name als ein Stringobjekt.

ct_String tl_GetTempPath ();

Liefert den Pfad für temporäre Dateien als ein Stringobjekt.

3.1.9 Threads (tuning/sys/cthread.hpp)

In dieser Rubrik befinden sich Funktionen für Threads.

Datentypen
typedef void (* ft_ThreadFunc) (void *);

ft_ThreadFunc ist ein Zeiger auf eine Hauptfunktion eines Threads. Die Funktion erwartet einen Parameter
vom Typ void * und besitzt keinen Rückgabewert.

Funktionen
bool tl_BeginThread (ft_ThreadFunc fo_func, void * pv_param, t_UInt u_stackSize = 8u * 1024u);

Beginnt einen Thread mit der Hauptfunktion fo_func. Der Parameter pv_param wird an die Hauptfunktion
weitergeleitet. Optional kann die Stackgröße des neuen Threads angegeben werden. Der Thread wird
durch einen Aufruf von tl_EndThread oder das Ende der Hauptfunktion abgeschlossen. Der Rückgabewert
ist false, wenn er nicht gestartet werden konnte.

void tl_EndThread ();

Beendet die Ausführung des aktuellen Threads. Die MS Windows Implementierung ruft keine
Destruktoren von lokalen Objekten auf, die sich auf dem Stack des Threads befinden.

t_UInt64 tl_ThreadId ();

Liefert die systemabhängige Id des aktuellen Threads.

3.1.10 Prozesse (tuning/sys/cprocess.hpp)

In dieser Rubrik befinden sich Funktionen für Prozesse.

Funktionen
void tl_EndProcess (unsigned u_exitCode);

Beendet den aktuellen Prozeß, ohne Destruktoren globaler Objekte aufzurufen. Der Parameter u_exitCode
wird an das Betriebssystem übergeben.

int tl_ProcessId ();

Liefert die systemabhängige Id des aktuellen Prozesses.

Spirick Tuning Referenzhandbuch Seite 109

bool tl_IsProcessRunning (int i_processId);

Liefert true, wenn der Prozeß mit der Id i_processId gestartet und noch nicht beendet wurde.

int tl_Exec (const char * pc_path, unsigned u_params, const char * * ppc_params, bool b_wait = false);

Startet einen neuen Prozeß mit der ausführbaren Datei pc_path. Optional können u_params String-
Parameter an den neuen Prozeß übergeben werden, wobei ppc_params auf ein Array mit u_params Zeigern
verweist. Der Zeiger auf einen String-Parameter muß gleich Null sein oder auf eine nullterminierte
Zeichenkette verweisen. Ist der Zeiger auf einen String-Parameter gleich Null, wird er durch eine leere
Zeichenkette ersetzt. Ein String-Parameter kann Leerzeichen enthalten und optional mit dem Zeichen '"'
beginnen und enden. Der Rückgabewert ist gleich -1, wenn der Prozeß nicht gestartet werden konnte.
Ist der Parameter b_wait gleich false, kehrt die Funktion unmittelbar zurück und liefert die
systemabhängige Id des neuen Prozesses. Andernfalls wartet die Funktion auf das Beenden des
Prozesses und liefert dessen Exitcode.

3.1.11 Thread-Mutex (tuning/sys/cthmutex.hpp)

In dieser Rubrik befinden sich eine Klasse und globale Funktionen zum Synchronisieren von Threads.

Klassendeklaration
class ct_ThMutex
 {
public:
 bool GetInitSuccess () const;
 et_ResError TryLock (bool & b_success);
 et_ResError Lock ();
 et_ResError Unlock ();
 };

Die Klasse ct_ThMutex implementiert ein Verfahren zum wechselseitigen Ausschluß (mutual exclusion).
Die Implementierung ist rekursiv, d. h. ein Thread kann ein bereits gesperrtes Mutexobjekt erneut
sperren. Mutexobjekte können nicht mit Konstruktor oder Gleichoperator kopiert werden und dürfen
auch nicht mit memcpy kopiert werden.

Methoden
bool GetInitSuccess ();

Liefert true, wenn das Mutexobjekt fehlerfrei initialisiert wurde.

et_ResError TryLock (bool & b_success);

Versucht, das Mutexobjekt zu sperren, und setzt bei Erfolgt b_success auf true.

et_ResError Lock ();

Hält die Ausführung des Threads an, bis das Mutexobjekt gesperrt wurde, d. h. daß gleichzeitig kein
anderer Thread dieses Mutexobjekt sperrt.

et_ResError Unlock ();

Gibt das Mutexobjekt wieder frei, d. h. anschließend können andere Threads dieses Mutexobjekt
sperren.

Funktionen
Die folgenden globalen Funktionen implementieren ein Verfahren für kritische Abschnitte. Sie verwenden
dafür ein globales Mutexobjekt.

Spirick Tuning Referenzhandbuch Seite 110

bool tl_CriticalSectionInitSuccess ();

Liefert true, wenn das globale Mutexobjekt fehlerfrei initialisiert wurde.

void tl_DeleteCriticalSection ();

Zerstört das globale Mutexobjekt. Diese Funktion kann optional am Programmende aufgerufen werden,
wenn sichergestellt ist, daß das Objekt nicht mehr verwendet wird.

et_ResError tl_TryEnterCriticalSection (bool & b_success);

Versucht, das globale Mutexobjekt zu sperren, und setzt bei Erfolgt b_success auf true.

et_ResError tl_EnterCriticalSection ();

Hält die Ausführung des Threads an, bis das globale Mutexobjekt gesperrt wurde, d. h. daß gleichzeitig
kein anderer Thread dieses Mutexobjekt sperrt.

et_ResError tl_LeaveCriticalSection ();

Gibt das globale Mutexobjekt wieder frei, d. h. anschließend können andere Threads dieses Mutexobjekt
sperren.

3.1.12 Thread-Semaphor (tuning/sys/cthsemaphore.hpp)

In dieser Rubrik befindet sich eine weitere Klasse für die Thread-Synchronisation.

Klassendeklaration
class ct_ThSemaphore
 {
public:
 ct_ThSemaphore (t_Int32 i_initValue = 1);
 ~ct_ThSemaphore ();

 bool GetInitSuccess () const;
 et_ResError TryAcquire (bool & b_success, t_UInt32 u_milliSec = 0);
 et_ResError Acquire ();
 et_ResError Release ();
 };

Die Klasse ct_ThSemaphore wird ähnlich wie ct_ThMutex zum Synchronisieren von Threads verwendet. Es
existieren jedoch zwei wesentliche Unterschiede:

1. Wurde ein Mutex von einem Thread gesperrt, kann es nur vom selben Thread wieder freigegeben
werden. Semaphoren können jedoch von mehreren Threads in beliebiger Reihenfolge angefordert und
freigegeben werden.

2. Ein Semaphor kann mehrmals hintereinander freigegeben werden. Dadurch erhöht sich ein interner
Zähler. Ein Thread wird beim Anfordern des Semaphors nur dann blockiert, wenn dieser interne Zähler
Null erreicht hat.

Steht der interne Zähler anfangs auf Eins und werden Anfordern und Freigeben immer paarweise im
selben Thread aufgerufen, so ist die Wirkung wie bei einem Mutex. Ein Semaphor kann jedoch auch
anders verwendet werden. Z. B. kann damit eine Message-Queue mit mehreren Sender-Threads und
einem Empfänger-Thread implementiert werden. Semaphorobjekte können nicht mit Konstruktor oder
Gleichoperator kopiert werden und dürfen auch nicht mit memcpy kopiert werden.

Spirick Tuning Referenzhandbuch Seite 111

Methoden
ct_ThSemaphore (t_Int32 i_initValue = 1);

Konstruiert ein Semaphorobjekt und setzt den internen Zähler auf i_initValue.

bool GetInitSuccess ();

Liefert true, wenn das Semaphorobjekt fehlerfrei initialisiert wurde.

et_ResError TryAcquire (bool & b_success, t_UInt32 u_milliSec = 0);

Versucht, das Semaphorobjekt anzufordern, und setzt bei Erfolgt b_success auf true. Die Methode wartet
maximal u_milliSec Millisekunden.

et_ResError Acquire ();

Das Semaphorobjekt wird angefordert. Die Methode wartet, falls der interne Zähler gleich Null ist.
Andernfalls wird vom internen Zähler Eins subtrahiert.

et_ResError Release ();

Das Semaphorobjekt wird freigegeben. Dabei wird zum internen Zähler Eins addiert. War der Zähler
vorher gleich Null, dann wird ein eventuell wartender Thread aufgeweckt.

3.1.13 Gemeinsame Ressource (tuning/sys/csharedres.hpp)

Die Klasse ct_SharedResource implementiert die Basisfunktionalität für Objekte, die von mehreren
Prozessen gemeinsam verwendet werden können. Die gemeinsame Ressource wird über einen String-
Schlüssel identifiziert.

Vor der Verwendung muß ein Schlüssel gesetzt und das Objekt initialisiert werden. Die Initialisierung
erfolgt durch Öffnen oder Erzeugen (Methoden Open oder Create in den abgeleiteten Klassen). Nach der
Initialisierung kann der Schlüssel nicht mehr geändert werden.

Klassendeklaration
class ct_SharedResource
 {
public:
 ct_SharedResource ();
 ct_SharedResource (const char * pc_key);
 ct_SharedResource (const char * pc_key, unsigned u_idx);
 virtual ~ct_SharedResource ();

 bool GetInitSuccess () const;
 const char * GetKey () const;
 et_ResError SetKey (const char * pc_key);
 et_ResError SetKey (const char * pc_key, unsigned u_idx);
 };

Methoden
ct_SharedResource ();

Konstruiert eine gemeinsame Ressource ohne Schlüssel.

ct_SharedResource (const char * pc_key);

Konstruiert eine gemeinsame Ressource mit dem Schlüssel pc_key.

Spirick Tuning Referenzhandbuch Seite 112

ct_SharedResource (const char * pc_key, unsigned u_idx);

Konstruiert eine gemeinsame Ressource mit dem Schlüssel pc_key. Der Index u_idx wird in eine
Zeichenkette umgewandelt und an pc_key angehängt.

virtual ~ct_SharedResource ();

Der virtuelle Destruktor ruft den Destruktor des abgeleiteten Objekts auf.

bool GetInitSuccess ();

Liefert true, wenn die gemeinsame Ressource fehlerfrei initialisiert wurde.

const char * GetKey () const;

Liefert den Schlüssel.

et_ResError SetKey (const char * pc_key);

Setzt den Schlüssel pc_key. Liefert ec_ResOK, wenn der Schlüssel gültig und das Objekt noch nicht
initialisiert war.

et_ResError SetKey (const char * pc_key, unsigned u_idx);

Setzt den Schlüssel pc_key. Der Index u_idx wird in eine Zeichenkette umgewandelt und an pc_key
angehängt. Liefert ec_ResOK, wenn der Schlüssel gültig und das Objekt noch nicht initialisiert war.

3.1.14 Prozeß-Mutex (tuning/sys/cprmutex.hpp)

In dieser Rubrik befinden sich eine Klasse und globale Funktionen zum Synchronisieren von Prozessen.

Basisklasse
ct_SharedResource (siehe Abschnitt ‘Gemeinsame Ressource’)

Klassendeklaration
class ct_PrMutex: public ct_SharedResource
 {
public:
 ct_PrMutex ();
 ct_PrMutex (const char * pc_key);
 ct_PrMutex (const char * pc_key, unsigned u_idx);
 ~ct_PrMutex ();

 et_ResError Open ();
 et_ResError Create (bool b_createNew = false);
 et_ResError Close ();

 et_ResError TryLock (bool & b_success, t_UInt32 u_milliSec = 0);
 et_ResError Lock ();
 et_ResError Unlock ();
 };

Die Klasse ct_PrMutex implementiert ein Verfahren zum wechselseitigen Ausschluß (mutual exclusion).
Das Mutexobjekt ist vollständig initialisiert, wenn ein Schlüssel gesetzt wurde und die Methoden Open
oder Create den Wert ec_ResOK geliefert haben. Die MS Windows Implementierung ist rekursiv, d. h. ein
Prozeß kann ein bereits gesperrtes Mutexobjekt erneut sperren. Die Linux Implementierung ist nicht
rekursiv, d. h. wenn ein Prozeß ein bereits gesperrtes Mutexobjekt erneut sperrt, blockiert er sich selbst.
Die Methoden TryLock, Lock und Unlock sind gegen den konkurrierenden Zugriff mehrerer Threads
geschützt, d. h. nach dem Initialisieren kann ein PrMutexobjekt auch zum Synchronisieren von Threads
verwendet werden.

Spirick Tuning Referenzhandbuch Seite 113

Methoden
ct_PrMutex ();

Konstruiert ein Mutexobjekt mit einem globalen Schlüssel.

ct_PrMutex (const char * pc_key);

Konstruiert ein Mutexobjekt mit dem Schlüssel pc_key.

ct_PrMutex (const char * pc_key, unsigned u_idx);

Konstruiert ein Mutexobjekt mit dem Schlüssel pc_key. Der Index u_idx wird in eine Zeichenkette
umgewandelt und an pc_key angehängt.

~ct_PrMutex ();

Der Destruktor schließt das Mutexobjekt, falls es geöffnet war.

et_ResError Open ();

Versucht, sich mit einem bestehenden Mutexobjekt, das denselben Schlüssel verwendet, zu verbinden,
und liefert bei Erfolg ec_ResOK. Der Vorgang ist vergleichbar mit dem Öffnen einer Datei.

et_ResError Create (bool b_createNew = false);

Versucht, ein neues Mutexobjekt zu erzeugen, und liefert bei Erfolg ec_ResOK. Liefert ec_ResAlreadyExists,
wenn b_createNew gleich true ist und ein Mutexobjekt, das denselben Schlüssel verwendet, bereits
existiert. Der Vorgang ist vergleichbar mit dem Erzeugen einer Datei.

et_ResError Close ();

Versucht, ein geöffnetes Mutexobjekt zu schließen, und liefert bei Erfolg ec_ResOK. Der Vorgang ist
vergleichbar mit dem Schließen einer Datei.

et_ResError TryLock (bool & b_success, t_UInt32 u_milliSec = 0);

Versucht, das Mutexobjekt zu sperren, und setzt bei Erfolgt b_success auf true. Die Methode wartet
maximal u_milliSec Millisekunden.

et_ResError Lock ();

Hält die Ausführung des Prozesses an, bis das Mutexobjekt gesperrt wurde, d. h. daß gleichzeitig kein
anderer Prozeß ein Mutexobjekt mit demselben Schlüssel sperrt.

et_ResError Unlock ();

Gibt das Mutexobjekt wieder frei, d. h. anschließend können andere Prozesse Mutexobjekte mit
demselben Schlüssel sperren.

Funktionen
Die folgenden globalen Funktionen implementieren ein Verfahren für kritische Abschnitte. Sie verwenden
dafür ein globales PrMutexobjekt.

bool tl_CriticalPrSectionInitSuccess ();

Liefert true, wenn das globale Mutexobjekt fehlerfrei initialisiert wurde.

void tl_DeleteCriticalPrSection ();

Zerstört das globale Mutexobjekt. Diese Funktion kann optional am Programmende aufgerufen werden,
wenn sichergestellt ist, daß das Objekt nicht mehr verwendet wird.

Spirick Tuning Referenzhandbuch Seite 114

et_ResError tl_TryEnterCriticalPrSection (bool & b_success, t_UInt32 u_milliSec = 0);

Versucht, das globale Mutexobjekt zu sperren, und setzt bei Erfolgt b_success auf true. Die Methode
wartet maximal u_milliSec Millisekunden.

et_ResError tl_EnterCriticalPrSection ();

Hält die Ausführung des Prozesses an, bis das globale Mutexobjekt gesperrt wurde, d. h. daß
gleichzeitig kein anderer Prozeß ein Mutexobjekt mit dem globalen Schlüssel sperrt.

et_ResError tl_LeaveCriticalPrSection ();

Gibt das globale Mutexobjekt wieder frei, d. h. anschließend können andere Prozesse Mutexobjekte mit
dem globalen Schlüssel sperren.

3.1.15 Prozeß-Semaphor (tuning/sys/cprsemaphore.hpp)

In dieser Rubrik befindet sich eine weitere Klasse für die Prozeß-Synchronisation.

Klassendeklaration
class ct_PrSemaphore: public ct_SharedResource
 {
public:
 ct_PrSemaphore ();
 ct_PrSemaphore (const char * pc_key);
 ct_PrSemaphore (const char * pc_key, unsigned u_idx);
 ~ct_PrSemaphore ();

 et_ResError Open ();
 et_ResError Create (t_Int32 i_initValue = 1, bool b_createNew = false);
 et_ResError Close ();

 et_ResError TryAcquire (bool & b_success, t_UInt32 u_milliSec = 0);
 et_ResError Acquire ();
 et_ResError Release ();
 };

Die Klasse ct_PrSemaphore implementiert ein Semaphor zum Synchronisieren von Prozessen (siehe Klasse
ct_ThSemaphore für Threads). Das Semaphorobjekt ist vollständig initialisiert, wenn ein Schlüssel gesetzt
wurde und die Methoden Open oder Create den Wert ec_ResOK geliefert haben. Die Methoden TryAcquire,
Acquire und Release sind gegen den konkurrierenden Zugriff mehrerer Threads geschützt, d. h. nach dem
Initialisieren kann ein PrSemaphorobjekt auch zum Synchronisieren von Threads verwendet werden.

Methoden
ct_PrSemaphore ();

Konstruiert ein Semaphorobjekt mit einem globalen Schlüssel.

ct_PrSemaphore (const char * pc_key);

Konstruiert ein Semaphorobjekt mit dem Schlüssel pc_key.

ct_PrSemaphore (const char * pc_key, unsigned u_idx);

Konstruiert ein Semaphorobjekt mit dem Schlüssel pc_key. Der Index u_idx wird in eine Zeichenkette
umgewandelt und an pc_key angehängt.

~ct_PrSemaphore ();

Der Destruktor schließt das Semaphorobjekt, falls es geöffnet war.

Spirick Tuning Referenzhandbuch Seite 115

et_ResError Open ();

Versucht, sich mit einem bestehenden Semaphorobjekt, das denselben Schlüssel verwendet, zu
verbinden, und liefert bei Erfolg ec_ResOK. Der Vorgang ist vergleichbar mit dem Öffnen einer Datei.

et_ResError Create (t_Int32 i_initValue = 1, bool b_createNew = false);

Versucht, ein neues Semaphorobjekt zu erzeugen. Liefert bei Erfolg ec_ResOK und setzt den internen
Zähler auf i_initValue. Liefert ec_ResAlreadyExists, wenn b_createNew gleich true ist und ein
Semaphorobjekt, das denselben Schlüssel verwendet, bereits existiert. Der Vorgang ist vergleichbar mit
dem Erzeugen einer Datei.

et_ResError Close ();

Versucht, ein geöffnetes Semaphorobjekt zu schließen, und liefert bei Erfolg ec_ResOK. Der Vorgang ist
vergleichbar mit dem Schließen einer Datei.

et_ResError TryAcquire (bool & b_success, t_UInt32 u_milliSec = 0);

Versucht, das Semaphorobjekt anzufordern, und setzt bei Erfolgt b_success auf true. Die Methode wartet
maximal u_milliSec Millisekunden.

et_ResError Acquire ();

Das Semaphorobjekt wird angefordert. Die Methode wartet, falls der interne Zähler gleich Null ist.
Andernfalls wird vom internen Zähler Eins subtrahiert.

et_ResError Release ();

Das Semaphorobjekt wird freigegeben. Dabei wird zum internen Zähler Eins addiert. War der Zähler
vorher gleich Null, dann wird ein eventuell wartender Thread/Prozeß aufgeweckt.

3.1.16 Gemeinsamer Speicher (tuning/sys/csharedmem.hpp)

Die Klasse ct_SharedMemory implementiert die gemeinsame Nutzung von Hauptspeicher durch mehrere
Prozesse. Das Sharedmemoryobjekt ist vollständig initialisiert, wenn ein Schlüssel gesetzt wurde und die
Methoden Open oder Create den Wert ec_ResOK geliefert haben.

Basisklasse
ct_SharedResource (siehe Abschnitt ‘Gemeinsame Ressource’)

Klassendeklaration
class ct_SharedMemory: public ct_SharedResource
 {
public:
 ct_SharedMemory ();
 ct_SharedMemory (const char * pc_key);
 ct_SharedMemory (const char * pc_key, unsigned u_idx);
 ~ct_SharedMemory ();

 et_ResError Open (bool b_readOnly);
 et_ResError Create (t_UInt u_size, bool b_createNew = false);
 et_ResError Close ();

 t_UInt GetSize () const;
 void * GetData () const;
 };

Spirick Tuning Referenzhandbuch Seite 116

Methoden
ct_SharedMemory ();

Konstruiert ein Sharedmemoryobjekt mit einem globalen Schlüssel.

ct_SharedMemory (const char * pc_key);

Konstruiert ein Sharedmemoryobjekt mit dem Schlüssel pc_key.

ct_SharedMemory (const char * pc_key, unsigned u_idx);

Konstruiert ein Sharedmemoryobjekt mit dem Schlüssel pc_key. Der Index u_idx wird in eine Zeichenkette
umgewandelt und an pc_key angehängt.

~ct_SharedMemory ();

Der Destruktor schließt das Sharedmemoryobjekt, falls es geöffnet war.

et_ResError Open (bool b_readOnly);

Versucht, sich mit einem bestehenden Sharedmemoryobjekt, das denselben Schlüssel verwendet, zu
verbinden, und liefert bei Erfolg ec_ResOK. Wenn b_readOnly gleich true ist, kann auf den gemeinsamen
Speicher nur lesend zugegriffen werden. Der Vorgang ist vergleichbar mit dem Öffnen einer Datei.

et_ResError Create (t_UInt u_size, bool b_createNew = false);

Versucht, ein neues Sharedmemoryobjekt mit der Größe u_size Bytes zu erzeugen, und liefert bei Erfolg
ec_ResOK. Liefert ec_ResAlreadyExists, wenn b_createNew gleich true ist und ein Sharedmemoryobjekt, das
denselben Schlüssel verwendet, bereits existiert. Der Vorgang ist vergleichbar mit dem Erzeugen einer
Datei.

et_ResError Close ();

Versucht, ein geöffnetes Sharedmemoryobjekt zu schließen, und liefert bei Erfolg ec_ResOK. Der Vorgang
ist vergleichbar mit dem Schließen einer Datei.

t_UInt GetSize () const;

Liefert die Größe in Bytes des gemeinsamen Speichers.

void * GetData () const;

Liefert einen Zeiger auf das erste Byte des gemeinsamen Speichers.

3.1.17 Datei (tuning/sys/cfile.hpp)

Innerhalb der Bibliothek Spirick Tuning werden Pfad- und Dateinamen als UTF-8-Strings interpretiert.
Unter Linux werden die Strings unverändert an die Systemfunktionen übergeben. Unter MS Windows
werden Pfad- und Dateinamen intern in UTF-16 umgewandelt.

Die Systemschnittstelle für Dateien ist auf das blockweise Verarbeiten großer Datenmengen
ausgerichtet. Die Funktionen bauen direkt auf der ungepufferten Dateiein- und -ausgabe des
Betriebssystems auf. Für eine optimale Geschwindigkeit sollte als Blockgröße ein Vielfaches von vier KB
verwendet werden. Die Funktionen tl_OpenFile und tl_CreateFile sind gegen das gleichzeitige Aufrufen
durch mehrere Prozesse geschützt (race conditions).

Sämtliche Funktionen liefern bei erfolgreicher Ausführung den Wahrheitswert true. Im Fehlerfall wird
keine C++-Exception ausgelöst, sondern false zurückgegeben. Die Funktionen können somit auch in
einer Programmierumgebung genutzt werden, in der keine Exceptions zur Verfügung stehen oder diese
mit einer Compileroption deaktiviert sind.

Spirick Tuning Referenzhandbuch Seite 117

Datentypen, Konstanten
typedef ... t_FileId;
const t_FileId co_InvalidFileId = ...;
typedef t_Int64 t_FileSize;

Eine FileId enthält einen systemabhängigen Code für eine geöffnete Datei. Die Konstante co_InvalidFileId
ist eine garantiert ungültige FileId. Der Datentyp t_FileSize wird für Größen- und Positionsangaben
verwendet.

Funktionen
bool tl_OpenFile (const char * pc_name, t_FileId & o_file, bool b_readOnly = true, bool b_sequential = true);

Öffnet die bestehende Datei pc_name abhängig vom Parameter b_readOnly zum Lesen oder Schreiben. Der
optionale Parameter b_sequential beeinflußt die Arbeitsweise des Cachemanagers. Wird die Datei
sequentiell bearbeitet, sollte er auf true gesetzt werden. Der Parameter o_file muß vor dem Aufruf auf
co_InvalidFileId gesetzt werden. Bei Erfolg liefert die Funktion true, und o_file enthält die FileId der
geöffneten Datei.

bool tl_CreateFile (const char * pc_name, t_FileId & o_file, bool b_createNew = false);

Erzeugt die neue Datei pc_name und öffnet sie zum Schreiben. Eine eventuell vorhandene Datei gleichen
Namens wird überschrieben. Liefert false, wenn b_createNew gleich true ist und eine Datei mit demselben
Namen bereits existiert. Der Parameter o_file muß vor dem Aufruf auf co_InvalidFileId gesetzt werden.
Bei Erfolg liefert die Funktion true, und o_file enthält die FileId der geöffneten Datei.

bool tl_CloseFile (t_FileId o_file);

Versucht, die geöffnete Datei o_file zu schließen, und liefert bei Erfolg true.

bool tl_ExistsFile (const char * pc_name);

Liefert true, wenn die Datei pc_name existiert.

bool tl_MoveFile (const char * pc_old, const char * pc_new);

Verschiebt die Datei pc_old nach pc_new. Befinden sich alter und neuer Name innerhalb desselben
Verzeichnisses, wird nur der Name des Eintrags geändert.

bool tl_CopyFile (const char * pc_old, const char * pc_new, bool b_overwrite = true);

Kopiert die Datei pc_old nach pc_new. Ist der optionale Parameter b_overwrite gleich true, wird eine
eventuell vorhandene Datei gleichen Namens überschrieben.

bool tl_DeleteFile (const char * pc_name);

Löscht die Datei pc_name.

bool tl_QuerySize (t_FileId o_file, t_FileSize & o_size);

Ermittelt die aktuelle Größe der geöffneten Datei o_file.

bool tl_QueryPos (t_FileId o_file, t_FileSize & o_pos);

Ermittelt die aktuelle Position des Zugriffszeigers der geöffneten Datei o_file.

bool tl_SeekAbs (t_FileId o_file, t_FileSize o_pos);

Positioniert den Zugriffszeiger der geöffneten Datei o_file absolut auf die Position o_pos.

bool tl_SeekRel (t_FileId o_file, t_FileSize o_pos);

Positioniert den Zugriffszeiger der geöffneten Datei o_file relativ auf die Position o_pos.

bool tl_Truncate (t_FileId o_file, t_FileSize o_size);

Verändert die Größe der geöffneten Datei o_file auf o_size Bytes.

Spirick Tuning Referenzhandbuch Seite 118

bool tl_Read (t_FileId o_file, void * pv_dst, t_FileSize o_len);

Liest o_len Bytes aus der geöffneten Datei o_file nach pv_dst und verschiebt den Zugriffszeiger.

bool tl_Write (t_FileId o_file, const void * pv_src, t_FileSize o_len);

Schreibt o_len Bytes von pv_src in die geöffnete Datei o_file und verschiebt den Zugriffszeiger.

Zugehörige Klasse
Die globalen Funktionen dieser Schnittstelle dienen als Grundlage der Klasse ct_File.

3.1.18 Verzeichnis (tuning/sys/cdir.hpp)

Innerhalb der Bibliothek Spirick Tuning werden Pfad- und Dateinamen als UTF-8-Strings interpretiert.
Unter Linux werden die Strings unverändert an die Systemfunktionen übergeben. Unter MS Windows
werden Pfad- und Dateinamen intern in UTF-16 umgewandelt.

Die Systemschnittstelle für Verzeichnisse enthält einige elementare Funktionen, die häufig benötigt
werden, die jedoch in der C-Standardbibliothek noch nicht compiler- und systemunabhängig definiert
sind.

Sämtliche Funktionen liefern bei erfolgreicher Ausführung den Wahrheitswert true. Im Fehlerfall wird
keine C++-Exception ausgelöst, sondern false zurückgegeben. Die Funktionen können somit auch in
einer Programmierumgebung genutzt werden, in der keine Exceptions zur Verfügung stehen oder diese
mit einer Compileroption deaktiviert sind.

Funktionen
bool tl_QueryCurrentDirectory (const char * pc_drive, t_UInt u_driveLen, ct_String & co_currentDirectory);

Ermittelt das aktuelle Verzeichnis des Laufwerks pc_drive und schreibt das Resultat nach
co_currentDirectory. Die Laufwerksangabe muß nicht nullterminiert sein. Statt des Nullzeichens wird die
Länge u_driveLen angegeben. Ist u_driveLen gleich Null, wird das aktuelle Laufwerk verwendet. Die Linux
Implementierung ignoriert die Parameter pc_drive und u_driveLen.

bool tl_CreateDirectory (const char * pc_name);

Erzeugt das neue Verzeichnis pc_name.

bool tl_MoveDirectory (const char * pc_old, const char * pc_new);

Verschiebt das Verzeichnis pc_old nach pc_new. Befinden sich alter und neuer Name innerhalb desselben
übergeordneten Verzeichnisses, wird nur der Name des Eintrags geändert.

bool tl_DeleteDirectory (const char * pc_name);

Löscht das leere Verzeichnis pc_name.

Zugehörige Klasse
Die globalen Funktionen dieser Schnittstelle dienen als Grundlage der Klasse ct_Directory.

3.1.19 Systemnahe Informationen (tuning/sys/cinfo.hpp)

In dieser Rubrik befinden sich mehrere Strukturen und Funktionen zur Abfrage systemnaher
Informationen. Zeichenketten werden in statisch allokiertem Speicher abgelegt.

Spirick Tuning Referenzhandbuch Seite 119

Strukturdeklaration
struct st_FileSystemInfo
 {
 t_UInt64 u_TotalBytes;
 t_UInt64 u_FreeBytes;
 t_UInt64 u_AvailableBytes;
 };

Die Struktur st_FileSystemInfo stellt wichtige Informationen über ein Dateisystem zur Verfügung.
Enthalten sind die Gesamtgröße (u_TotalBytes), der insgesamt freie Speicher (u_FreeBytes) sowie der für
den aktuellen Prozeß/Nutzer verfügbare Speicher (u_AvailableBytes).

Strukturdeklaration
struct st_HardwareInfo
 {
 t_UInt64 u_TotalBytes;
 t_UInt64 u_AvailableBytes;
 unsigned u_TotalProcessors;
 unsigned u_AvailableProcessors;
 const char * pc_CPUName;
 };

Die Struktur st_HardwareInfo stellt wichtige Informationen über die Computerhardware zur Verfügung.
Enthalten sind die Gesamtgröße (u_TotalBytes) und die verfügbaren Bytes (u_AvailableBytes) des
Arbeitsspeichers, die Gesamtzahl (u_TotalProcessors) und die für den aktuellen Prozeß/Nutzer verfügbare
Anzahl (u_AvailableProcessors) der Prozessorkerne sowie der Name des Prozessors als Zeichenkette
(pc_CPUName).

In einer 32-Bit-Umgebung kann ein Prozeß je nach Architektur nur max. 2-4 GB Arbeitsspeicher
verwenden. Wenn mehr als 4 GB physisch vorhanden sind, kann es sein, daß bei Gesamtgröße und
verfügbaren Bytes Werte größer als 4 GB geliefert werden.

Strukturdeklaration
struct st_ProcessMemoryInfo
 {
 t_UInt u_VMBytes;
 t_UInt u_RSSBytes;
 };

Die Struktur st_ProcessMemoryInfo stellt Informationen über den Speicherverbrauch des aktuellen
Prozesses zur Verfügung. Enthalten sind die gesamten Bytes (u_VMBytes, virtual memory size) und die
residenten Bytes (u_RSSBytes, resident set size). Die Gesamtgröße umfaßt den Speicher, der sich im
Arbeitsspeicher oder im Pagefile befindet. Die residenten Bytes umfassen nur die Bereiche, die sich
aktuell im Arbeitsspeicher befinden. Die Art und Weise, wie die beiden Speichergrößen berechnet
werden, unterscheidet sich von Betriebssystem zu Betriebssystem, z. B. ob Speicher, der von mehreren
Prozessen gemeinsam genutzt wird, eingerechnet wird oder nicht.

Strukturdeklaration
enum et_Compiler
 {
 ec_CompilerMSVC,
 ec_CompilerGCC
 };

struct st_CompilerInfo
 {

Spirick Tuning Referenzhandbuch Seite 120

 et_Compiler eo_Compiler;
 const char * pc_CompilerVersion;
 const char * pc_RuntimeVersion;
 };

Die Struktur st_CompilerInfo stellt wichtige Informationen über den verwendeten Compiler und das
Laufzeitsystem zur Verfügung. Enthalten sind der Compilertyp (eo_Compiler) sowie die Versionen von
Compiler (pc_CompilerVersion) und Laufzeitsystem (pc_RuntimeVersion) als Zeichenkette.

Strukturdeklaration
enum et_System
 {
 ec_SystemMSWindows,
 ec_SystemLinux
 };

struct st_SystemInfo
 {
 et_System eo_System;
 const char * pc_SystemVersion;
 const char * pc_ComputerName;
 const char * pc_UserName;
 };

Die Struktur st_SystemInfo stellt wichtige Informationen über das Betriebssystem zur Verfügung.
Enthalten sind der Betriebssystemtyp (eo_System) sowie Zeichenketten für die Betriebssystemversion
(pc_SystemVersion), den Computernamen (pc_ComputerName) und den Namen des aktuellen Nutzers
(pc_UserName).

Strukturdeklaration
struct st_BatteryInfo
 {
 bool b_ACLine;
 bool b_BatteryFound;
 int i_LifePercent;
 };

Die Struktur st_BatteryInfo stellt wichtige Informationen über die Stromversorgung des Computers zur
Verfügung. Die Membervariable b_ACLine ist gleich true, wenn der Computer am Stromnetz
angeschlossen ist. Die Membervariable b_BatteryFound ist gleich true, wenn sich im Computer eine
Batterie befindet. Die Membervariable i_LifePercent enthält den Füllstand der Batterie in Prozent.

Funktionen
bool tl_QueryFileSystemInfo (const char * pc_path, st_FileSystemInfo * pso_info);

Speichert in pso_info Informationen über das Dateisystem, auf das der Parameter pc_path verweist, und
liefert bei Erfolg den Wert true.

bool tl_QueryHardwareInfo (st_HardwareInfo * pso_info);

Speichert in pso_info Informationen über die Computerhardware und liefert bei Erfolg den Wert true.

bool tl_QueryProcessMemoryInfo (st_ProcessMemoryInfo * pso_info);

Speichert in pso_info Informationen über den Speicherverbrauch und liefert bei Erfolg den Wert true.

bool tl_QueryCompilerInfo (st_CompilerInfo * pso_info);

Speichert in pso_info Informationen über den verwendeten Compiler und das Laufzeitsystem und liefert
bei Erfolg den Wert true.

Spirick Tuning Referenzhandbuch Seite 121

bool tl_QuerySystemInfo (st_SystemInfo * pso_info);

Speichert in pso_info Informationen über das Betriebssystem und liefert bei Erfolg den Wert true.

bool tl_QueryBatteryInfo (st_BatteryInfo * pso_info);

Speichert in pso_info Informationen über die Stromversorgung des Computers und liefert bei Erfolg den
Wert true.

3.2 Zeichenketten und Dateinamen

3.2.1 Stringtemplate (tuning/string.h)

Die Stringklassen in der Bibliothek Spirick Tuning enthalten nullterminierte Zeichenketten und zusätzlich
eine Längenangabe. Das abschließende Nullzeichen ist eine verbreitete Konvention und sichert die
Kompatibilität mit zahlreichen anderen Bibliotheken. Die zusätzliche Längenangabe dient der
Beschleunigung von Rechenvorgängen. Ohne sie müßte häufig die Länge der Zeichenkette durch Suche
nach dem Nullzeichen ermittelt werden. Positionsangaben innerhalb einer Zeichenkette beginnen mit
dem Wert Null. Diese Zählung entspricht ebenfalls einer verbreiteten Konvention.

Das Klassentemplate gct_String dient als Basisklasse für alle weiteren Stringklassen. Der Parameter
t_block ist eine Blockklasse mit Zeichenblock-Schnittstelle, z. B. gct_CharBlock <ct_Chn32Block, char>, und
dient dem String als Basisklasse. Um Speicherplatz bei leeren Strings zu sparen, wird empfohlen, das
Template gct_NullDataBlock zu verwenden, z. B. gct_CharBlock <gct_NullDataBlock <ct_Chn32Block, char>,
char>. Der zweite Templateparameter t_staticStore ist eine statische Storeklasse, z. B. ct_Chn32Store. Sie
wird in der Methode ReplaceAll als temporärer Zwischenspeicher verwendet.

Basisklassen
gct_CharBlock (siehe Abschnitt ‘Zeichenblock’)

Templatedeklaration
template <class t_block, class t_staticStore>
 class gct_String: public t_block
 {
 public:
 typedef t_block t_Block;
 typedef t_staticStore t_StaticStore;
 typedef t_block::t_Char t_Char;
 typedef t_block::t_Size t_Size;

 inline gct_String ();
 inline gct_String (t_Char c_init);
 inline gct_String (t_Char c_init, t_Size o_len);
 inline gct_String (const t_Char * pc_init);
 inline gct_String (const t_Char * pc_init, t_Size o_len);
 inline gct_String (const gct_String & co_init);

 inline t_UInt GetHash () const;
 inline bool IsEmpty () const;
 inline t_Size GetMaxLen () const;
 inline t_Size GetLen () const;
 inline const t_Char * GetStr () const;
 inline const t_Char * operator () () const;
 inline const t_Char * GetStr (t_Size o_pos) const;
 inline const t_Char * operator () (t_Size o_pos) const;
 inline t_Char & GetChar (t_Size o_pos) const;

Spirick Tuning Referenzhandbuch Seite 122

 inline t_Char & operator [] (t_Size o_pos) const;
 inline t_Char & GetRevChar (t_Size o_pos) const;
 gct_String SubStr (t_Size o_len) const;
 gct_String RevSubStr (t_Size o_len) const;
 gct_String SubStr (t_Size o_pos, t_Size o_len) const;
 gct_String operator () (t_Size o_pos, t_Size o_len) const;

 t_Int First (t_Char c_search, t_Size o_pos = 0) const;
 t_Int First (const t_Char * pc_search, t_Size o_pos = 0) const;
 t_Int First (const gct_String & co_search, t_Size o_pos = 0) const;

 t_Int Last (t_Char c_search, t_Size o_pos = 0) const;
 t_Int Last (const t_Char * pc_search, t_Size o_pos = 0) const;
 t_Int Last (const gct_String & co_search, t_Size o_pos = 0) const;

 inline int CompSubStr (t_Size o_pos, t_Char c_comp) const;
 inline int CompSubStr (t_Size o_pos, const t_Char * pc_comp) const;
 inline int CompSubStr (t_Size o_pos, const t_Char * pc_comp, t_Size o_len) const;
 inline int CompSubStr (t_Size o_pos, const gct_String & co_comp) const;

 inline int CompTo (t_Char c_comp) const;
 inline int CompTo (const t_Char * pc_comp) const;
 inline int CompTo (const t_Char * pc_comp, t_Size o_len) const;
 inline int CompTo (const gct_String & co_comp) const;

 inline void Clear ();
 inline void Assign (t_Char c_asgn);
 inline void Assign (t_Char c_asgn, t_Size o_len);
 void Assign (const t_Char * pc_asgn);
 inline void Assign (const t_Char * pc_asgn, t_Size o_len);
 void Assign (const gct_String & co_asgn);
 inline void Append (t_Char c_app);
 inline void Append (t_Char c_app, t_Size o_len);
 void Append (const t_Char * pc_app);
 inline void Append (const t_Char * pc_app, t_Size o_len);
 void Append (const gct_String & co_app);

 inline void Insert (t_Size o_pos, t_Char c_ins);
 inline void Insert (t_Size o_pos, t_Char c_ins, t_Size o_len);
 inline void Insert (t_Size o_pos, const t_Char * pc_ins);
 inline void Insert (t_Size o_pos, const t_Char * pc_ins, t_Size o_len);
 inline void Insert (t_Size o_pos, const gct_String & co_ins);
 inline void Delete (t_Size o_pos);
 inline void Delete (t_Size o_pos, t_Size o_len);
 inline void DeleteRev (t_Size o_len);
 void Replace (t_Size o_pos, t_Size o_delLen, t_Char c_ins);
 void Replace (t_Size o_pos, t_Size o_delLen, t_Char c_ins, t_Size o_insLen);
 void Replace (t_Size o_pos, t_Size o_delLen, const t_Char * pc_ins);
 void Replace (t_Size o_pos, t_Size o_delLen, const t_Char * pc_ins, t_Size o_insLen);
 void Replace (t_Size o_pos, t_Size o_delLen, const gct_String & co_ins);
 t_Size ReplaceAll (const gct_String & co_search, const gct_String & co_replace);

 int AssignF (const t_Char * pc_format, ...);
 int AppendF (const t_Char * pc_format, ...);
 int InsertF (t_Size o_pos, const t_Char * pc_format, ...);
 int ReplaceF (t_Size o_pos, t_Size o_delLen, const t_Char * pc_format, ...);

 inline bool ToUpper ();
 inline bool ToLower ();
 inline bool ToUpper2 ();
 inline bool ToLower2 ();

 inline bool operator == (const t_Char * pc_comp) const;
 inline bool operator == (const gct_String & co_comp) const;
 inline bool operator != (const t_Char * pc_comp) const;
 inline bool operator != (const gct_String & co_comp) const;

Spirick Tuning Referenzhandbuch Seite 123

 inline bool operator < (const t_Char * pc_comp) const;
 inline bool operator < (const gct_String & co_comp) const;
 inline bool operator <= (const t_Char * pc_comp) const;
 inline bool operator <= (const gct_String & co_comp) const;
 inline bool operator > (const t_Char * pc_comp) const;
 inline bool operator > (const gct_String & co_comp) const;
 inline bool operator >= (const t_Char * pc_comp) const;
 inline bool operator >= (const gct_String & co_comp) const;

 inline gct_String & operator = (t_Char c_asgn);
 inline gct_String & operator = (const t_Char * pc_asgn);
 inline gct_String & operator = (const gct_String & co_asgn);
 inline gct_String & operator += (t_Char c_app);
 inline gct_String & operator += (const t_Char * pc_app);
 inline gct_String & operator += (const gct_String & co_app);

 inline gct_String operator + (t_Char c_app) const;
 inline gct_String operator + (const t_Char * pc_app) const;
 inline gct_String operator + (const gct_String & co_app) const;

 friend inline gct_String operator + (t_Char c_init, const gct_String & co_app);
 friend inline gct_String operator + (const t_Char * pc_init, const gct_String & co_app);
 template <class t_string>
 void Convert (const t_string & co_asgn);
 template <class t_string>
 bool MbConvert (const t_string & co_asgn);
 template <class t_asgnChar>
 bool MbConvert (const t_asgnChar * po_asgn);
 };

Parameterarten
Für das Zuweisen und Einfügen von Zeichenketten existieren die folgenden Parameterarten:

1. Einzelnes Zeichen (t_Char c): Das Zeichen wird als Zeichenkette der Länge Eins betrachtet.
2. Zeichen mit Längenangabe (t_Char c, t_Size o_len): Die Parameterliste wird als Zeichenkette der

Länge o_len betrachtet, die mit dem Zeichen c gefüllt ist.
3. Nullterminierte Zeichenkette (const t_Char * pc): Die Zeichenkette wird bis zu ihrem Nullzeichen

verarbeitet.
4. Zeichenkette mit Längenangabe (const t_Char * pc, t_Size o_len): Es werden die ersten o_len Zeichen

der Zeichenkette pc verarbeitet. Darin darf kein Nullzeichen vorkommen.
5. Stringobjekt (const gct_String & co): Es wird die gesamte Zeichenkette des Stringobjekts co

verarbeitet. Die Länge wird vom Stringobjekt abgefragt und muß nicht berechnet werden.
6. Formatierte Zeichenkette (const t_Char * pc_format, ...): Die Parameterliste wird wie eine formatierte

Zeichenkette im printf-Format behandelt. Diese Parameterart kann nicht in überladenen Methoden
verwendet werden, da sie sich nicht eindeutig von 3. und 4. unterscheiden läßt.

Selbstzuweisung
Nicht alle Methoden einer Stringklasse enthalten eine Sonderbehandlung für Selbstzuweisung.

Eine Selbstzuweisung liegt vor, wenn als Parameter ein Zeiger auf die eigene Zeichenkette (GetStr ()
bzw. this) übergeben wird. Sie tritt in der Praxis selten auf, ihre Behandlung kostet jedoch Rechenzeit.
Eine Selbstzuweisung kann z. B. beim Iterieren eines Containers auftreten, wenn allen Elementen der
Wert eines Elements desselben Containers zugewiesen wird. Wird die Selbstzuweisung innerhalb einer
Zuweisungsmethode nicht gesondert behandelt, kommt es zu unerwarteten und fehlerhaften Resultaten.

Spirick Tuning Referenzhandbuch Seite 124

Datentypen
typedef t_block::t_Size t_Size;

Der geschachtelte Größentyp einer Stringklasse bestimmt den Wertebereich der Größen- und
Positionsangaben. Ist z. B. der Größentyp auf t_UInt8 definiert, kann die Zeichenkette maximal 255
Bytes umfassen (einschließlich des Nullzeichens). Der Größentyp beeinflußt auch die Größe des
Stringobjekts, denn die meisten Stringklassen enthalten ein Attribut des Typs t_Size.

Konstruktoren
gct_String ();

Der normale Konstruktor initialisiert ein leeres Stringobjekt. Die Zeichenkette besteht nur aus dem
abschließenden Nullzeichen.

gct_String (t_Char c_init);

Initialisiert ein Stringobjekt der Länge Eins. Das Zeichen c_init wird übernommen und darf kein
Nullzeichen sein.

gct_String (t_Char c_init, t_Size o_len);

Initialisiert ein Stringobjekt der Länge o_len. Die Zeichenkette wird mit dem Zeichen c_init gefüllt. Es
darf kein Nullzeichen sein.

gct_String (const t_Char * pc_init);

Initialisiert ein Stringobjekt durch Kopieren der nullterminierten Zeichenkette pc_init. Es wird eine echte
Kopie (deep copy) angefertigt. Der Inhalt von pc_init wird in einen eigenen Speicherbereich kopiert.

gct_String (const t_Char * pc_init, t_Size o_len);

Initialisiert ein Stringobjekt durch Kopieren der ersten o_len Zeichen der Zeichenkette pc_init. Es wird
eine echte Kopie (deep copy) angefertigt. Der Inhalt von pc_init wird in einen eigenen Speicherbereich
kopiert.

gct_String (const gct_String & co_init);

Initialisiert ein Stringobjekt durch Kopieren des Inhalts von co_init. Es wird eine echte Kopie (deep copy)
angefertigt. Der Inhalt von co_init wird in einen eigenen Speicherbereich kopiert.

Zugriff auf Länge und Zeichenkette
t_UInt GetHash () const;

Liefert einen Hashwert der Zeichenkette.

bool IsEmpty () const;

Liefert true, wenn die Zeichenkette leer ist.

t_Size GetMaxLen () const;

Liefert die maximale Länge der Zeichenkette (ohne abschließendes Nullzeichen).

t_Size GetLen () const;

Liefert die Länge der Zeichenkette (ohne abschließendes Nullzeichen).

const t_Char * GetStr () const;
const t_Char * operator () () const;

Liefert einen Zeiger auf das erste Zeichen. Bei einer leeren Zeichenkette zeigt er auf das abschließende
Nullzeichen.

Spirick Tuning Referenzhandbuch Seite 125

const t_Char * GetStr (t_Size o_pos) const;
const t_Char * operator () (t_Size o_pos) const;

Liefert einen Zeiger auf das Zeichen an der Position o_pos. Bei o_pos == GetLen () zeigt er auf das
abschließende Nullzeichen. Es muß o_pos <= GetLen () gelten.

t_Char & GetChar (t_Size o_pos) const;
t_Char & operator [] (t_Size o_pos) const;

Liefert eine Referenz auf das Zeichen an der Position o_pos. Diesem Zeichen darf kein Nullzeichen
zugewiesen werden. Es muß o_pos < GetLen () gelten.

t_Char & GetRevChar (t_Size o_pos) const;

Liefert eine Referenz auf das Zeichen an der Position GetLen () - 1 - o_pos. Bei o_pos == 0 ist es das letzte
Zeichen, bei o_pos == 1 das vorletzte usw. Diesem Zeichen darf kein Nullzeichen zugewiesen werden. Es
muß o_pos < GetLen () gelten.

gct_String SubStr (t_Size o_len) const;

Liefert ein String-Objekt, das die ersten o_len Zeichen der eigenen Zeichenkette enthält. Es muß o_len <=
GetLen () gelten.

gct_String RevSubStr (t_Size o_len) const;

Liefert ein String-Objekt, das die letzten o_len Zeichen der eigenen Zeichenkette enthält. Es muß o_len <=
GetLen () gelten.

gct_String SubStr (t_Size o_pos, t_Size o_len) const;
gct_String operator () (t_Size o_pos, t_Size o_len) const;

Liefert ein String-Objekt, das beginnend bei o_pos die nächsten o_len Zeichen der eigenen Zeichenkette
enthält. Es muß o_pos + o_len <= GetLen () gelten.

Suche nach Zeichen und Teilzeichenketten
t_Int First (t_Char c_search, t_Size o_pos = 0) const;

Liefert die Position des ersten Auftretens des Zeichens c_search ab der Position o_pos oder einen
negativen Wert, wenn das Zeichen nicht gefunden wurde.

t_Int First (const t_Char * pc_search, t_Size o_pos = 0) const;

Liefert die Position des ersten Auftretens der Zeichenkette pc_search ab der Position o_pos oder einen
negativen Wert, wenn die Zeichenkette nicht gefunden wurde.

t_Int First (const gct_String & co_search, t_Size o_pos = 0) const;

Liefert die Position des ersten Auftretens der Zeichenkette co_search ab der Position o_pos oder einen
negativen Wert, wenn die Zeichenkette nicht gefunden wurde.

t_Int Last (t_Char c_search, t_Size o_pos = 0) const;

Liefert die Position des letzten Auftretens des Zeichens c_search ab der Position o_pos oder einen
negativen Wert, wenn das Zeichen nicht gefunden wurde.

t_Int Last (const t_Char * pc_search, t_Size o_pos = 0) const;

Liefert die Position des letzten Auftretens der Zeichenkette pc_search ab der Position o_pos oder einen
negativen Wert, wenn die Zeichenkette nicht gefunden wurde.

t_Int Last (const gct_String & co_search, t_Size o_pos = 0) const;

Liefert die Position des letzten Auftretens der Zeichenkette co_search ab der Position o_pos oder einen
negativen Wert, wenn die Zeichenkette nicht gefunden wurde.

Spirick Tuning Referenzhandbuch Seite 126

Teilvergleich
Die folgenden Methoden liefern einen Wert kleiner Null, wenn die eigene Zeichenkette kleiner als der
Parameter ist, gleich Null bei Gleichheit mit dem Parameter und einen Wert größer Null, wenn die eigene
Zeichenkette größer als der Parameter ist.
Es wird nur eine Teilzeichenkette verglichen. Der Vergleich beginnt an der Position o_pos. Im Gegensatz
zum vollständigen (s. u.) endet der Teilvergleich spätestens am Ende des Parameters. Wurde bis dorthin
kein Unterschied festgestellt, gelten die Zeichenketten als gleich. Eventuell folgende Zeichen werden
nicht berücksichtigt.

int CompSubStr (t_Size o_pos, t_Char c_comp) const;

Vergleicht die eigene Zeichenkette ab der Position o_pos mit dem Zeichen c_comp. Dieses gilt als
Zeichenkette der Länge Eins.

int CompSubStr (t_Size o_pos, const t_Char * pc_comp) const;

Vergleicht die eigene Zeichenkette ab der Position o_pos mit der nullterminierten Zeichenkette pc_comp.

int CompSubStr (t_Size o_pos, const t_Char * pc_comp, t_Size o_len) const;

Vergleicht die eigene Zeichenkette ab der Position o_pos mit den ersten o_len Zeichen der Zeichenkette
pc_comp.

int CompSubStr (t_Size o_pos, const gct_String & co_comp) const;

Vergleicht die eigene Zeichenkette ab der Position o_pos mit der Zeichenkette co_comp.

Vollständiger Vergleich
Die folgenden Methoden liefern einen Wert kleiner Null, wenn die eigene Zeichenkette kleiner als der
Parameter ist, gleich Null bei Gleichheit mit dem Parameter und einen Wert größer Null, wenn die eigene
Zeichenkette größer als der Parameter ist.
Die beiden Zeichenketten werden vollständig miteinander verglichen. Wurde bis zum Ende einer der
beiden Zeichenketten kein Unterschied festgestellt, gilt die längere als größer.

int CompTo (t_Char c_comp) const;

Vergleicht die eigene Zeichenkette vollständig mit dem Zeichen c_comp. Dieses gilt als Zeichenkette der
Länge Eins.

int CompTo (const t_Char * pc_comp) const;

Vergleicht die eigene Zeichenkette vollständig mit der nullterminierten Zeichenkette pc_comp.

int CompTo (const t_Char * pc_comp, t_Size o_len) const;

Vergleicht die eigene Zeichenkette vollständig mit den ersten o_len Zeichen der Zeichenkette pc_comp.

int CompTo (const gct_String & co_comp) const;

Vergleicht die eigene Zeichenkette vollständig mit der Zeichenkette co_comp.

Zuweisen
Die folgenden Methoden weisen der eigenen Zeichenkette einen neuen Wert zu. Eine Prüfung auf
Selbstzuweisung (s. o.) erfolgt nicht bei allen Methoden.

void Clear ();

Setzt die Länge auf Null.

void Assign (t_Char c_asgn);

Setzt die Länge auf Eins und übernimmt das Zeichen c_asgn. Es darf kein Nullzeichen sein.

Spirick Tuning Referenzhandbuch Seite 127

void Assign (t_Char c_asgn, t_Size o_len);

Setzt die Länge auf o_len und füllt die Zeichenkette mit dem Zeichen c_asgn. Es darf kein Nullzeichen
sein.

void Assign (const t_Char * pc_asgn);

Übernimmt die nullterminierte Zeichenkette pc_asgn vollständig. Es wird eine echte Kopie (deep copy)
angefertigt. Der Inhalt von pc_asgn wird in den eigenen Speicherbereich kopiert (mit Prüfung auf
Selbstzuweisung).

void Assign (const t_Char * pc_asgn, t_Size o_len);

Übernimmt die ersten o_len Zeichen der Zeichenkette pc_asgn. Es wird eine echte Kopie (deep copy)
angefertigt. Der Inhalt von pc_asgn wird in den eigenen Speicherbereich kopiert (ohne Prüfung auf
Selbstzuweisung).

void Assign (const gct_String & co_asgn);

Übernimmt die Zeichenkette co_asgn vollständig. Es wird eine echte Kopie (deep copy) angefertigt. Der
Inhalt von co_asgn wird in den eigenen Speicherbereich kopiert (mit Prüfung auf Selbstzuweisung).

Anfügen
Die folgenden Methoden fügen an das Ende der eigenen Zeichenkette einen neuen Wert an. Eine Prüfung
auf Selbstzuweisung (s. o.) erfolgt nicht bei allen Methoden.

void Append (t_Char c_app);

Fügt an das Ende das einzelne Zeichen c_app an. Es darf kein Nullzeichen sein.

void Append (t_Char c_app, t_Size o_len);

Fügt an das Ende die o_len-fache Wiederholung des Zeichens c_app an. Es darf kein Nullzeichen sein.

void Append (const t_Char * pc_app);

Fügt an das Ende die nullterminierte Zeichenkette pc_app an (mit Prüfung auf Selbstzuweisung).

void Append (const t_Char * pc_app, t_Size o_len);

Fügt an das Ende die ersten o_len Zeichen der Zeichenkette pc_app an (ohne Prüfung auf
Selbstzuweisung).

void Append (const gct_String & co_app);

Fügt an das Ende die Zeichenkette co_app an (mit Prüfung auf Selbstzuweisung).

Einfügen
Die folgenden Methoden fügen an der Position o_pos eine Zeichenkette ein. Eine Prüfung auf
Selbstzuweisung (s. o.) erfolgt nicht.

void Insert (t_Size o_pos, t_Char c_ins);

Fügt an der Position o_pos das einzele Zeichen c_ins ein. Es darf kein Nullzeichen sein. Es muß o_pos <=
GetLen () gelten.

void Insert (t_Size o_pos, t_Char c_ins, t_Size o_len);

Fügt an der Position o_pos die o_len-fache Wiederholung des Zeichens c_ins ein. Es darf kein Nullzeichen
sein. Es muß o_pos <= GetLen () gelten.

Spirick Tuning Referenzhandbuch Seite 128

void Insert (t_Size o_pos, const t_Char * pc_ins);

Fügt an der Position o_pos die nullterminierte Zeichenkette pc_ins ein. Es muß o_pos <= GetLen () gelten.

void Insert (t_Size o_pos, const t_Char * pc_ins, t_Size o_len);

Fügt an der Position o_pos die ersten o_len Zeichen der Zeichenkette pc_ins ein. Es muß o_pos <= GetLen ()
gelten.

void Insert (t_Size o_pos, const gct_String & co_ins);

Fügt an der Position o_pos die Zeichenkette co_ins ein. Es muß o_pos <= GetLen () gelten.

Löschen
void Delete (t_Size o_pos);

Löscht alle Zeichen ab der Position o_pos. Es muß o_pos <= GetLen () gelten.

void Delete (t_Size o_pos, t_Size o_len);

Löscht o_len Zeichen ab der Position o_pos. Es muß o_pos + o_len <= GetLen () gelten.

void DeleteRev (t_Size o_len);

Löscht die letzten o_len Zeichen. Es muß o_len <= GetLen () gelten.

Ersetzen
Die folgenden Methoden ersetzen o_delLen Zeichen an der Position o_pos durch eine andere Zeichenkette.
Eine Prüfung auf Selbstzuweisung (s. o.) erfolgt nicht.

void Replace (t_Size o_pos, t_Size o_delLen, t_Char c_ins);

Ersetzt o_delLen Zeichen an der Position o_pos durch das einzele Zeichen c_ins. Es darf kein Nullzeichen
sein. Es muß o_pos + o_delLen <= GetLen () gelten.

void Replace (t_Size o_pos, t_Size o_delLen, t_Char c_ins, t_Size o_insLen);

Ersetzt o_delLen Zeichen an der Position o_pos durch die o_insLen-fache Wiederholung des Zeichens c_ins.
Es darf kein Nullzeichen sein. Es muß o_pos + o_delLen <= GetLen () gelten.

void Replace (t_Size o_pos, t_Size o_delLen, const t_Char * pc_ins);

Ersetzt o_delLen Zeichen an der Position o_pos durch die nullterminierte Zeichenkette pc_ins. Es muß o_pos
+ o_delLen <= GetLen () gelten.

void Replace (t_Size o_pos, t_Size o_delLen, const t_Char * pc_ins, t_Size o_insLen);

Ersetzt o_delLen Zeichen an der Position o_pos durch die ersten o_insLen Zeichen der Zeichenkette pc_ins.
Es muß o_pos + o_delLen <= GetLen () gelten.

void Replace (t_Size o_pos, t_Size o_delLen, const gct_String & co_ins);

Ersetzt o_delLen Zeichen an der Position o_pos durch die Zeichenkette co_ins. Es muß o_pos + o_delLen <=
GetLen () gelten.

Alles ersetzen
t_Size ReplaceAll (const gct_String & co_search, const gct_String & co_replace);

Ersetzt alle Teilstrings, die gleich co_search sind, durch co_replace und liefert die Anzahl der Ersetzungen.
Es wird ein optimierter Algorithmus mit minimalen Reallokationen verwendet.

Spirick Tuning Referenzhandbuch Seite 129

Formatierte Zeichenketten
Die folgenden Methoden verhalten sich wie Assign, Append, Insert bzw. Replace. Sie behandeln jedoch ihre
Parameterliste als eine formatierte Zeichenkette im printf-Format und liefern deren Länge. Ein negativer
Rückgabewert deutet darauf hin, daß bei einem Parameter ein Formatierungsfehler auftrat (siehe
Abschnitt 'Zeichenketten formatieren').

int AssignF (const t_Char * pc_format, ...);

Übernimmt die formatierte Zeichenkette pc_format vollständig.

int AppendF (const t_Char * pc_format, ...);

Fügt an das Ende die formatierte Zeichenkette pc_format an.

int InsertF (t_Size o_pos, const t_Char * pc_format, ...);

Fügt an der Position o_pos die formatierte Zeichenkette pc_format ein. Es muß o_pos <= GetLen () gelten.

int ReplaceF (t_Size o_pos, t_Size o_delLen, const t_Char * pc_format, ...);

Ersetzt o_delLen Zeichen an der Position o_pos durch die formatierte Zeichenkette pc_format. Es muß o_pos
+ o_delLen <= GetLen () gelten.

Klein-/Großbuchstaben
Die folgenden Methoden nutzen globale Funktionen der Systemschnittstelle (siehe Abschnitt 'Zeichen
und Zeichenketten', Funktionen tl_ToUpper und tl_ToLower).

bool ToUpper ();

Wandelt die gesamte Zeichenkette in Großbuchstaben um (Windows-1252).

bool ToLower ();

Wandelt die gesamte Zeichenkette in Kleinbuchstaben um (Windows-1252).

bool ToUpper2 ();

Wandelt die gesamte Zeichenkette in Großbuchstaben um (teilw. UTF-kompatibel).

bool ToLower2 ();

Wandelt die gesamte Zeichenkette in Kleinbuchstaben um (teilw. UTF-kompatibel).

Vergleichsoperatoren
Die folgenden Operatoren vergleichen die beiden Zeichenketten vollständig miteinander. Wurde bis zum
Ende einer der beiden Zeichenketten kein Unterschied festgestellt, gilt die längere als größer. Die
Operatoren verhalten sich semantisch wie CompTo, liefern jedoch als Rückgabewert true oder false.

bool operator == (const t_Char * pc_comp) const;
bool operator == (const gct_String & co_comp) const;
bool operator != (const t_Char * pc_comp) const;
bool operator != (const gct_String & co_comp) const;
bool operator < (const t_Char * pc_comp) const;
bool operator < (const gct_String & co_comp) const;
bool operator <= (const t_Char * pc_comp) const;
bool operator <= (const gct_String & co_comp) const;
bool operator > (const t_Char * pc_comp) const;
bool operator > (const gct_String & co_comp) const;
bool operator >= (const t_Char * pc_comp) const;
bool operator >= (const gct_String & co_comp) const;

Spirick Tuning Referenzhandbuch Seite 130

Zuweisungsoperatoren
Die folgenden Operatoren weisen der eigenen Zeichenkette einen neuen Wert zu. Es erfolgt eine Prüfung
auf Selbstzuweisung (s. o.).

gct_String & operator = (t_Char c_asgn);

Setzt die Länge auf Eins und übernimmt das Zeichen c_asgn. Es darf kein Nullzeichen sein.

gct_String & operator = (const t_Char * pc_asgn);

Übernimmt die nullterminierte Zeichenkette pc_asgn vollständig. Es wird eine echte Kopie (deep copy)
angefertigt. Der Inhalt von pc_asgn wird in den eigenen Speicherbereich kopiert.

gct_String & operator = (const gct_String & co_asgn);

Übernimmt die Zeichenkette co_asgn vollständig. Es wird eine echte Kopie (deep copy) angefertigt. Der
Inhalt von co_asgn wird in den eigenen Speicherbereich kopiert.

Anfügeoperatoren
Die folgenden Operatoren fügen an das Ende der eigenen Zeichenkette einen neuen Wert an. Es erfolgt
eine Prüfung auf Selbstzuweisung (s. o.).

gct_String & operator += (t_Char c_app);

Fügt an das Ende das einzelne Zeichen c_app an. Es darf kein Nullzeichen sein.

gct_String & operator += (const t_Char * pc_app);

Fügt an das Ende die nullterminierte Zeichenkette pc_app an.

gct_String & operator += (const gct_String & co_app);

Fügt an das Ende die Zeichenkette co_app an.

Temporäres Anfügen
Die folgenden Operatoren erzeugen ein temporäres String-Objekt, das eine Kopie der eigenen
Zeichenkette und den angefügten Wert enthält. Die eigene Zeichenkette bleibt unverändert.

gct_String operator + (t_Char c_app) const;

Liefert ein String-Objekt mit angefügtem einzelnen Zeichen c_app. Es darf kein Nullzeichen sein.

gct_String operator + (const t_Char * pc_app) const;

Liefert ein String-Objekt mit angefügter nullterminierter Zeichenkette pc_app.

gct_String operator + (const gct_String & co_app) const;

Liefert ein String-Objekt mit angefügter Zeichenkette co_app.

friend gct_String operator + (t_Char c_init, const gct_String & co_app);

Liefert ein String-Objekt, das aus der Zusammensetzung von c_init und co_app besteht.

friend gct_String operator + (const t_Char * pc_init, const gct_String & co_app);

Liefert ein String-Objekt, das aus der Zusammensetzung von pc_init und co_app besteht.

Konvertieren
Die folgenden Methoden dienen der Konvertierung zwischen char- und wchar_t-basierten Stringobjekten.
Es erfolgt keine Prüfung auf Selbstzuweisung (s. o.).

Spirick Tuning Referenzhandbuch Seite 131

template <class t_string> void Convert (const t_string & co_asgn);

Übernimmt die Zeichenkette co_asgn ohne Berücksichtigung von Multibytecharacters.

template <class t_string> bool MbConvert (const t_string & co_asgn);

Übernimmt die Zeichenkette co_asgn mit Berücksichtigung von Multibytecharacters (siehe Abschnitt
'Zeichen und Zeichenketten').

template <class t_asgnChar> bool MbConvert (const t_asgnChar * po_asgn);

Übernimmt die nullterminierte Zeichenkette po_asgn mit Berücksichtigung von Multibytecharacters (siehe
Abschnitt 'Zeichen und Zeichenketten').

3.2.2 String-Instanzen (tuning/xxx/[w]string.h)

Zur Erleichterung des Umgangs mit der Stringschnittstelle werden in der Bibliothek Spirick Tuning einige
Standardinstanzen des Klassentemplates gct_String vordefiniert. Die Makros STRING_DCL(t_Block,
StoreSpec) und WSTRING_DCL(t_Block, StoreSpec) generieren für eine Wrapperklasse eines globalen
Storeobjekts eine Stringklasse. Die Makroverwendung

STRING_DCL (gct_AnyBlock, ct_Any32)

expandiert zu folgendem Text (die Makroparameter sind fett hervorgehoben):

typedef gct_String <gct_CharBlock <gct_NullDataBlock
 <gct_AnyBlock <ct_Any32Store>, char>, char>, ct_Any32Store> ct_Any32String;

Die Makroverwendung

WSTRING_DCL (gct_AnyBlock, ct_Any32)

expandiert zu folgendem Text (die Makroparameter sind fett hervorgehoben):

typedef gct_String <gct_CharBlock <gct_NullDataBlock
 <gct_AnyBlock <ct_Any32Store>, wchar_t>, wchar_t>, ct_Any32Store> ct_Any32WString;

Stringklassen werden nicht wie Blockklassen oder Arraycontainer im 'Vierer-Block' generiert, sondern
einzeln. Eine Stringklasse enthält vergleichsweise sehr viele Methoden. Das Erzeugen mehrerer Klassen
in einem einzigen Makro würde die Übersetzungsdauer unnötig erhöhen.

Jedes Verzeichnis eines dynamischen Stores enthält die zwei Stringdateien 'string.h' und 'wstring.h'. In
jeder Datei wird mit Hilfe des Makros STRING_DCL bzw. WSTRING_DCL je eine Stringklasse deklariert. Z. B.
enthält die Datei 'tuning/std/string.h' die Klasse ct_Std_String. Sie besitzt den Größentyp t_UInt und
fordert den Speicher für den dynamischen Block vom globalen Standardstoreobjekt an.

In der Datei 'tuning/std/[w]string.h' wird deklariert:
typedef ... ct_Std_[W]String;

In der Datei 'tuning/rnd/[w]string.h' wird deklariert:
typedef ... ct_Rnd_[W]String;

In der Datei 'tuning/chn/[w]string.h' wird deklariert:
typedef ... ct_Chn_[W]String;

Spirick Tuning Referenzhandbuch Seite 132

3.2.3 Polymorphe Stringklassen (tuning/[w]string.hpp)

Neben den vordefinierten Instanzen des Templates gct_String enthält die Bibliothek Spirick Tuning die
beiden Stringklassen ct_String und ct_WString, die von polymorphen Collections verwaltet werden
können. Das Makro OBJ_STRING_DCL(StoreSpec) generiert eine Stringklasse, die von einer vordefinierten
Templateinstanz erbt, die wiederum von ct_Object abgeleitet ist. Darin werden Konstruktoren,
Gleichoperatoren und ct_Object-spezifische Methoden definiert. Die Makroverwendung

OBJ_STRING_DCL(ct_Chn_Obj)

expandiert zu folgendem Text (die Makroparameter sind fett hervorgehoben):

class ct_Chn_ObjectString: public ct_Chn_ObjString
 {
public:
 inline ct_Chn_ObjectString ();
 inline ct_Chn_ObjectString (t_Char c_init);
 inline ct_Chn_ObjectString (t_Char c_init, t_Size o_len);
 inline ct_Chn_ObjectString (const t_Char * pc_init);
 inline ct_Chn_ObjectString (const t_Char * pc_init, t_Size o_len);
 inline ct_Chn_ObjectString (const ct_Chn_ObjString & co_init);
 inline ct_Chn_ObjectString (const ct_Chn_ObjectString & co_init);
 TL_CLASSID (ct_Chn_ObjectString)
 virtual bool operator < (const ct_Object & co_comp) const;
 virtual t_UInt GetHash () const;
 inline ct_Chn_ObjectString & operator = (t_Char c_asgn);
 inline ct_Chn_ObjectString & operator = (const t_Char * pc_asgn);
 inline ct_Chn_ObjectString & operator = (const ct_Chn_ObjectString & co_asgn);
 };
...

Zusätzliche Methoden
bool operator < (const ct_Object & co_comp) const;

Dieser Vergleichsoperator wird aufgerufen, wenn ein Stringobjekt in eine sortierte Arraycollection
eingefügt wird. Er prüft, ob das übergebene Objekt vom Typ ct_String (oder abgeleitet) ist und führt
dann einen Zeichenkettenvergleich aus. Andernfalls wird der Vergleichsoperator der Basisklasse
aufgerufen.

In der Datei 'tuning/string.hpp' wird deklariert:
OBJ_STRING_DCL(ct_Chn_Obj)
typedef ct_Chn_ObjectString ct_String;

In der Datei 'tuning/wstring.hpp' wird deklariert:
OBJ_STRING_DCL(ct_Chn_WObj)
typedef ct_Chn_WObjectString ct_WString;

3.2.4 Dateiname (tuning/filename.hpp)

Die Klasse ct_FileName bietet zahlreiche Möglichkeiten zur Bearbeitung von Dateinamen. Ein Dateiname
wird als zusammenhängende nullterminierte Zeichenkette gespeichert. Auf seine Komponenten kann mit
Hilfe ihrer Position (des Offsets) zugegriffen werden. Einzelne Komponenten können zwar nicht als
nullterminierte Zeichenketten abgefragt, aber von einem anderen Dateinamenobjekt kopiert werden.

Ein Dateiname wird in vier Komponenten unterteilt: Laufwerk (Drive), Pfad (Path), Name (Name) und
Erweiterung (Ext). Laufwerk und Pfad werden zusammengenommen DrivePath genannt, Name und
Erweiterung NameExt. Die Pfadkomponente enthält stets einen abschließenden [Back]slash. Der Pfad ohne
diesen [Back]slash wird PurePath genannt, Laufwerk und Pfad ohne [Back]slash PureDrivePath.

Spirick Tuning Referenzhandbuch Seite 133

Die Klasse ct_FileName unterstützt auch die Universal Naming Convention (UNC). Anstatt einer
Laufwerksbezeichnung (z. B. A:) kann ein Netzwerkname (z. B. \\server\\share) stehen. In beiden Fällen
wird mit der Bezeichnung Drive auf die Komponente zugegriffen. Nur in den Methoden HasDriveOrUNC,
HasDrive und HasUNC wird zwischen Laufwerksbezeichnung und Netzwerkname unterschieden.

Bei der Zuweisung einer Pfadkomponente werden unter MS Windows automatisch Slash-Zeichen durch
einen Backslash ersetzt (unter Linux umgekehrt). Wird die Pfadkomponente einzeln zugewiesen, ist der
abschließende [Back]slash optional und wird ggf. ergänzt. Der trennende Punkt wird weder dem Namen
noch der Erweiterung zugeordnet. Bei der Zuweisung einer einzelnen Erweiterung ist die Angabe des
Punktes optional.

Nach dem Zuweisen einer vollständigen Zeichenkette werden die Positionen der einzelnen Komponenten
berechnet. Dafür existieren zwei Möglichkeiten. Die 'Zuweisung als Name' versucht, am Ende der
Zeichenkette den Namen und die Erweiterung zu erkennen. Nur wenn die Zeichenkette mit einem
[Back]slash endet, sind Namens- und Erweiterungskomponente leer. Bei der 'Zuweisung als Pfad'
werden stets die letzten Zeichen der Pfadkomponente zugeordnet und ggf. ein [Back]slash angehängt.

Basisklassen
ct_Object (siehe Abschnitt ‘Abstraktes Objekt’)
 ct_String (siehe Abschnitt ‘Polymorphe Stringklasse’)

Klassendeklaration
class ct_FileName: public ct_String
 {
 ct_FileName ();
 ct_FileName (const char * pc_init);
 ct_FileName & operator = (const char * pc_asgn);
 ct_FileName & operator = (const ct_FileName & co_asgn);

 inline void AssignAsPath (const char * pc_path);
 void AssignAsPath (const char * pc_path, t_Size u_len);
 inline void AssignAsPath (const ct_String & co_path);
 inline void AssignAsName (const char * pc_name);
 void AssignAsName (const char * pc_name, t_Size u_len);
 inline void AssignAsName (const ct_String & co_name);

 bool HasDriveOrUNC () const;
 bool HasDrive () const;
 bool HasUNC () const;
 bool HasPath () const;
 bool HasName () const;
 bool HasExt () const;
 bool HasDot () const;
 bool HasWildCards () const;

 inline t_Size GetDriveLen () const;
 inline t_Size GetPathLen () const;
 inline t_Size GetPurePathLen () const;
 inline t_Size GetDrivePathLen () const;
 inline t_Size GetPureDrivePathLen () const;
 inline t_Size GetNameLen () const;
 inline t_Size GetExtLen () const;
 inline t_Size GetNameExtLen () const;
 inline t_Size GetDotLen () const;
 inline t_Size GetAllLen () const;

 inline t_Size GetDriveOffs () const;
 inline t_Size GetPathOffs () const;
 inline t_Size GetNameOffs () const;
 inline t_Size GetExtOffs () const;

Spirick Tuning Referenzhandbuch Seite 134

 inline const char * GetDriveStr () const;
 inline const char * GetPathStr () const;
 inline const char * GetNameStr () const;
 inline const char * GetExtStr () const;
 inline const char * GetAllStr () const;

 inline ct_String GetDrive () const;
 inline ct_String GetPath () const;
 inline ct_String GetPurePath () const;
 inline ct_String GetDrivePath () const;
 inline ct_String GetPureDrivePath () const;
 inline ct_String GetName () const;
 inline ct_String GetExt () const;
 inline ct_String GetNameExt () const;

 inline void SetDrive (const char * pc);
 void SetDrive (const char * pc, t_Size u_len);
 inline void SetDrive (const ct_String & co);
 inline void SetPath (const char * pc);
 void SetPath (const char * pc, t_Size u_len);
 inline void SetPath (const ct_String & co);
 inline void SetDrivePath (const char * pc);
 void SetDrivePath (const char * pc, t_Size u_len);
 inline void SetDrivePath (const ct_String & co);
 inline void SetName (const char * pc);
 void SetName (const char * pc, t_Size u_len);
 inline void SetName (const ct_String & co);
 inline void SetExt (const char * pc);
 void SetExt (const char * pc, t_Size u_len);
 inline void SetExt (const ct_String & co);
 inline void SetNameExt (const char * pc);
 void SetNameExt (const char * pc, t_Size u_len);
 inline void SetNameExt (const ct_String & co);

 inline void CopyDriveFrom (const ct_FileName * pco_copy);
 inline void CopyPathFrom (const ct_FileName * pco_copy);
 inline void CopyDrivePathFrom (const ct_FileName * pco_copy);
 inline void CopyNameFrom (const ct_FileName * pco_copy);
 inline void CopyExtFrom (const ct_FileName * pco_copy);
 inline void CopyNameExtFrom (const ct_FileName * pco_copy);

 inline void InsertPath (const char * pc_path);
 void InsertPath (const char * pc_path, t_Size u_len);
 inline void InsertPath (const ct_String & co_path);
 inline void InsertDrivePath (const char * pc_path);
 void InsertDrivePath (const char * pc_path, t_Size u_len);
 inline void InsertDrivePath (const ct_String & co_path);
 inline void AppendPath (const char * pc_path);
 void AppendPath (const char * pc_path, t_Size u_len);
 inline void AppendPath (const ct_String & co_path);
 void CompressPath ();
 bool IsAbs () const;
 bool IsRel () const;
 void ToAbs (const char * pc_currDrivePath, bool b_withDrive = true);
 void ToRel (const char * pc_currDrivePath, bool b_withDrive = false);
 };

Methoden
ct_FileName ();

Initialisiert ein leeres Dateinamenobjekt.

ct_FileName (const char * pc_init);

Initialisiert das Objekt mit der Methode AssignAsName.

Spirick Tuning Referenzhandbuch Seite 135

ct_FileName & operator = (const char * pc_asgn);

Ruft die Methode AssignAsName auf.

ct_FileName & operator = (const ct_FileName & co_asgn);

Übernimmt alle Angaben des Objektes co_asgn.

void AssignAsPath (const char * pc_path);
void AssignAsPath (const char * pc_path, t_Size u_len);
void AssignAsPath (const ct_String & co_path);

Diese Methoden weisen dem Objekt eine neue Zeichenkette zu und berechnen die Positionen der
Komponenten. Die letzten Zeichen werden dem Pfad zugeordnet. Name und Erweiterung sind leer.

void AssignAsName (const char * pc_name);
void AssignAsName (const char * pc_name, t_Size u_len);
void AssignAsName (const ct_String & co_name);

Diese Methoden weisen dem Objekt eine neue Zeichenkette zu und berechnen die Positionen der
Komponenten. Es wird versucht, am Ende Name und Erweiterung zu erkennen. Nur wenn die
Zeichenkette mit einem Backslash endet, sind Name und Erweiterung leer.

bool HasDriveOrUNC () const;
bool HasDrive () const;
bool HasUNC () const;
bool HasPath () const;
bool HasName () const;
bool HasExt () const;

Diese Methoden liefern bei Vorhandensein einzelner Komponenten den Wert true.

bool HasDot () const;

Liefert true, wenn zwischen Name und Erweiterung ein Punkt vorhanden ist.

bool HasWildCards () const;

Liefert true, wenn in Name oder Erweiterung Wildcards ('*' und '?') vorkommen.

t_Size GetDriveLen () const;
t_Size GetPathLen () const;
t_Size GetPurePathLen () const;
t_Size GetDrivePathLen () const;
t_Size GetPureDrivePathLen () const;
t_Size GetNameLen () const;
t_Size GetExtLen () const;
t_Size GetNameExtLen () const;

Diese Methoden liefern die Längen einzelner Komponenten.

t_Size GetDotLen () const;

Liefert den Wert Eins, wenn zwischen Name und Erweiterung ein Punkt vorhanden ist, sonst Null.

t_Size GetAllLen () const;

Liefert die Länge des gesamten Dateinamens.

t_Size GetDriveOffs () const;
t_Size GetPathOffs () const;
t_Size GetNameOffs () const;
t_Size GetExtOffs () const;

Diese Methoden liefern die Positionen einzelner Komponenten.

Spirick Tuning Referenzhandbuch Seite 136

const char * GetDriveStr () const;
const char * GetPathStr () const;
const char * GetNameStr () const;
const char * GetExtStr () const;
const char * GetAllStr () const;

Diese Methoden liefern Zeiger auf den Anfang einzelner Komponenten.

ct_String GetDrive () const;
ct_String GetPath () const;
ct_String GetPurePath () const;
ct_String GetDrivePath () const;
ct_String GetPureDrivePath () const;
ct_String GetName () const;
ct_String GetExt () const;
ct_String GetNameExt () const;

Diese Methoden liefern einzelne Komponenten als temporäre Stringobjekte.

void SetDrive (const char * pc);
void SetDrive (const char * pc, t_Size u_len);
void SetDrive (const ct_String & co);
void SetPath (const char * pc);
void SetPath (const char * pc, t_Size u_len);
void SetPath (const ct_String & co);
void SetDrivePath (const char * pc);
void SetDrivePath (const char * pc, t_Size u_len);
void SetDrivePath (const ct_String & co);
void SetName (const char * pc);
void SetName (const char * pc, t_Size u_len);
void SetName (const ct_String & co);
void SetExt (const char * pc);
void SetExt (const char * pc, t_Size u_len);
void SetExt (const ct_String & co);
void SetNameExt (const char * pc);
void SetNameExt (const char * pc, t_Size u_len);
void SetNameExt (const ct_String & co);

Mit diesen Methoden können einzelne Komponenten geändert werden.

void CopyDriveFrom (const ct_FileName * pco_copy);
void CopyPathFrom (const ct_FileName * pco_copy);
void CopyDrivePathFrom (const ct_FileName * pco_copy);
void CopyNameFrom (const ct_FileName * pco_copy);
void CopyExtFrom (const ct_FileName * pco_copy);
void CopyNameExtFrom (const ct_FileName * pco_copy);

Diese Methoden kopieren einzelne Komponenten von einem anderen Objekt.

void InsertPath (const char * pc_path);
void InsertPath (const char * pc_path, t_Size u_len);
void InsertPath (const ct_String & co_path);

Diese Methoden fügen am Anfang der Pfadkomponente einen Teilpfad ein.

void InsertDrivePath (const char * pc_path);
void InsertDrivePath (const char * pc_path, t_Size u_len);
void InsertDrivePath (const ct_String & co_path);

Diese Methoden fügen am Anfang der Pfadkomponente einen Teilpfad ein und ersetzen die
Laufwerkskomponente.

void AppendPath (const char * pc_path);
void AppendPath (const char * pc_path, t_Size u_len);
void AppendPath (const ct_String & co_path);

Diese Methoden fügen am Ende der Pfadkomponente einen Teilpfad an.

Spirick Tuning Referenzhandbuch Seite 137

void CompressPath ();

Diese Methode entfernt sich aufhebende Teilpfade (.\ und path\..\) aus der Pfadkomponente. Z. B. wird
A:\SRC\.\SPIRICK.TXT zu A:\SRC\SPIRICK.TXT und A:\SRC\..\SPIRICK.TXT zu A:\SPIRICK.TXT komprimiert.

bool IsAbs () const;

Liefert true, wenn der Pfad absolut ist, also mit einem Backslash beginnt.

bool IsRel () const;

Liefert true, wenn der Pfad relativ ist.

void ToAbs (const char * pc_currDrivePath, bool b_withDrive = true);

Wandelt den vorhandenen relativen Pfad in einen absoluten bzgl. des Verzeichnisses pc_currDrivePath
um. Ist b_withDrive gleich true, wird das Laufwerk von pc_currDrivePath übernommen, andernfalls wird die
Laufwerkskomponente gelöscht.

void ToRel (const char * pc_currDrivePath, bool b_withDrive = false);

Wandelt den vorhandenen absoluten Pfad in einen relativen bzgl. des Verzeichnisses pc_currDrivePath
um. Ist b_withDrive gleich true, wird das Laufwerk von pc_currDrivePath übernommen, andernfalls wird die
Laufwerkskomponente gelöscht.

3.2.5 Zeichenketten formatieren (tuning/printf.hpp)

In dieser Schnittstelle befindet sich die für char und wchar_t überladene Funktionen tl_VSprintf. Sie
ermöglicht das Formatieren von Zeichenketten mit variabler Länge und variabler Anzahl von Parametern.
Es wird empfohlen, diese Funktionen nicht direkt zu verwenden, sondern über die Stringmethoden
AssignF, AppendF, InsertF und ReplaceF. Im Beispielprogramm TString befinden sich auch
Demonstrationsbeispiele für tl_VSprintf.

Funktionen
int tl_VSprintf (char * * ppc_buffer, const char * pc_format, va_list o_argList);
int tl_VSprintf (wchar_t * * ppc_buffer, const wchar_t * pc_format, va_list o_argList);

Formatiert die Zeichenkette pc_format mit den Parametern o_argList und schreibt das Ergebnis in einen
Puffer, der mit malloc allokiert wurde. Bei Erfolg wird die Anzahl der Zeichen (ohne das abschließende
Nullzeichen) zurückgegeben, und * ppc_buffer enthält einen Zeiger auf den Puffer, der mit free
freigegeben werden muß. Andernfalls wird eine Zahl kleiner als Null zurückgegeben, und der Puffer muß
nicht freigegeben werden.

3.2.6 Zeichenketten sortieren (tuning/stringsort.hpp)

Die Bibliothek Spirick Tuning enthält einen optimierten Sortieralgorithmus. Er ist auf Zeichenketten
spezialisiert. Diese besitzen die Eigenschaft, aus einzelnen Zeichen zu bestehen. Ein Zeichen wiederum
besitzt einen Wertebereich von 0 bis 255. Um Werte in diesem Bereich zu sortieren, müssen sie nicht
miteinander verglichen werden, sondern ihr Wert kann als Index zum Eintrag in eine Tabelle genutzt
werden. Anschließend wird die Tabelle von 0 bis 255 durchlaufen. Dabei erscheinen die Werte in
sortierter Reihenfolge.

Wurde dieser Schritt für das erste Zeichen durchgeführt, können jeder Stelle in der Tabelle mehrere
Zeichenketten zugeordnet worden sein. Deshalb legt der Algorithmus eine Kette an. Diese wird
anschließend mit demselben Verfahren, aber dem nächsten Zeichen (dem zweiten, dritten usw.) sortiert.

Der Eintrag in die Tabelle erfolgt indirekt über eine SortPage. Damit kann die natürliche Sortierreihenfolge
geändert werden. Sollen z. B. Klein- und Großbuchstaben gleichberechtigt behandelt werden, enthält die

Spirick Tuning Referenzhandbuch Seite 138

SortPage an der Stelle mit dem Index 'a' den Wert 'A'. Soll zusätzlich das 'Ä' unter 'A' einsortiert
werden, muß auch an der Stelle mit dem Index 'Ä' ein 'A' eingetragen werden.

Die private Methode GetDefaultSortPage liefert als Voreinstellung eine SortPage mit natürlicher
Sortierreihenfolge. Damit werden die Strings nach aufsteigender Wertigkeit ihrer Zeichen sortiert. Soll in
umgekehrter Reihenfolge sortiert werden, ist beim Index i der Wert 256 - i einzutragen. Das erste
Zeichen (Index Null) einer SortPage muß stets den Wert Null besitzen.

Der Algorithmus erwartet als Parameter ein C++-Array von Zeigern (const char * * ppc_strings) und
schreibt seine Resultate in ein C++-Array von t_Int-Werten (t_Int * pi_sortedIndex). Der Speicher für
beide Arrays muß vom Anwender verwaltet werden. Das t_Int-Array enthält am Ende in aufsteigender
Reihenfolge die Indizes der sortierten Strings. Das Stringarray selbst wird nicht geändert.

Das Sortierverfahren benötigt folgenden Speicher:

1. Den Parameter char * apc [n] und das Resultat t_Int ai [n], wobei n die Anzahl der zu sortierenden
Strings ist.

2. Das Array t_Int ai_temp [n], in dem die Ketten gespeichert werden.
3. x * 256 * sizeof (t_Int) für die Reihenfolgetabellen, wobei x die maximale Anzahl der Zeichen ist, in

denen zwei Zeichenketten am Anfang übereinstimmen.

Die Rechenzeit ist nicht von der Länge der Zeichenketten abhängig, sondern von der Länge, mit der zwei
Strings am Anfang übereinstimmen. Diese Abhängigkeit besteht bei qsort () in Verbindung mit strcmp ()
auch, denn strcmp () bricht an der Stelle der ersten Nichtübereinstimmung ab. Im Gegensatz zu qsort ()
ist der neue Sortieralgorithmus jedoch nicht von einer eventuellen Vorsortierung abhängig. Er benötigt
für ein vollkommen unsortiertes Array genauso lange wie für ein vollständig sortiertes und ist im
Durchschnitt doppelt so schnell wie qsort () in Verbindung mit strcmp ().

Klassendeklaration
class ct_StringSort
 {
public:
 bool Sort (const char * * ppc_strings, t_Int * pi_sortedIndex, t_Int i_numOfStrings,
 const char * pc_sortPage = GetDefaultSortPage ());
 };

Methoden
bool Sort (const char * * ppc_strings, t_Int * pi_sortedIndex, t_Int i_numOfStrings, const char * pc_sortPage =
GetDefaultSortPage ());

Speichert die sortierten Indizes des Zeichenketten-Arrays ppc_strings in pi_sortedIndex. Die Arrays
ppc_strings und pi_sortedIndex müssen vom Anwender bereitgestellt und freigegeben werden. Temporäre
Zwischenspeicher werden automatisch angefordert und freigegeben. Der Rückgabewert false deutet auf
Speichermangel oder einen Fehler in der SortPage (erstes Zeichen ungleich Null) hin.

3.2.7 Zahlen sortieren (tuning/stringsort.hpp)

Der Algorithmus zum Sortieren von Zeichenketten (siehe voriger Abschnitt) kann auch auf Zahlen
angewendet werden, indem z. B. eine t_UInt32 Zahl als Folge von vier Zeichen betrachtet wird. Diese
Idee wurde in der Klasse ct_UInt32Sort umgesetzt. Der Algorithmus wurde für little-endian Hardware
implementiert.

Klassendeklaration
class ct_UInt32Sort
 {

Spirick Tuning Referenzhandbuch Seite 139

public:
 bool Sort (const t_UInt32 * pu_ints, t_Int * pi_sortedIndex,
 t_Int i_numOfInts);
 };

Methoden
bool Sort (const t_UInt32 * pu_ints, t_Int * pi_sortedIndex, t_Int i_numOfInts);

Speichert die sortierten Indizes des t_UInt32-Arrays pu_ints in pi_sortedIndex. Die Arrays pu_ints und
pi_sortedIndex müssen vom Anwender bereitgestellt und freigegeben werden. Temporäre
Zwischenspeicher werden automatisch angefordert und freigegeben. Der Rückgabewert false deutet auf
Speichermangel hin.

3.3 Dateien und Verzeichnisse

3.3.1 Datei (tuning/file.hpp)

Innerhalb der Bibliothek Spirick Tuning werden Pfad- und Dateinamen als UTF-8-Strings interpretiert.
Unter Linux werden die Strings unverändert an die Systemfunktionen übergeben. Unter MS Windows
werden Pfad- und Dateinamen intern in UTF-16 umgewandelt.

Die Klasse ct_File hüllt die globalen Funktionen der Systemschnittstelle in ein objektorientiertes Gewand
und enthält einige Zusatzfunktionen, z. B. das Schließen der Datei im Destruktor. ct_File erbt von
ct_FileName. Damit stehen zahlreiche Methoden zum Bearbeiten des Namens der Datei zur Verfügung. Die
Methoden TryOpen, Open, Create, Load, Save, Exists, Move, Copy und Delete dürfen nur auf eine nicht
geöffnete Datei angewendet werden.

Basisklassen
ct_Object (siehe Abschnitt ‘Abstraktes Objekt’)
 ct_String (siehe Abschnitt ‘Polymorphe Stringklasse’)
 ct_FileName (siehe Abschnitt ‘Dateiname’)

Klassendeklaration
class ct_File: public ct_FileName
 {
public:
 ct_File ();
 ct_File (const char * pc_init);
 ct_File (const ct_FileName & co_init);
 ~ct_File ();
 ct_File & operator = (const char * pc_asgn);
 ct_File & operator = (const ct_FileName & co_asgn);

 bool TryOpen (bool b_readOnly = true, bool b_sequential = true,
 t_UInt32 u_milliSec = 0);
 bool Open (bool b_readOnly = true, bool b_sequential = true);
 bool Create (bool b_createNew = false);
 bool Close ();

 bool Load (ct_String * pco_str);
 bool Save (const ct_String * pco_str);

 bool Exists ();
 bool Move (const char * pc_new);
 bool Copy (const char * pc_new, bool b_overwrite = true);

Spirick Tuning Referenzhandbuch Seite 140

 bool Delete ();

 bool QuerySize (t_FileSize & o_size) const;
 bool QueryPos (t_FileSize & o_pos) const;
 bool EndOfFile (bool & b_eof) const;
 bool SeekAbs (t_FileSize o_pos) const;
 bool SeekRel (t_FileSize o_pos) const;
 bool Truncate (t_FileSize o_size) const;
 bool Read (void * pv_dst, t_FileSize o_len) const;
 bool Write (const void * pv_src, t_FileSize o_len) const;
 };

Methoden
ct_File ();

Initialisiert das Dateiobjekt.

ct_File (const char * pc_init);

Initialisiert das Dateiobjekt und ruft ct_FileName::AssignAsName (pc_init) auf.

ct_File (const ct_FileName & co_init);

Initialisiert das Dateiobjekt mit dem Dateinamen co_init.

~ct_File ();

Schließt die Datei, wenn sie noch geöffnet ist.

ct_File & operator = (const char * pc_asgn);

Ruft ct_FileName::AssignAsName (pc_asgn) auf.

ct_File & operator = (const ct_FileName & co_asgn);

Weist dem Dateiobjekt den neuen Dateinamen co_asgn zu.

bool TryOpen (bool b_readOnly = true, bool b_sequential = true, t_UInt32 u_milliSec = 0);

Versucht, eine bestehende Datei abhängig vom Parameter b_readOnly zum Lesen oder Schreiben zu
öffnen. Der optionale Parameter b_sequential beeinflußt die Arbeitsweise des Cachemanagers. Wird die
Datei sequentiell bearbeitet, sollte er auf true gesetzt werden. Liefert false, wenn das Öffnen innerhalb
von u_milliSec Millisekunden nicht gelingt.

bool Open (bool b_readOnly = true, bool b_sequential = true);

Öffnet eine bestehende Datei abhängig vom Parameter b_readOnly zum Lesen oder Schreiben. Der
optionale Parameter b_sequential beeinflußt die Arbeitsweise des Cachemanagers. Wird die Datei
sequentiell bearbeitet, sollte er auf true gesetzt werden.

bool Create (bool b_createNew = false);

Erzeugt eine neue Datei und öffnet sie zum Schreiben. Eine eventuell vorhandene Datei gleichen Namens
wird überschrieben. Liefert false, wenn b_createNew gleich true ist und eine Datei mit demselben Namen
bereits existiert.

bool Close ();

Schließt die geöffnete Datei.

bool Load (ct_String * pco_str);

Läd den gesamten Inhalt der Datei (öffnen, lesen, schließen) in das Stringobjekt pco_str. Die Datei darf
keine Nullzeichen enthalten.

Spirick Tuning Referenzhandbuch Seite 141

bool Save (const ct_String * pco_str);

Sichert den gesamten Inhalt des Stringobjekts pco_str in die Datei (öffnen, schreiben, schließen).

bool Exists ();

Liefert true, wenn die Datei existiert.

bool Move (const char * pc_new);

Verschiebt die Datei nach pc_new. Befinden sich alter und neuer Name innerhalb desselben
Verzeichnisses, wird nur der Name des Eintrags geändert. Bei Erfolg wird auch der interne Name
(Basisklasse ct_FileName) aktualisiert.

bool Copy (const char * pc_new, bool b_overwrite = true);

Kopiert die Datei nach pc_new. Ist der optionale Parameter b_overwrite gleich true, wird eine eventuell
vorhandene Datei gleichen Namens überschrieben.

bool Delete ();

Löscht die Datei.

bool QuerySize (t_FileSize & o_size) const;

Ermittelt die aktuelle Größe der geöffneten Datei.

bool QueryPos (t_FileSize & o_pos) const;

Ermittelt die aktuelle Position des Zugriffszeigers der geöffneten Datei.

bool EndOfFile (bool & b_eof) const;

Setzt b_eof auf true, wenn sich der Zugriffszeiger am Ende der Datei befindet.

bool SeekAbs (t_FileSize o_pos) const;

Positioniert den Zugriffszeiger der geöffneten Datei absolut auf die Position o_pos.

bool SeekRel (t_FileSize o_pos) const;

Positioniert den Zugriffszeiger der geöffneten Datei relativ auf die Position o_pos.

bool Truncate (t_FileSize o_size);

Verändert die Größe der geöffneten Datei auf o_size Bytes.

bool Read (void * pv_dst, t_FileSize o_len) const;

Liest o_len Bytes aus der geöffneten Datei nach pv_dst und verschiebt den Zugriffszeiger.

bool Write (const void * pv_src, t_FileSize o_len) const;

Schreibt o_len Bytes von pv_src in die geöffnete Datei und verschiebt den Zugriffszeiger.

3.3.2 Verzeichnis (tuning/dir.hpp)

Innerhalb der Bibliothek Spirick Tuning werden Pfad- und Dateinamen als UTF-8-Strings interpretiert.
Unter Linux werden die Strings unverändert an die Systemfunktionen übergeben. Unter MS Windows
werden Pfad- und Dateinamen intern in UTF-16 umgewandelt.

Die Klasse ct_Directory hüllt die globalen Funktionen der Systemschnittstelle in ein objektorientiertes
Gewand und enthält einige Zusatzfunktionen, z. B. das Zerlegen des aktuellen Verzeichnisses in seine
Komponenten. ct_Directory erbt von ct_FileName. Damit stehen zahlreiche Methoden zum Bearbeiten des
Namens des Verzeichnisses zur Verfügung. Es werden jedoch nur die Laufwerks- und Pfadkomponente
verarbeitet (PureDrivePath). Name und Erweiterung werden nicht berücksichtigt.

Spirick Tuning Referenzhandbuch Seite 142

Basisklassen
ct_Object (siehe Abschnitt ‘Abstraktes Objekt’)
 ct_String (siehe Abschnitt ‘Polymorphe Stringklasse’)
 ct_FileName (siehe Abschnitt ‘Dateiname’)

Klassendeklaration
class ct_Directory: public ct_FileName
 {
public:
 ct_Directory ();
 ct_Directory (const char * pc_init);
 ct_Directory (const ct_FileName & co_init);
 ct_Directory & operator = (const char * pc_asgn);
 ct_Directory & operator = (const ct_FileName & co_asgn);

 bool QueryCurrentDrive ();
 bool QueryCurrentDirectory ();
 bool QueryCurrentDriveDirectory ();

 bool Create ();
 bool Exists ();
 bool Move (const char * pc_new);
 bool Delete ();
 };

Methoden
ct_Directory ();

Initialisiert das Verzeichnisobjekt.

ct_Directory (const char * pc_init);

Initialisiert das Verzeichnisobjekt und ruft ct_FileName::AssignAsPath (pc_init) auf.

ct_Directory (const ct_FileName & co_init);

Initialisiert das Verzeichnisobjekt mit dem Dateinamen co_init.

ct_Directory & operator = (const char * pc_asgn);

Ruft ct_FileName::AssignAsPath (pc_asgn) auf.

ct_Directory & operator = (const ct_FileName & co_asgn);

Weist dem Verzeichnisobjekt den neuen Dateinamen co_asgn zu.

bool QueryCurrentDrive ();

Setzt die Laufwerkskomponente auf das aktuelle Laufwerk.

bool QueryCurrentDirectory ();

Setzt die Pfadkomponente auf das aktuelle Verzeichnis der Laufwerkskomponente, verändert die
Laufwerkskomponente nicht.

bool QueryCurrentDriveDirectory ();

Setzt die Laufwerkskomponente, wenn sie noch leer ist, und setzt die Pfadkomponente auf das aktuelle
Verzeichnis.

Spirick Tuning Referenzhandbuch Seite 143

bool Create ();

Erzeugt ein Verzeichnis.

bool Exists ();

Liefert true, wenn das Verzeichnis existiert.

bool Move (const char * pc_new);

Verschiebt das Verzeichnis nach pc_new. Befinden sich alter und neuer Name innerhalb desselben
übergeordneten Verzeichnisses, wird nur der Name des Eintrags geändert. Bei Erfolg wird auch der
interne Name (Basisklasse ct_FileName) aktualisiert.

bool Delete ();

Löscht das leere Verzeichnis.

3.3.3 Verzeichnis durchlaufen (tuning/dirscan.hpp)

Innerhalb der Bibliothek Spirick Tuning werden Pfad- und Dateinamen als UTF-8-Strings interpretiert.
Unter Linux werden die Strings unverändert an die Systemfunktionen übergeben. Unter MS Windows
werden Pfad- und Dateinamen intern in UTF-16 umgewandelt.

Die Klasse ct_DirScan erbt von ct_Directory und indirekt von ct_FileName. Die Laufwerks- und
Pfadkomponente des Dateinamens bestimmen das zu durchlaufende Verzeichnis. Die Namens- und
Erweiterungskomponente dienen als Parameter (siehe unten) und als Resultat. Während des
Durchlaufens des Verzeichnisses enthalten sie den Namen des aktuellen Eintrags.

Die Funktionen zum Durchlaufen von Verzeichnissen können auch zum Ermitteln der Eigenschaften einer
einzelnen Datei verwendet werden. In diesem Fall wird in der Methode FindFirst der Dateiname ohne
Jokerzeichen verwendet. Liefert die Funktion true, wurden mit einem einzigen Systemruf sämtliche
Attribute und Zeitangaben ermittelt. Das abschließende FindNext oder AbortFind darf nicht vergessen
werden.

Die FindOnce-Methoden fassen drei Arbeitsschritte in einem Aufruf zusammen: Zuerst wird ein evtl.
aktiver Suchvorgang beendet, danach wird ein neuer Name zugewiesen, und mit FindFirst wird ein neuer
Suchvorgang gestartet.

Basisklassen
ct_Object (siehe Abschnitt ‘Abstraktes Objekt’)
 ct_String (siehe Abschnitt ‘Polymorphe Stringklasse’)
 ct_FileName (siehe Abschnitt ‘Dateiname’)
 ct_Directory (siehe Abschnitt ‘Verzeichnis’)

Datentypen, Konstanten
typedef unsigned t_FileAttributes;

const t_FileAttributes co_AttrArchive = 0x01;
const t_FileAttributes co_AttrDirectory = 0x02;
const t_FileAttributes co_AttrHidden = 0x04;
const t_FileAttributes co_AttrReadOnly = 0x08;
const t_FileAttributes co_AttrSystem = 0x10;

Mit dem Datentyp t_FileAttributes und den zugehörigen Konstanten können mehrere Dateiattribute in
einen einzigen Wert durch Oder-Verknüpfung zusammengefaßt werden.

Spirick Tuning Referenzhandbuch Seite 144

Klassendeklaration
class ct_DirScan: public ct_Directory
 {
public:
 ct_DirScan ();
 ct_DirScan (const char * pc_init);
 ct_DirScan (const ct_FileName & co_init);
 ~ct_DirScan ();
 ct_DirScan & operator = (const char * pc_asgn);
 ct_DirScan & operator = (const ct_FileName & co_asgn);

 bool FindOnce ();
 bool FindOnce (const char * pc_find);
 bool FindOnce (const ct_FileName & co_find);
 bool FindOncePath ();
 bool FindOncePath (const ct_FileName & co_find);

 bool FindFirst ();
 bool FindFirstFile ();
 bool FindFirstDirectory ();
 bool FindNext ();
 bool FindNextFile ();
 bool FindNextDirectory ();
 void AbortFind ();
 bool Found ();

 t_MicroTime GetCreationTime () const;
 t_MicroTime GetLastAccessTime () const;
 t_MicroTime GetLastWriteTime () const;
 t_FileSize GetSize () const;
 t_FileAttributes GetAttributes () const;
 bool IsArchive () const;
 bool IsDirectory () const;
 bool IsHidden () const;
 bool IsReadOnly () const;
 bool IsSystem () const;
 };

Methoden
ct_DirScan ();

Initialisiert ein leeres Objekt.

ct_DirScan (const char * pc_init);

Initialisiert das Objekt und ruft ct_FileName::AssignAsName (pc_init) auf.

ct_DirScan (const ct_FileName & co_init);

Initialisiert das Objekt mit dem Dateinamen co_init.

~ct_DirScan ();

Gibt die evtl. vorhandene Betriebssystem-Ressource frei.

ct_DirScan & operator = (const char * pc_asgn);

Ruft ct_FileName::AssignAsName (pc_asgn) auf.

ct_DirScan & operator = (const ct_FileName & co_asgn);

Weist dem Objekt den neuen Dateinamen co_asgn zu.

Spirick Tuning Referenzhandbuch Seite 145

bool FindOnce ();

Beginnt mit dem aktuellen Dateinamen einen neuen Suchvorgang.

bool FindOnce (const char * pc_find);

Ruft ct_FileName::AssignAsName (pc_find) auf und beginnt einen neuen Suchvorgang.

bool FindOnce (const ct_FileName & co_find);

Ruft ct_FileName::AssignAsName (co_find) auf und beginnt einen neuen Suchvorgang.

bool FindOncePath ();

Ruft ct_FileName::AssignAsName (GetPureDrivePath ()) auf und beginnt einen neuen Suchvorgang, d. h. es
wird nicht im aktuellen Verzeichnis gesucht, sondern das Verzeichnis selbst wird gesucht.

bool FindOncePath (const ct_FileName & co_find);

Ruft ct_FileName::AssignAsName (co_find. GetPureDrivePath ()) auf und beginnt einen neuen Suchvorgang,
d. h. es wird nicht im Verzeichnis von co_find gesucht, sondern das Verzeichnis selbst wird gesucht.

bool FindFirst ();

Sucht den ersten Verzeichniseintrag und liefert bei Erfolg true. Anschließend können Eigenschaften des
Verzeichniseintrages abgefragt und mit FindNext der nächste gesucht werden.

bool FindFirstFile ();

Sucht den ersten Verzeichniseintrag, der kein Unterverzeichnis ist, und liefert bei Erfolg true.
Anschließend können Eigenschaften der Datei abgefragt und mit FindNextFile die nächste gesucht
werden.

bool FindFirstDirectory ();

Sucht den ersten Verzeichniseintrag, der ein Unterverzeichnis ist, und liefert bei Erfolg true.
Anschließend können Eigenschaften des Unterverzeichnisses abgefragt und mit FindNextDirectory das
nächste gesucht werden.

bool FindNext ();

Sucht den nächsten Verzeichniseintrag und liefert bei Erfolg true. Anschließend können Eigenschaften
des Verzeichniseintrages abgefragt und weitere gesucht werden. Beim Rückgabewert false ist die Suche
beendet, und die Betriebssystem-Ressource wurde automatisch freigegeben.

bool FindNextFile ();

Sucht den nächsten Verzeichniseintrag, der kein Unterverzeichnis ist, und liefert bei Erfolg true.
Anschließend können Eigenschaften der Datei abgefragt und weitere gesucht werden. Beim
Rückgabewert false ist die Suche beendet, und die Betriebssystem-Ressource wurde automatisch
freigegeben.

bool FindNextDirectory ();

Sucht den nächsten Verzeichniseintrag, der ein Unterverzeichnis ist, und liefert bei Erfolg true.
Anschließend können Eigenschaften des Unterverzeichnisses abgefragt und weitere gesucht werden.
Beim Rückgabewert false ist die Suche beendet, und die Betriebssystem-Ressource wurde automatisch
freigegeben.

void AbortFind ();

Beendet die Suche vorzeitig und gibt die Betriebssystem-Ressource frei. Vor dem Aufruf der Methode
muß mindestens ein Verzeichniseintrag gefunden worden sein.

bool Found ();

Liefert true, wenn der vorhergehende Aufruf von FindFirst oder FindNext den Wert true geliefert hat.

Spirick Tuning Referenzhandbuch Seite 146

t_MicroTime GetCreationTime () const;

Liefert die Zeit, an der der Verzeichniseintrag erzeugt wurde, als UTC Mikrosekunden.

t_MicroTime GetLastAccessTime () const;

Liefert die Zeit, an der zuletzt auf den Verzeichniseintrag lesend oder schreibend zugegriffen wurde, als
UTC Mikrosekunden.

t_MicroTime GetLastWriteTime () const;

Liefert die Zeit, an der zuletzt auf den Verzeichniseintrag schreibend zugegriffen wurde, als UTC
Mikrosekunden.

t_FileSize GetSize () const;

Liefert die Größe des Verzeichniseintrages.

t_FileAttributes GetAttributes () const;

Liefert alle Attribute des Verzeichniseintrags in einen einzigen Wert.

bool IsArchive () const;
bool IsDirectory () const;
bool IsHidden () const;
bool IsReadOnly () const;
bool IsSystem () const;

Diese Methoden ermitteln einzelne Attribute des Verzeichniseintrages.

Parameterarten für Verzeichnisse
Die Klasse ct_DirScan erbt von ct_Directory und indirekt von ct_FileName. Die Laufwerks- und
Pfadkomponente des Dateinamens bestimmen das zu durchlaufende Verzeichnis. Mit Hilfe der Methode
ct_Directory::Exists kann geprüft werden, ob das Verzeichis existiert.

ct_DirScan co_dirScan;
co_dirScan. SetDrivePath ("c:\\spirick\\tuning");

if (co_dirScan. Exists ())
 // ...

Die Namens- und Erweiterungskomponente des Dateinamens bestimmen den Inhalt, nach dem gesucht
werden soll. Dafür existieren drei Parameterarten:

co_dirScan. SetNameExt ("*");

Die Zeichenkette "*" führt zum ungefilterten Durchlaufen des gesamten Verzeichnisses.

co_dirScan. SetNameExt ("*.?pp");

Befinden sich in Name oder Erweiterung die Wildcards '*' oder '?', liefert die Klasse ct_DirScan nur die
zutreffenden Verzeichniseinträge. Wildcards sind auf UNIX-Systemen nicht verfügbar.

co_dirScan. SetNameExt ("dirscan.hpp");

Name und Erweiterung können auch einen eindeutigen Dateinamen enthalten. Liefert die Methode
FindFirst den Wert true, existiert dieser Verzeichniseintrag. Anschließend können alle zugehörigen
Informationen abgefragt werden.

Während des Durchlaufens des Verzeichnisses werden Name und Erweiterung des aktuellen Eintrags im
ct_DirScan-Objekt gespeichert. Der ursprüngliche Inhalt von Name und Erweiterung geht dabei verloren.

Spirick Tuning Referenzhandbuch Seite 147

Verzeichnis vollständig durchlaufen
Zum vollständigen Durchlaufen eines Verzeichnisses wird eine for-Schleife nach folgendem Muster
empfohlen:

ct_DirScan co_dirScan ("c:\\spirick\\tuning*");

for (co_dirScan. FindFirst ();
 co_dirScan. Found ();
 co_dirScan. FindNext ())
 {
 // ...
 }

Verzeichnis durchlaufen, nur Dateien
Zum Durchlaufen aller Dateien eines Verzeichnisses (ohne Unterverzeichniseinträge) wird eine for-
Schleife nach folgendem Muster empfohlen:

ct_DirScan co_dirScan ("c:\\spirick\\tuning*");

for (co_dirScan. FindFirstFile ();
 co_dirScan. Found ();
 co_dirScan. FindNextFile ())
 {
 // ...
 }

Verzeichnis durchlaufen, nur Unterverzeichnisse
Zum Durchlaufen aller Unterverzeichniseinträge eines Verzeichnisses (ohne Dateien) wird eine for-
Schleife nach folgendem Muster empfohlen:

ct_DirScan co_dirScan ("c:\\spirick\\tuning*");

for (co_dirScan. FindFirstDirectory ();
 co_dirScan. Found ();
 co_dirScan. FindNextDirectory ())
 {
 // ...
 }

3.4 Weitere Werkzeuge

3.4.1 Uhrzeit und Datum (tuning/timedate.hpp)

Die Klasse ct_TimeDate hüllt die globalen Funktionen der Systemschnittstelle in ein objektorientiertes
Gewand und ermöglicht den Zugriff auf die einzelnen Datums- und Zeit-Komponenten. Die Zeit wird in
Mikrosekunden seit dem 1. 1. 1970 0 Uhr angegeben. Es kann sowohl die koordinierte Weltzeit (UTC)
als auch die lokale Zeit verwendet werden, die der im Betriebssystem eingestellten Zeitzone entspricht.

Klassendeklaration
class ct_TimeDate
 {
public:
 ct_TimeDate ();
 ct_TimeDate (t_MicroTime i_time);

Spirick Tuning Referenzhandbuch Seite 148

 void Clear ();
 t_MicroTime GetTime () const;
 void SetTime (t_MicroTime i_time);

 void QueryUTCTime ();
 void QueryLocalTime ();

 inline unsigned GetYear () const;
 inline unsigned GetMonth () const;
 inline unsigned GetDay () const;
 inline unsigned GetDayOfWeek () const;
 inline unsigned GetHour () const;
 inline unsigned GetMinute () const;
 inline unsigned GetSecond () const;
 inline unsigned GetMicroSecond () const;

 inline void SetYear (unsigned u);
 inline void SetMonth (unsigned u);
 inline void SetDay (unsigned u);
 inline void SetDayOfWeek (unsigned u);
 inline void SetHour (unsigned u);
 inline void SetMinute (unsigned u);
 inline void SetSecond (unsigned u);
 inline void SetMicroSecond (unsigned u);

 inline bool operator == (const ct_TimeDate & co_td) const;
 inline bool operator != (const ct_TimeDate & co_td) const;
 inline bool operator < (const ct_TimeDate & co_td) const;
 inline bool operator <= (const ct_TimeDate & co_td) const;
 inline bool operator > (const ct_TimeDate & co_td) const;
 inline bool operator >= (const ct_TimeDate & co_td) const;
 };

Methoden
ct_TimeDate ();

Setzt alle Komponenten auf den Wert Null.

ct_TimeDate (t_MicroTime i_time);

Berechnet aus einem Wert in Mikrosekunden die einzelnen Komponenten.

void Clear ();

Setzt alle Komponenten auf den Wert Null.

t_MicroTime GetTime () const;

Berechnet aus den einzelnen Komponenten einen Wert in Mikrosekunden.

void SetTime (t_MicroTime i_time);

Berechnet aus einem Wert in Mikrosekunden die einzelnen Komponenten.

void QueryUTCTime ();

Fragt die aktuelle UTC Systemzeit ab.

void QueryLocalTime ();

Fragt die aktuelle lokale Systemzeit ab.

Spirick Tuning Referenzhandbuch Seite 149

unsigned GetYear () const;
unsigned GetMonth () const;
unsigned GetDay () const;
unsigned GetDayOfWeek () const;
unsigned GetHour () const;
unsigned GetMinute () const;
unsigned GetSecond () const;
unsigned GetMicroSecond () const;

Diese Methoden liefern die Werte einzelner Komponenten.

void SetYear (unsigned u);
void SetMonth (unsigned u);
void SetDay (unsigned u);
void SetDayOfWeek (unsigned u);
void SetHour (unsigned u);
void SetMinute (unsigned u);
void SetSecond (unsigned u);
void SetMicroSecond (unsigned u);

Mit diesen Methoden können einzelne Komponenten geändert werden.

bool operator == (const ct_TimeDate & co_td) const;
bool operator != (const ct_TimeDate & co_td) const;
bool operator < (const ct_TimeDate & co_td) const;
bool operator <= (const ct_TimeDate & co_td) const;
bool operator > (const ct_TimeDate & co_td) const;
bool operator >= (const ct_TimeDate & co_td) const;

Diese Operatoren vergleichen zwei ct_TimeDate-Objekte miteinander.

3.4.2 MD5 Summe (tuning/md5.hpp)

Die Klasse ct_MD5 ist für die einmalige Berechnung eines MD5-Hashwertes vorgesehen. Die Daten, aus
denen der Hashwert berechnet wird, können komplett im Konstrukor oder in mehreren Blöcken
übergeben werden. Am Ende der Berechnung kann das Ergebnis binär oder textuell abgefragt werden.
Für eine neue Berechnung muß ein neues ct_MD5-Objekt verwendet werden.

Klassendeklaration
typedef t_UInt8 t_MD5Result [16];

class ct_MD5
 {
public:
 ct_MD5 ();
 ct_MD5 (const t_MD5Result & ac_init);
 ct_MD5 (const void * pv_data, t_UInt u_len);

 void Update (const void * pv_data, t_UInt u_len);
 void Finalize ();
 const t_MD5Result & GetResult () const;
 const char * GetResultStr ();
 bool operator == (const ct_MD5 & co_comp) const;
 };

Methoden
ct_MD5 ();

Initialisiert das Objekt.

Spirick Tuning Referenzhandbuch Seite 150

ct_MD5 (const t_MD5Result & ac_init);

Initialisiert das Objekt mit einem vorhandenen binären Rechenergebnis.

ct_MD5 (const void * pv_data, t_UInt u_len);

Initialisiert das Objekt und ruft die Methoden Update und Finalize auf.

void Update (const void * pv_data, t_UInt u_len);

Stehen die Originaldaten nicht in einem zusammenhängenden Speicherbereich zur Verfügung, so können
mit der Update-Methode nacheinander einzelne Teilblöcke zur Berechnung übergeben werden. Die
Parameter pv_data und u_len beschreiben Position und Länge eines Teilblocks.

void Finalize ();

Beendet die Hashwert-Berechnung. Anschließend kann das Rechenergebnis abgefragt werden.

const t_MD5Result & GetResult () const;

Liefert das binäre Rechenergebnis.

const char * GetResultStr ();

Liefert das textuelle Rechenergebnis. Es besteht aus 32 Hexadezimalziffern mit Kleinbuchstaben und
einem abschließenden Nullzeichen.

bool operator == (const ct_MD5 & co_comp) const;

Vergleicht zwei ct_MD5-Objekte, bei denen die Berechnung abgeschlossen ist.

3.4.3 Universally Unique Identifier (tuning/uuid.hpp)

Mit der Klasse ct_UUID können Universally Unique Identifier erzeugt und verarbeitet werden.

Klassendeklaration
typedef t_UInt8 t_UUID [16];

class ct_UUID
 {
public:
 ct_UUID ();
 ct_UUID (const ct_UUID & co_init);
 ct_UUID (const t_UUID & ao_init);
 ct_UUID & operator = (const ct_UUID & co_asgn);

 bool IsEmpty () const;
 t_UInt GetHash () const;
 const t_UUID & GetUUID () const;
 void Clear ();
 bool Create ();
 bool ToStr (char * pc_dst, t_UInt u_len, bool b_upperCase) const;
 bool FromStr (const char * pc_src, t_UInt u_len);

 bool operator == (const ct_UUID & co_comp) const;
 bool operator != (const ct_UUID & co_comp) const;
 };

Methoden
ct_UUID ();

Initialisiert alle Elemente mit Nullen.

Spirick Tuning Referenzhandbuch Seite 151

ct_UUID (const ct_UUID & co_init);

Initialisiert das Objekt durch Kopie von einem anderen Objekt.

ct_UUID (const t_UUID & ao_init);

Initialisiert das Objekt mit einem vorhandenen binären Rechenergebnis.

ct_UUID & operator = (const ct_UUID & co_asgn);

Übernimmt den Inhalt des Objektes co_asgn.

bool IsEmpty () const;

Liefert true, wenn alle Elemente gleich Null sind.

t_UInt GetHash () const;

Liefert einen Hashwert, der z. B. für den Eintrag in eine Hashtabelle verwendet werden kann.

const t_UUID & GetUUID () const;

Liefert das binäre Rechenergebnis.

void Clear ();

Setzt alle Elemente auf Null.

bool Create ();

Erzeugt einen neuen Universally Unique Identifier.

bool ToStr (char * pc_dst, t_UInt u_len, bool b_upperCase) const;

Berechnet eine textuelle Repräsentation der UUID. Das Ergebnis besteht aus 36 Zeichen und enthält kein
abschließendes Nullzeichen. Position und Länge des Resultatpuffers werden durch pc_dst und u_len
bestimmt. Die Länge des Puffers muß mindestens 36 Zeichen betragen. Ist der Parameter b_upperCase
gleich true, dann werden Großbuchstaben verwendet.

bool FromStr (const char * pc_src, t_UInt u_len);

Berechnet eine UUID aus einer textuellen Repräsentation. Es werden die ersten 36 Zeichen des Puffers
verwendet, der durch pc_src und u_len bestimmt ist.

bool operator == (const ct_UUID & co_comp) const;
bool operator != (const ct_UUID & co_comp) const;

Diese Operatoren vergleichen zwei ct_UUID-Objekte miteinander.

Spirick Tuning Referenzhandbuch Seite 152

4 DESIGNDIAGRAMME

4.1 Zur Notation

Die folgenden Abschnitte enthalten einige objektorientierte Designdiagramme. Sie veranschaulichen das
Zusammenspiel der Komponenten innerhalb der Bibliothek Spirick Tuning. Zur ihrer Erstellung wurde die
Notation 'Unified Modeling Language' (UML) verwendet. Die folgende Abbildung zeigt einen Teil der
grafischen Elemente der UML.

 0..1

1 1



1

AssociatedClass

BaseClass
Attribute

Method

Part1

Part2

DerivedClass
Value_of_Part1
Reference_to_Part2

Call_AssociatedClass

Klassen werden als umrandete Vierecke dargestellt. Jedes Viereck enthält drei Bereiche: den
Klassennamen, die Liste der Attribute und die Liste der Methoden. In den Designdiagrammen der
folgenden Abschnitte werden vier Verbindungsarten verwendet:

- die Vererbung,
- die Aggregation als Wert,
- die Aggregation als Referenz und
- die Assoziation.

Aggregationen (Teil-Ganzes-Relationen) können zusätzlich mit Kardinalitäten versehen werden. Im
Beispiel bedeuten sie: Ein Objekt der Klasse DerivedClass enthält genau ein Objekt der Klasse Part1, und
ein Objekt der Klasse Part1 gehört (im Sinne dieser Relation) zu genau einem Objekt der Klasse
DerivedClass. Ein Objekt der Klasse DerivedClass enthält optional eine Referenz auf ein Objekt der Klasse
Part2, und ein Objekt der Klasse Part2 kann von beliebig vielen Objekten der Klasse DerivedClass
referenziert werden.

Zwischen DerivedClass und AssociatedClass besteht eine Assoziation. Auch diese kann mit Kardinalitäten
näher beschrieben werden. Die Bedeutung im Beispiel ist: Zu einem Objekt der Klasse DerivedClass
existiert genau ein Objekt der Klasse AssociatedClass, und zu einem Objekt der Klasse AssociatedClass
existieren beliebig viele Objekte der Klasse DerivedClass.

Spirick Tuning Referenzhandbuch Seite 153

4.2 Polymorphe Klassenhierarchie

In der folgenden Abbildung wird die polymorphe Klassenhierarchie der Bibliothek Spirick Tuning
zusammengefaßt. Sie zeigt sämtliche Klassen, die direkt oder indirekt von ct_Object erben. Zur Erhöhung
der Übersichtlichkeit wurde die große Zahl der Attribute und Methoden ausgeblendet.

Die Klasse ct_Collection enthält Zeiger auf Instanzen des Typs ct_Object. Eine Collection kann mehrere
Zeiger auf ct_Object-Instanzen besitzen. Im Sinne dieser Referenz-Aggregation ist ein ct_Object in beliebig
vielen Collections enthalten.

ct_Object

ct_Collection

ct_Array ct_SortedArray ct_DList ct_BlockDList ct_RefCollection

ct_RefDList ct_BlockRefDList

ct_WString ct_String

ct_FileName

ct_File ct_Directory

ct_DirScan

*

*

Spirick Tuning Referenzhandbuch Seite 154

4.3 Ein Array

Die folgende Abbildung enthält sämtliche Klassen, die bei der Implementierung eines Array-Containers
verwendet werden. Neben den öffentlichen Methoden werden auch einige private Attribute dargestellt.
Sie erleichtern das Verständnis der Verbindungen zwischen den Klassen. Die Containerklasse wurde mit
Hilfe der folgenden Anweisungen generiert:

#include "tuning/chn/array.h"
class ct_Any { /* ... */ };
gct_Chn_Array <ct_Any> co_AnyArray;

Die Implementierung des Array-Containers beginnt auf der untersten Stufe mit der dynamischen
Storeklasse ct_ChnStore. Von ihr wird eine globale Instanz gebildet. C++-Templates können als Parameter
keine Objekte besitzen, sondern nur Typen und Konstanten. Deshalb mappt die Wrapperklasse
ct_Chn_Store die Methoden des globalen Storeobjekts auf statische Methoden einer Klasse. Von ihr
können beliebig viele Instanzen gebildet werden, die jedoch stets auf dasselbe globale Storeobjekt
zugreifen. Das Kürzel _ innerhalb des Namens weist auf den geschachtelten Größentyp t_UInt hin.

ct_Chn_Store dient dem Template gct_Block als Parameter. Zwischen gct_Block <ct_Chn_Store> und
ct_Chn_Store besteht eine Assoziation, denn das Blocktemplate ruft die Methoden der Wrapperklasse auf.
Die Klasse ct_Chn_Block enthält keine eigenen Attribute und Methoden. Sie dient nur der kürzeren
Schreibweise des Namens gct_Block <ct_Chn_Store>. Die Blockschnittstelle wird mit Hilfe des Templates
gct_ItemBlock um Methoden zum Zugriff auf Elemente erweitert. Die Hilfstemplates gct_FixItemBlockBase
und gct_FixItemBlock stellen die feste Elementgröße für gct_ItemBlock bereit.

Das Containertemplate gct_Array besitzt als Parameter den Typ der verwalteten Objekte ct_Any und die
Blockklasse gct_FixItemBlock <t_block, sizeof (gct_ArrayNode <ct_Any>)>. Der Array-Container erbt von der
Blockklasse und nutzt den dynamischen Speicherblock zur kompakten Unterbringung der verwalteten
Objekte. Das Hilfstemplate gct_ArrayNode dient dem Erzeugen und Löschen der Objekte. Es enthält als
Attribut o_Obj je ein Objekt und besitzt eigene Operatoren new und delete. Das Hilfstemplate
gct_FixItemArray stellt die Parameter für gct_FixItemBlock bereit.

Die Containerschnittstelle wird mit Hilfe des Templates gct_ExtContainer um nützliche Methoden
erweitert. Das Template gct_Chn_Array enthält keine eigenen Attribute und Methoden. Es dient nur der
kürzeren Schreibweise des Namens gct_ExtContainer <gct_FixItemArray <t_obj, ct_Chn_Block> >.

Spirick Tuning Referenzhandbuch Seite 155

ct_ChnStore

-aso_FreeChains: st_FreeChain
-o_Entries: t_UInt
-o_Size: t_UInt
-b_InFree: bool

<<CppOperator>>-=(: ct_ChnStore): ct_ChnStore
<<create>>-ct_ChnStore()
<<destroy>>-ct_ChnStore()
+Swap(co_swap: ct_ChnStore): void
<<CppOperator>>+new(u_size: size_t): void
<<CppOperator>>+delete(pv: void): void
+MaxAlloc(): t_UInt
+StoreInfoSize(): t_UInt
+Alloc(o_size: t_Size): t_Position
+Realloc(o_pos: t_Position, o_size: t_Size): t_Position
+Free(o_pos: t_Position): void
+AddrOf(o_pos: t_Position): void
+PosOf(pv_adr: void): t_Position
+SizeOf(o_pos: t_Position): t_Size
+RoundedSizeOf(o_pos: t_Position): t_Size
+CanFreeAll(): bool
+FreeAll(): void
+GetEntries(): t_UInt
+GetSize(): t_UInt
+QueryAllocEntries(): t_UInt
+QueryAllocSize(): t_UInt
+QueryFreeEntries(): t_UInt
+QueryFreeSize(): t_UInt
+FreeUnused(): void

ct_Chn_Store

+Swap(: ct_Chn_Store): void
+MaxAlloc(): t_UInt
+StoreInfoSize(): t_UInt
+Alloc(: t_Size): t_Position
+Realloc(: t_Position, : t_Size): t_Position
+Free(: t_Position): void
+AddrOf(o_pos: t_Position): void
+PosOf(pv_adr: void): t_Position
+SizeOf(o_pos: t_Position): t_Size
+RoundedSizeOf(: t_Position): t_Size
+CanFreeAll(): bool
+FreeAll(): void
+GetStore(): ct_ChnStore

gct_Block

#o_Pos: typename t_staticStore::t_Position
#o_Size: t_Size

<<create>>-gct_Block()
<<create>>-gct_Block(co_init: gct_Block)
<<destroy>>-gct_Block()
<<CppOperator>>+=(co_asgn: gct_Block): gct_Block
+Swap(co_swap: gct_Block): void
+GetByteSize(): t_Size
+SetByteSize(o_newSize: t_Size): void
+GetAddr(): void
+GetStore(): typename t_staticStore::t_Store

t_staticStore : class ct_Chn_Block

gct_ExtContainer

+GetFirstObj(): t_Object
+GetLastObj(): t_Object
+GetNextObj(o_pos: t_Position): t_Object
+GetPrevObj(o_pos: t_Position): t_Object
+GetNthObj(u_idx: t_Length): t_Object
+AddObjBeforeFirst(po_obj: t_Object): t_Position
+AddObjAfterLast(po_obj: t_Object): t_Position
+AddObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Position
+AddObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Position
+GetNewObj(po_obj: t_Object): t_Object
+GetNewFirstObj(po_obj: t_Object): t_Object
+GetNewLastObj(po_obj: t_Object): t_Object
+GetNewObjBefore(o_pos: t_Position, po_obj: t_Object): t_Object
+GetNewObjAfter(o_pos: t_Position, po_obj: t_Object): t_Object
+GetNewObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Object
+GetNewObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Object
+DelFirstObj(): t_Position
+DelLastObj(): t_Position
+DelNextObj(o_pos: t_Position): t_Position
+DelPrevObj(o_pos: t_Position): t_Position
+DelNthObj(u_idx: t_Length): t_Position
+FreeFirstObj(): t_Position
+FreeLastObj(): t_Position
+FreeNextObj(o_pos: t_Position): t_Position
+FreePrevObj(o_pos: t_Position): t_Position
+FreeNthObj(u_idx: t_Length): t_Position

t_container : class

gct_FixItemBlockBase

+o_FixSize: t_Size
+o_SizeMax: t_Size

+SetFixSize(o_fs: t_Size): void

t_block : class
o_fixSize

gct_ItemBlock

-GetRawAddr_(o_pos: t_Size): char
+GetFixSize(): t_Size
+GetItemSize(): t_Size
+SetItemSize(o_size: t_Size): void
+IncItemSize1(): void
+DecItemSize1(): void
+IncItemSize(o_inc: t_Size): void
+DecItemSize(o_dec: t_Size): void
+GetItemAddr(o_pos: t_Size): void
+InsertItems(o_pos: t_Size, o_count: t_Size): void
+DeleteItems(o_pos: t_Size, o_count: t_Size): void
+GetDefaultPageSize(): t_Size
+AlignPageSize(o_fixSize: t_Size, o_pageSize: t_Size): void

t_block : class

gct_FixItemBlock

t_block : class
o_itemSize

gct_ArrayNode

+o_Obj: t_obj

<<create>>-gct_ArrayNode()
<<create>>-gct_ArrayNode(o_obj: t_obj)
<<CppOperator>>+new(: size_t, pv: void): void
<<CppOperator>>+delete(: void, : void): void
<<CppOperator>>+delete(: void): void

t_obj : class

gct_Array

<<create>>-gct_Array()
<<create>>-gct_Array(co_init: gct_Array)
<<destroy>>-gct_Array()
<<CppOperator>>+=(co_asgn: gct_Array): gct_Array
+IsEmpty(): bool
+GetLen(): t_Length
+First(): t_Position
+Last(): t_Position
+Next(o_pos: t_Position): t_Position
+Prev(o_pos: t_Position): t_Position
+Nth(u_idx: t_Length): t_Position
+GetObj(o_pos: t_Position): t_Object
+AddObj(po_obj: t_Object): t_Position
+AddObjBefore(o_pos: t_Position, po_obj: t_Object): t_Position
+AddObjAfter(o_pos: t_Position, po_obj: t_Object): t_Position
+AppendObj(po_obj: t_Object, o_count: t_Length): void
+TruncateObj(o_count: t_Length): void
+DelObj(o_pos: t_Position): t_Position
+DelAll(): void
+FreeObj(o_pos: t_Position): t_Position
+FreeAll(): void
+SetPageSize(o_size: t_Size): void

t_obj : class
t_block : class

gct_Chn_Array

t_obj : class

ct_Any

gct_FixItemArray

t_obj : Class
t_block : Class

*
1

1

*

1
1

Spirick Tuning Referenzhandbuch Seite 156

4.4 Ein Zeigerarray

Die folgende Abbildung enthält sämtliche Klassen, die bei der Implementierung eines Zeigerarray-
Containers verwendet werden. Neben den öffentlichen Methoden werden auch einige private Attribute
dargestellt. Sie erleichtern das Verständnis der Verbindungen zwischen den Klassen. Die Containerklasse
wurde mit Hilfe der folgenden Anweisungen generiert:

#include "tuning/chn/ptrarray.h"
class ct_Any { /* ... */ };
gct_Chn_PtrArray <ct_Any> co_AnyPtrArray;

Die Implementierung des Zeigerarray-Containers beginnt auf der untersten Stufe mit der dynamischen
Storeklasse ct_ChnStore. Von ihr wird eine globale Instanz gebildet. C++-Templates können als Parameter
keine Objekte besitzen, sondern nur Typen und Konstanten. Deshalb mappt die Wrapperklasse
ct_Chn_Store die Methoden des globalen Storeobjekts auf statische Methoden einer Klasse. Von ihr
können beliebig viele Instanzen gebildet werden, die jedoch stets auf dasselbe globale Storeobjekt
zugreifen. Das Kürzel _ innerhalb des Namens weist auf den geschachtelten Größentyp t_UInt hin.

ct_Chn_Store dient dem Template gct_Block als Parameter. Zwischen gct_Block <ct_Chn_Store> und
ct_Chn_Store besteht eine Assoziation, denn das Blocktemplate ruft die Methoden der Wrapperklasse auf.
Die Klasse ct_Chn_Block enthält keine eigenen Attribute und Methoden. Sie dient nur der kürzeren
Schreibweise des Namens gct_Block <ct_Chn_Store>. Die Blockschnittstelle wird mit Hilfe des Templates
gct_ItemBlock um Methoden zum Zugriff auf Elemente erweitert. Die Hilfstemplates gct_FixItemBlockBase
und gct_FixItemBlock stellen die feste Elementgröße für gct_ItemBlock bereit.

Ein Zeigercontainer baut auf einem Container auf, der untypisierte C++-Zeiger verwaltet. Das
Containertemplate gct_Array besitzt als Parameter den Typ der verwalteten Objekte void * und die
Blockklasse gct_FixItemBlock <t_block, sizeof (gct_ArrayNode <void *>)>. Der Array-Container erbt von der
Blockklasse und nutzt den dynamischen Speicherblock zur kompakten Unterbringung der der C++-
Zeiger. Das Hilfstemplate gct_ArrayNode dient dem Erzeugen und Löschen der Zeiger. Es enthält als
Attribut o_Obj je einen untypisierten C++-Zeiger und besitzt eigene Operatoren new und delete. Da der
Basiscontainer zur Verwaltung typisierter Zeiger verwendet wird, besitzt gct_ArrayNode eine Referenz-
Aggregation zur Klasse ct_Any. Das Hilfstemplate gct_FixItemArray stellt die Parameter für gct_FixItemBlock
bereit.

Die Containerschnittstelle wird mit Hilfe des Templates gct_ExtContainer um nützliche Methoden
erweitert. Das Template gct_Chn_Array enthält keine eigenen Attribute und Methoden. Es dient nur der
kürzeren Schreibweise des Namens gct_ExtContainer <gct_FixItemArray <t_obj, ct_Chn_Block> >.

Für C++-Zeiger existiert der Gleichheitsoperator operator ==. Deshalb kann der bisherige Container um die
Schnittstelle des Templates gct_CompContainer erweitert werden. Der davon abgeleitete Zeigercontainer
nutzt die Funktionalität seiner Basisklassen und wandelt untypisierte C++-Zeiger in Zeiger auf die Klasse
ct_Any um. Das Template gct_Chn_PtrArray enthält keine eigenen Attribute und Methoden. Es dient nur der
kürzeren Schreibweise des Namens gct_PtrContainer <ct_Any, gct_Chn_Array <void *> >.

Spirick Tuning Referenzhandbuch Seite 157

ct_ChnStore

aso_FreeChains: st_FreeChain
o_Entries: t_UInt
o_Size: t_UInt
b_InFree: bool

ct_ChnStore(: ct_ChnStore)
=(: ct_ChnStore): ct_ChnStore
ct_ChnStore()
ct_ChnStore()
Swap(co_swap: ct_ChnStore): void
new(u_size: size_t): void
delete(pv: void): void
MaxAlloc(): t_UInt
StoreInfoSize(): t_UInt
Alloc(o_size: t_Size): t_Position
Realloc(o_pos: t_Position, o_size: t_Size): t_Position
Free(o_pos: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: void): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(o_pos: t_Position): t_Size
CanFreeAll(): bool
FreeAll(): void
GetEntries(): t_UInt
GetSize(): t_UInt
QueryAllocEntries(): t_UInt
QueryAllocSize(): t_UInt
QueryFreeEntries(): t_UInt
QueryFreeSize(): t_UInt
FreeUnused(): void

ct_Chn_Store

Swap(: ct_Chn_Store): void
MaxAlloc(): t_UInt
StoreInfoSize(): t_UInt
Alloc(: t_Size): t_Position
Realloc(: t_Position, : t_Size): t_Position
Free(: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: void): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(: t_Position): t_Size
CanFreeAll(): bool
FreeAll(): void
GetStore(): ct_ChnStore

gct_Block

o_Pos: typename t_staticStore::t_Position
o_Size: t_Size

gct_Block()
gct_Block(co_init: gct_Block)
gct_Block()
=(co_asgn: gct_Block): gct_Block
Swap(co_swap: gct_Block): void
GetByteSize(): t_Size
SetByteSize(o_newSize: t_Size): void
GetAddr(): void
GetStore(): typename t_staticStore::t_Store

t_staticStore : class

ct_Chn_Block

gct_ExtContainer

GetFirstObj(): t_Object
GetLastObj(): t_Object
GetNextObj(o_pos: t_Position): t_Object
GetPrevObj(o_pos: t_Position): t_Object
GetNthObj(u_idx: t_Length): t_Object
AddObjBeforeFirst(po_obj: t_Object): t_Position
AddObjAfterLast(po_obj: t_Object): t_Position
AddObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Position
AddObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Position
GetNewObj(po_obj: t_Object): t_Object
GetNewFirstObj(po_obj: t_Object): t_Object
GetNewLastObj(po_obj: t_Object): t_Object
GetNewObjBefore(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjAfter(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Object
GetNewObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Object
DelFirstObj(): t_Position
DelLastObj(): t_Position
DelNextObj(o_pos: t_Position): t_Position
DelPrevObj(o_pos: t_Position): t_Position
DelNthObj(u_idx: t_Length): t_Position
FreeFirstObj(): t_Position
FreeLastObj(): t_Position
FreeNextObj(o_pos: t_Position): t_Position
FreePrevObj(o_pos: t_Position): t_Position
FreeNthObj(u_idx: t_Length): t_Position

t_container : class

gct_FixItemBlockBase

o_FixSize: t_Size
o_SizeMax: t_Size

SetFixSize(o_fs: t_Size): void

t_block : class
o_fixSize

gct_ItemBlock

GetRawAddr_(o_pos: t_Size): char
GetFixSize(): t_Size
GetItemSize(): t_Size
SetItemSize(o_size: t_Size): void
IncItemSize1(): void
DecItemSize1(): void
IncItemSize(o_inc: t_Size): void
DecItemSize(o_dec: t_Size): void
GetItemAddr(o_pos: t_Size): void
InsertItems(o_pos: t_Size, o_count: t_Size): void
DeleteItems(o_pos: t_Size, o_count: t_Size): void
GetDefaultPageSize(): t_Size
AlignPageSize(o_fixSize: t_Size, o_pageSize: t_Size): void

t_block : class

gct_FixItemBlock

t_block : class
o_itemSize

gct_ArrayNode

o_Obj: t_obj

gct_ArrayNode()
gct_ArrayNode(o_obj: t_obj)
new(: size_t, pv: void): void
delete(: void, : void): void
delete(: void): void

t_obj : class

gct_Array

Node(o_pos: t_Position): gct_ArrayNode <t_obj>
CopyFrom(co_copy: gct_Array): void
FirstForSearch(po_obj: t_Object): t_Position
LastForSearch(po_obj: t_Object): t_Position
NextForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
PrevForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
gct_Array()
gct_Array(co_init: gct_Array)
gct_Array()
=(co_asgn: gct_Array): gct_Array
IsEmpty(): bool
GetLen(): t_Length
First(): t_Position
Last(): t_Position
Next(o_pos: t_Position): t_Position
Prev(o_pos: t_Position): t_Position
Nth(u_idx: t_Length): t_Position
GetObj(o_pos: t_Position): t_Object
AddObj(po_obj: t_Object): t_Position
AddObjBefore(o_pos: t_Position, po_obj: t_Object): t_Position
AddObjAfter(o_pos: t_Position, po_obj: t_Object): t_Position
AppendObj(po_obj: t_Object, o_count: t_Length): void
TruncateObj(o_count: t_Length): void
DelObj(o_pos: t_Position): t_Position
DelAll(): void
FreeObj(o_pos: t_Position): t_Position
FreeAll(): void
SetPageSize(o_size: t_Size): void

t_obj : class
t_block : class

gct_Chn_Array

t_obj : class

gct_CompContainer

ContainsObj(po_obj: t_Object): bool
CountObjs(po_obj: t_Object): t_Length
SearchFirstObj(po_obj: t_Object): t_Position
SearchLastObj(po_obj: t_Object): t_Position
SearchNextObj(o_pos: t_Position, po_obj: t_Object): t_Position
SearchPrevObj(o_pos: t_Position, po_obj: t_Object): t_Position
GetFirstEqualObj(po_obj: t_Object): t_Object
GetLastEqualObj(po_obj: t_Object): t_Object
AddObjCond(po_obj: t_Object): t_Position
AddObjBeforeFirstCond(po_obj: t_Object): t_Position
AddObjAfterLastCond(po_obj: t_Object): t_Position
DelFirstEqualObj(po_obj: t_Object): t_Position
DelLastEqualObj(po_obj: t_Object): t_Position
DelFirstEqualObjCond(po_obj: t_Object): t_Position
DelLastEqualObjCond(po_obj: t_Object): t_Position

t_container : class

gct_PtrContainer

gct_PtrContainer()
GetPtr(o_pos: t_Position): t_obj
GetFirstPtr(): t_obj
GetLastPtr(): t_obj
GetNextPtr(o_pos: t_Position): t_obj
GetPrevPtr(o_pos: t_Position): t_obj
GetNthPtr(u_idx: t_Length): t_obj
AddPtr(po_obj: t_obj): t_Position
AddPtrBefore(o_pos: t_Position, po_obj: t_obj): t_Position
AddPtrAfter(o_pos: t_Position, po_obj: t_obj): t_Position
AddPtrBeforeFirst(po_obj: t_obj): t_Position
AddPtrAfterLast(po_obj: t_obj): t_Position
AddPtrBeforeNth(u_idx: t_Length, po_obj: t_obj): t_Position
AddPtrAfterNth(u_idx: t_Length, po_obj: t_obj): t_Position
DelPtr(o_pos: t_Position): t_Position
DelFirstPtr(): t_Position
DelLastPtr(): t_Position
DelNextPtr(o_pos: t_Position): t_Position
DelPrevPtr(o_pos: t_Position): t_Position
DelNthPtr(u_idx: t_Length): t_Position
DelAllPtr(): void
DelPtrAndObj(o_pos: t_Position): t_Position
DelFirstPtrAndObj(): t_Position
DelLastPtrAndObj(): t_Position
DelNextPtrAndObj(o_pos: t_Position): t_Position
DelPrevPtrAndObj(o_pos: t_Position): t_Position
DelNthPtrAndObj(u_idx: t_Length): t_Position
DelAllPtrAndObj(): void
ContainsPtr(po_obj: t_obj): bool
CountPtrs(po_obj: t_obj): t_Length
SearchFirstPtr(po_obj: t_obj): t_Position
SearchLastPtr(po_obj: t_obj): t_Position
SearchNextPtr(o_pos: t_Position, po_obj: t_obj): t_Position
SearchPrevPtr(o_pos: t_Position, po_obj: t_obj): t_Position
AddPtrCond(po_obj: t_obj): t_Position
AddPtrBeforeFirstCond(po_obj: t_obj): t_Position
AddPtrAfterLastCond(po_obj: t_obj): t_Position
DelFirstEqualPtr(po_obj: t_obj): t_Position
DelLastEqualPtr(po_obj: t_obj): t_Position
DelFirstEqualPtrCond(po_obj: t_obj): t_Position
DelLastEqualPtrCond(po_obj: t_obj): t_Position
DelFirstEqualPtrAndObj(po_obj: t_obj): t_Position
DelLastEqualPtrAndObj(po_obj: t_obj): t_Position
DelFirstEqualPtrAndObjCond(po_obj: t_obj): t_Position
DelLastEqualPtrAndObjCond(po_obj: t_obj): t_Position

t_obj : class
t_container : class

gct_Chn_PtrArray

t_obj : class

ct_Any

gct_FixItemArray

t_obj : Class
t_block : Class

*

1

1

*

*

0..1

Spirick Tuning Referenzhandbuch Seite 158

4.5 Eine Liste

Die folgende Abbildung enthält sämtliche Klassen, die bei der Implementierung eines Listen-Containers
verwendet werden. Neben den öffentlichen Methoden werden auch einige private Attribute dargestellt.
Sie erleichtern das Verständnis der Verbindungen zwischen den Klassen. Die Containerklasse wurde mit
Hilfe der folgenden Anweisungen generiert:

#include "tuning/chn/dlist.h"
class ct_Any { /* ... */ };
gct_Chn32DList <ct_Any> co_AnyDList;

Die Implementierung des Listen-Containers beginnt auf der untersten Stufe mit der dynamischen
Storeklasse ct_ChnStore. Von ihr wird eine globale Instanz gebildet. C++-Templates können als Parameter
keine Objekte besitzen, sondern nur Typen und Konstanten. Deshalb mappt die Wrapperklasse
ct_Chn32Store die Methoden des globalen Storeobjekts auf statische Methoden einer Klasse. Von ihr
können beliebig viele Instanzen gebildet werden, die jedoch stets auf dasselbe globale Storeobjekt
zugreifen. Das Kürzel 32 innerhalb des Namens weist auf den geschachtelten Größentyp t_UInt32 hin.

Das Containertemplate gct_DList besitzt als Parameter den Typ der verwalteten Objekte ct_Any und die
Storeklasse ct_Chn32Store. Der Listen-Container enthält die Storeklasse als Attribut o_Store und nutzt
deren Methoden zum Verwalten des Speichers für die Knoten (Nodes). Das Hilfstemplate gct_DListNode
dient dem Erzeugen und Löschen der Objekte. Es enthält als Attribut o_Obj je ein Objekt und besitzt
eigene Operatoren new und delete. Listen-Nodes sind durch Positionszeiger in beiden Richtungen
miteinander verbunden.

Die Containerschnittstelle wird mit Hilfe des Templates gct_ExtContainer um nützliche Methoden
erweitert. Das Template gct_Chn32DList enthält keine eigenen Attribute und Methoden. Es dient nur der
kürzeren Schreibweise des Namens gct_ExtContainer <gct_DList <ct_Any, ct_Chn32Store> >.

Spirick Tuning Referenzhandbuch Seite 159

ct_ChnStore

aso_FreeChains: st_FreeChain
o_Entries: t_UInt
o_Size: t_UInt
b_InFree: bool

ct_ChnStore(: ct_ChnStore)
=(: ct_ChnStore): ct_ChnStore
ct_ChnStore()
ct_ChnStore()
Swap(co_swap: ct_ChnStore): void
new(u_size: size_t): void
delete(pv: void): void
MaxAlloc(): t_UInt
StoreInfoSize(): t_UInt
Alloc(o_size: t_Size): t_Position
Realloc(o_pos: t_Position, o_size: t_Size): t_Position
Free(o_pos: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: void): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(o_pos: t_Position): t_Size
CanFreeAll(): bool
FreeAll(): void
GetEntries(): t_UInt
GetSize(): t_UInt
QueryAllocEntries(): t_UInt
QueryAllocSize(): t_UInt
QueryFreeEntries(): t_UInt
QueryFreeSize(): t_UInt
FreeUnused(): void

ct_Chn32Store

Swap(: ct_Chn32Store): void
MaxAlloc(): t_UInt
StoreInfoSize(): t_UInt
Alloc(: t_Size): t_Position
Realloc(: t_Position, : t_Size): t_Position
Free(: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: void): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(: t_Position): t_Size
CanFreeAll(): bool
FreeAll(): void
GetStore(): ct_ChnStore

gct_ExtContainer

GetFirstObj(): t_Object
GetLastObj(): t_Object
GetNextObj(o_pos: t_Position): t_Object
GetPrevObj(o_pos: t_Position): t_Object
GetNthObj(u_idx: t_Length): t_Object
AddObjBeforeFirst(po_obj: t_Object): t_Position
AddObjAfterLast(po_obj: t_Object): t_Position
AddObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Position
AddObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Position
GetNewObj(po_obj: t_Object): t_Object
GetNewFirstObj(po_obj: t_Object): t_Object
GetNewLastObj(po_obj: t_Object): t_Object
GetNewObjBefore(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjAfter(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Object
GetNewObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Object
DelFirstObj(): t_Position
DelLastObj(): t_Position
DelNextObj(o_pos: t_Position): t_Position
DelPrevObj(o_pos: t_Position): t_Position
DelNthObj(u_idx: t_Length): t_Position
FreeFirstObj(): t_Position
FreeLastObj(): t_Position
FreeNextObj(o_pos: t_Position): t_Position
FreePrevObj(o_pos: t_Position): t_Position
FreeNthObj(u_idx: t_Length): t_Position

t_container : class

gct_DListNode

o_Obj: t_obj
o_Prev: t_ptr
o_Next: t_ptr

gct_DListNode()
gct_DListNode(o_obj: t_obj)
new(: size_t, pv: void): void
delete(: void, : void): void
delete(: void): void

t_obj : class
t_ptr : class

gct_DList

o_First: t_Position
o_Length: t_Length
o_Store: t_store

Node(o_pos: t_Position): gct_DListNode <t_Object, t_Position>
NewNode(: t_Position, : t_Position, : t_obj): t_Position
CopyFrom(co_copy: gct_DList): void
FirstForSearch(po_obj: t_Object): t_Position
LastForSearch(po_obj: t_Object): t_Position
NextForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
PrevForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
gct_DList()
gct_DList(co_init: gct_DList)
gct_DList()
=(co_asgn: gct_DList): gct_DList
Swap(co_swap: gct_DList): void
IsEmpty(): bool
GetLen(): t_Length
First(): t_Position
Last(): t_Position
Next(o_pos: t_Position): t_Position
Prev(o_pos: t_Position): t_Position
Nth(u_idx: t_Length): t_Position
GetObj(o_pos: t_Position): t_Object
AddObj(po_obj: t_Object): t_Position
AddObjBefore(o_pos: t_Position, po_obj: t_Object): t_Position
AddObjAfter(o_pos: t_Position, po_obj: t_Object): t_Position
AppendObj(po_obj: t_Object, o_count: t_Length): void
TruncateObj(o_count: t_Length): void
DelObj(o_pos: t_Position): t_Position
DelAll(): void
FreeObj(o_pos: t_Position): t_Position
FreeAll(): void
GetStore(): t_store

t_obj : class
t_store : class

gct_Chn32DList

t_obj : class

ct_Any

*

1

1

1

1 *

1

1

Spirick Tuning Referenzhandbuch Seite 160

4.6 Eine Blockliste

Die folgende Abbildung enthält sämtliche Klassen, die bei der Implementierung eines Blocklisten-
Containers verwendet werden. Neben den öffentlichen Methoden werden auch einige private Attribute
dargestellt. Sie erleichtern das Verständnis der Verbindungen zwischen den Klassen. Die Containerklasse
wurde mit Hilfe der folgenden Anweisungen generiert:

#include "tuning/chn/blockdlist.h"
class ct_Any { /* ... */ };
gct_Chn32BlockDList <ct_Any> co_AnyBlockDList;

Die Implementierung des Blocklisten-Containers beginnt auf der untersten Stufe mit der dynamischen
Storeklasse ct_ChnStore. Von ihr wird eine globale Instanz gebildet. C++-Templates können als Parameter
keine Objekte besitzen, sondern nur Typen und Konstanten. Deshalb mappt die Wrapperklasse
ct_Chn32Store die Methoden des globalen Storeobjekts auf statische Methoden einer Klasse. Von ihr
können beliebig viele Instanzen gebildet werden, die jedoch stets auf dasselbe globale Storeobjekt
zugreifen. Das Kürzel 32 innerhalb des Namens weist auf den geschachtelten Größentyp t_UInt32 hin.

ct_Chn32Store dient dem Template gct_Block als Parameter. Zwischen gct_Block <ct_Chn32Store> und
ct_Chn32Store besteht eine Assoziation, denn das Blocktemplate ruft die Methoden der Wrapperklasse
auf. Die Klasse ct_Chn32Block enthält keine eigenen Attribute und Methoden. Sie dient nur der kürzeren
Schreibweise des Namens gct_Block <ct_Chn32Store>. Die Blockschnittstelle wird mit Hilfe des Templates
gct_ItemBlock um Methoden zum Zugriff auf Elemente erweitert. Die Hilfstemplates gct_VarItemBlockBase
und gct_VarItemBlock stellen die feste Elementgröße für gct_ItemBlock bereit.

Das Storetemplate gct_BlockStore besitzt als Parameter die Elementblockklasse gct_VarItemBlock
<ct_Chn32Block> und die Zeichenblockklasse gct_CharBlock <ct_Chn32Block, char>. Der Blockstore erbt von
der Elementblockklasse und nutzt den dynamischen Speicherblock zur kompakten Verwaltung der
eigenen Speicherblöcke. Die Klasse ct_Chn32BlockStore enthält keine eigenen Attribute und Methoden. Sie
dient nur der kürzeren Schreibweise des Namens gct_BlockStore <gct_Var..., gct_Char...>.

Das Containertemplate gct_DList besitzt als Parameter den Typ der verwalteten Objekte ct_Any und die
Storeklasse ct_Chn32BlockStore. Der Listen-Container enthält die Storeklasse als Attribut o_Store und nutzt
deren Methoden zum Verwalten des Speichers für die Knoten (Nodes). Das Hilfstemplate gct_DListNode
dient dem Erzeugen und Löschen der Objekte. Es enthält als Attribut o_Obj je ein Objekt und besitzt
eigene Operatoren new und delete. Listen-Nodes sind durch Positionszeiger in beiden Richtungen
miteinander verbunden.

Die Containerschnittstelle wird mit Hilfe des Templates gct_ExtContainer um nützliche Methoden
erweitert. Das Template gct_Chn32BlockDList enthält keine eigenen Attribute und Methoden. Es dient nur
der kürzeren Schreibweise des Namens gct_ExtContainer <gct_DList <ct_Any, ct_Chn32BlockStore> >.

Spirick Tuning Referenzhandbuch Seite 161

ct_ChnStore

aso_FreeChains: st_FreeChain
o_Entries: t_UInt
o_Size: t_UInt
b_InFree: bool

ct_ChnStore(: ct_ChnStore)
=(: ct_ChnStore): ct_ChnStore
ct_ChnStore()
ct_ChnStore()
Swap(co_swap: ct_ChnStore): void
new(u_size: size_t): void
delete(pv: void): void
MaxAlloc(): t_UInt
StoreInfoSize(): t_UInt
Alloc(o_size: t_Size): t_Position
Realloc(o_pos: t_Position, o_size: t_Size): t_Position
Free(o_pos: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: void): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(o_pos: t_Position): t_Size
CanFreeAll(): bool
FreeAll(): void
GetEntries(): t_UInt
GetSize(): t_UInt
QueryAllocEntries(): t_UInt
QueryAllocSize(): t_UInt
QueryFreeEntries(): t_UInt
QueryFreeSize(): t_UInt
FreeUnused(): void

ct_Chn32Store

Swap(: ct_Chn32Store): void
MaxAlloc(): t_UInt
StoreInfoSize(): t_UInt
Alloc(: t_Size): t_Position
Realloc(: t_Position, : t_Size): t_Position
Free(: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: void): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(: t_Position): t_Size
CanFreeAll(): bool
FreeAll(): void
GetStore(): ct_ChnStore

gct_Block

o_Pos: typename t_staticStore::t_Position
o_Size: t_Size

gct_Block()
gct_Block(co_init: gct_Block)
gct_Block()
=(co_asgn: gct_Block): gct_Block
Swap(co_swap: gct_Block): void
GetByteSize(): t_Size
SetByteSize(o_newSize: t_Size): void
GetAddr(): void
GetStore(): typename t_staticStore::t_Store

t_staticStore : class

ct_Chn32Block

gct_VarItemBlockBase

o_FixSize: t_Size
o_SizeMax: t_Size

gct_VarItemBlockBase()
SetFixSize(o_fs: t_Size): void

t_block : class

gct_ItemBlock

GetRawAddr_(o_pos: t_Size): char
GetFixSize(): t_Size
GetItemSize(): t_Size
SetItemSize(o_size: t_Size): void
IncItemSize1(): void
DecItemSize1(): void
IncItemSize(o_inc: t_Size): void
DecItemSize(o_dec: t_Size): void
GetItemAddr(o_pos: t_Size): void
InsertItems(o_pos: t_Size, o_count: t_Size): void
DeleteItems(o_pos: t_Size, o_count: t_Size): void
GetDefaultPageSize(): t_Size
AlignPageSize(o_fixSize: t_Size, o_pageSize: t_Size): void

t_block : class

gct_VarItemBlock

t_block : class

gct_BlockStore

so_Data: st_Data

IdxAddrOf(o_pos: t_Position): t_Position
FreePlain(o_pos: t_Position): void
FreeSort(o_pos: t_Position): void
gct_BlockStore()
Swap(co_swap: gct_BlockStore): void
MaxAlloc(): t_UInt
StoreInfoSize(): t_UInt
Alloc(o_size: t_Size): t_Position
Realloc(o_pos: t_Position, o_size: t_Size): t_Position
Free(o_pos: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: void): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(o_pos: t_Position): t_Size
CanFreeAll(): bool
FreeAll(): void
SetSortedFree(b: bool): void
SetPageSize(o_size: t_Size): void
LastIdx(): t_Position
HasFree(): bool
FreeUnused(): void

t_itemBlock : class
t_charBlock : class

ct_Chn32BlockStore

gct_ExtContainer

GetFirstObj(): t_Object
GetLastObj(): t_Object
GetNextObj(o_pos: t_Position): t_Object
GetPrevObj(o_pos: t_Position): t_Object
GetNthObj(u_idx: t_Length): t_Object
AddObjBeforeFirst(po_obj: t_Object): t_Position
AddObjAfterLast(po_obj: t_Object): t_Position
AddObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Position
AddObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Position
GetNewObj(po_obj: t_Object): t_Object
GetNewFirstObj(po_obj: t_Object): t_Object
GetNewLastObj(po_obj: t_Object): t_Object
GetNewObjBefore(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjAfter(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Object
GetNewObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Object
DelFirstObj(): t_Position
DelLastObj(): t_Position
DelNextObj(o_pos: t_Position): t_Position
DelPrevObj(o_pos: t_Position): t_Position
DelNthObj(u_idx: t_Length): t_Position
FreeFirstObj(): t_Position
FreeLastObj(): t_Position
FreeNextObj(o_pos: t_Position): t_Position
FreePrevObj(o_pos: t_Position): t_Position
FreeNthObj(u_idx: t_Length): t_Position

t_container : class

gct_DListNode

o_Obj: t_obj
o_Prev: t_ptr
o_Next: t_ptr

gct_DListNode()
gct_DListNode(o_obj: t_obj)
new(: size_t, pv: void): void
delete(: void, : void): void
delete(: void): void

t_obj : class
t_ptr : class

gct_DList

o_First: t_Position
o_Length: t_Length
o_Store: t_store

Node(o_pos: t_Position): gct_DListNode <t_Object, t_Position>
NewNode(: t_Position, : t_Position, : t_obj): t_Position
CopyFrom(co_copy: gct_DList): void
FirstForSearch(po_obj: t_Object): t_Position
LastForSearch(po_obj: t_Object): t_Position
NextForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
PrevForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
gct_DList()
gct_DList(co_init: gct_DList)
gct_DList()
=(co_asgn: gct_DList): gct_DList
Swap(co_swap: gct_DList): void
IsEmpty(): bool
GetLen(): t_Length
First(): t_Position
Last(): t_Position
Next(o_pos: t_Position): t_Position
Prev(o_pos: t_Position): t_Position
Nth(u_idx: t_Length): t_Position
GetObj(o_pos: t_Position): t_Object
AddObj(po_obj: t_Object): t_Position
AddObjBefore(o_pos: t_Position, po_obj: t_Object): t_Position
AddObjAfter(o_pos: t_Position, po_obj: t_Object): t_Position
AppendObj(po_obj: t_Object, o_count: t_Length): void
TruncateObj(o_count: t_Length): void
DelObj(o_pos: t_Position): t_Position
DelAll(): void
FreeObj(o_pos: t_Position): t_Position
FreeAll(): void
GetStore(): t_store

t_obj : class
t_store : class

gct_Chn32BlockDList

t_obj : class

ct_Any

1

*

1

1

1

1

1

*

Spirick Tuning Referenzhandbuch Seite 162

5 INSTALLATION UND BEISPIELE

5.1 Hinweise zur Installation

5.1.1 Verfügbare Plattformen

Die Klassenbibliothek Spirick Tuning ist zur Zeit für die Betriebssysteme MS Windows XP, MS Windows
7, MS Windows 10 sowie Linux x86/x86-64 mit Kernel 2.6.32 bis 6.2.0 verfügbar. Sie wurde mit 32-
und 64-Bit-Speichermodellen entwickelt und getestet. Die Klassen können sowohl in einer singlethreaded
als auch in einer multithreaded Umgebung eingesetzt werden. Der Quelltext ist an die Compiler MS
Visual C++ 8.0 (2005) bis 17.0 (2022) sowie g++ 4.4.5 bis 12.2.0 angepaßt.

Die Verfügbarkeit für andere Umgebungen kann beim Hersteller erfragt werden. Die Klassen zur
Speicher- und Objektverwaltung und zur Zeichenkettenverarbeitung sind größtenteils system- und
compilerunabhängig. Sie lassen sich mit geringem Aufwand portieren. Bei globalen Funktionen und
Klassen, die Systemdienste zur Verfügung stellen, ist jedoch eine detaillierte Anpassung erforderlich.

5.1.2 Abhängigkeiten

Die Klassenbibliothek Spirick Tuning verwendet das Laufzeitsystem des Compilers und des
Betriebssystems. Auf Linux Plattformen werden zusätzlich PThreads verwendet. Darüber hinaus
bestehen keine Abhängigkeiten zu anderen Bibliotheken. Die Klassenbibliothek Spirick Tuning kann ohne
Wechselwirkungen mit anderen Bibliotheken kombiniert werden, z. B. mit BOOST oder der C++
Standardbibliothek.

5.1.3 Installation

Die Klassenbibliothek Spirick Tuning wird im Quelltext ausgeliefert. Zum Installieren werden alle
Verzeichnisse in ein Verzeichnis auf der Festplatte, z. B. c:\spirick, kopiert. Dabei entstehen folgende
Unterverzeichnisse:

Verzeichnis Inhalt

c:\spirick\tuning C++-Templates und -Klassen

c:\spirick\tuning\sys Systemschnittstelle in C

c:\spirick\tuning\std Standardstore

c:\spirick\tuning\rnd Roundstore

c:\spirick\tuning\chn Chainstore

c:\spirick\samples Beispielprogramme

Spirick Tuning Referenzhandbuch Seite 163

Im Lieferumfang befinden sich Makefiles, die sowohl mit nmake als auch mit gmake verwendet werden
können. Sie erzeugen eine binäre Bibliothek 'tuning.lib' bzw. 'tuning.a'. Die Klassenbibliothek kann auch
in ein anderes Buildsystem eingebunden werden. Vor dem Compilieren ist zu prüfen, ob sich das
Verzeichnis oberhalb von tuning (im Beispiel c:\spirick) im Includepfad befindet.

Die mitgelieferten Makefiles verwenden die Umgebungsvariablen TL_PROJECT_TARGETDIR, TL_COMPILER und
TL_RELEASE. Mit TL_PROJECT_TARGETDIR kann das Zielverzeichnis für Compiler und Linker angegeben werden.
Die Variable TL_COMPILER sollte Infos über Compilerversion und Architektur enthalten, z.B. "msc192164"
für den MS Compiler 19.21 64-Bit. Mit dieser Variablen wird im Zielverzeichnis ein Unterverzeichnis
angelegt. Die Variable TL_RELEASE steuert, ob eine Debug- oder eine Release-Version kompiliert wird.

5.1.4 Performance-Tests

Mit Hilfe der Präzisionszeit und der Heapinformationen kann die Performance einzelner Klassen und
Templates genau gemessen werden. Zum Erreichen einer bestmöglichen Rechengeschwindigkeit sollten
Bausteine eingesetzt werden, die mit dem globalen Chainstore arbeiten, z. B. ct_Chn_String oder
gct_Chn_Array. Eine bestmögliche Speicherauslastung wird mit Array- und Blocklisten-Containern erzielt.
Belegen alle Nodes einer Blockliste zusammengenommen nicht mehr als 64 KB, wird das Template
gct_Chn16BlockDList empfohlen.

In der Bibliothek Spirick Tuning werden zahlreiche Parameter und Zwischenergebnisse mit ASSERT-Makros
überprüft. Diese Prüfungen befinden sich auch an rechenzeitkritischen Stellen. Deshalb sollte zum
Performance-Test statt einer Debug- eine Release-Version verwendet werden. Dazu ist ein
Compilerschalter zu setzen oder das Makro NDEBUG zu definieren.

5.1.5 Inline-Methoden

Beim Expandieren von Inline-Methoden der Bibliothek Spirick Tuning ist zu beachten, daß Inline-Methoden
z. T. sehr tief geschachtelt sind. Die Schachtelung ist eine Folge des schichtweisen Aufbaus der
zahlreichen Schnittstellen. Die Standardeinstellung der meisten Compiler für die Schachtelungstiefe wird
dabei häufig überschritten. Deshalb enthält die Datei 'tuning/defs.hpp' folgende Präprozessoranweisung:

#pragma inline_depth (32)

5.1.6 DLL's

Alle globalen Funktionen und Klassen sind für den Einsatz in DLL's vorgesehen. Sie wurden mit dem
Makro TL_EXPORT versehen. Sollen die Deklarationen exportiert werden, ist global das Makro TL_BUILD_DLL
zu setzen.

5.1.7 Globale Objekte

Die Bibliothek Spirick Tuning enthält einige globale Storeobjekte (je eine globale Instanz des Standard-,
Round- und Chainstores). Sie werden von zahlreichen anderen Klassen und Templates, z. B.
ct_Chn32String, direkt oder indirekt verwendet. Obwohl die Reihenfolge der Initialisierung globaler Objekte
nicht standardisiert ist, können globale Anwenderobjekte sicher auf globale Stores zugreifen. Globale
Stores werden automatisch erzeugt, wenn zum ersten mal darauf zugegriffen wird oder wenn der erste
Thread gestartet wird (siehe Abschnitt 'Globale Stores').

Globale Anwenderobjekte können auch in ihrem Destruktor (am Programmende) sicher auf globale Stores
zugreifen, da diese zwar automatisch erzeugt, aber nicht zerstört werden. Das bedeutet jedoch, daß ein
Heapwalker die globalen Storeobjekte am Programmende als Memoryleak melden kann. Dieser Effekt

Spirick Tuning Referenzhandbuch Seite 164

läßt sich nur vermeiden, indem die vordefinierten globalen Storeobjekte nicht verwendet oder manuell
gelöscht werden. Je nach Bedarf kann auch ein eigener Mechanismus (z. B. mit Referenzzählern)
implementiert werden.

In der Datei 'tuning/sys/cprocess.cpp' werden auf ähnliche Weise zwei globale Mutexobjekte bei der
ersten Verwendung oder beim Starten des ersten Threads automatisch erzeugt, aber nicht automatisch
zerstört. Auch diese Objekte können am Programmende manuell gelöscht werden, wenn sichergestellt
ist, daß sie nicht mehr verwendet werden (z. B. im Destruktor eines globalen Anwenderobjekts).

5.1.8 Multithreading

Bei der Entwicklung der Klassenbibliothek Spirick Tuning wurde auf Sicherheit beim Multithreading
geachtet. Weder Funktionen noch Klassen enthalten lokale statische Variable. Globale Variable im
Filescope sind selten und sind entweder konstant (z. B. Umrechnungstabellen) oder schützen sich selbst
(Reservespeicher, Roundstore, Chainstore).

In einer singlethreaded Umgebung können die Funktionen tl_EnterCriticalSection und
tl_LeaveCriticalSection zwar aufgerufen werden, bleiben aber ohne Wirkung. Die Funktionen
tl_BeginThread und tl_EndThread stehen singlethreaded nicht zur Verfügung.

5.1.9 Exception Handling

C++ Exceptions sind ein allgemeiner Mechanismus zur Fehlerbehandlung. Sie besitzen jedoch nicht nur
Vorteile. Nach dem Auslösen einer Exception werden zwar die Destruktoren aller auf dem Stack
befindlichen Objekte aufgerufen. Damit bleibt die Konsistenz der Daten gewahrt. Der Compiler muß
jedoch zur Laufzeit über alle fertig konstruierten Objekte Buch führen. Damit verlangsamt sich die
Geschwindigkeit.

Da sich C++ Exceptions mit einer Compileroption ausschalten lassen und die Bibliothek Spirick Tuning auf
eine bestmögliche Geschwindigkeit ausgelegt ist, verwendet sie selbst keine Exceptions. Sie kann
jedoch in Umgebungen mit oder ohne Exception Handling eingesetzt werden. Die Containerklassen
verbleiben in einem konsistenten Zustand, auch wenn im Konstruktor oder Destruktor eines enthaltenen
Objekts eine Exception auftritt.

Spirick Tuning Referenzhandbuch Seite 165

5.2 Beispielprogramme

Im Lieferumfang der Bibliothek Spirick Tuning befinden sich einige Beispielprogramme. Sie sind
kommandozeilenorientiert und übertragen textuelle Informationen zur Standardausgabe. In jeder der
folgenden Dateien (außer int.cpp) befindet sich eine main-Funktion.

5.2.1 Protokollklasse (samples/int.cpp)

Die Klasse ct_Int protokolliert Konstruktoren und Destruktoren zur Standardausgabe und wird zum
Testen von Containern und Collections verwendet. ct_Int enthält einen Wert des Typs int. Er wird
indirekt in einem dynamisch erzeugten int-Objekt gespeichert. Wird 'vergessen', den Destruktor eines
ct_Int-Objekts aufzurufen, wird das dynamische int-Objekt nicht freigegeben. Dieser Fehler tritt bei einer
Heapanalyse zutage.

Klassendeklaration
class ct_Int: public ct_Object
 {
 int * pi_Value;
public:
 ct_Int ();
 ct_Int (int i);
 ct_Int (const ct_Int & co_init);
 ~ct_Int ();

 virtual bool operator < (const ct_Object & co_comp) const;
 virtual int GetHash () const;

 ct_Int & operator = (int i);
 ct_Int & operator = (const ct_Int & co_asgn);
 bool operator == (const ct_Int & co_comp) const;
 bool operator < (const ct_Int & co_comp) const;
 int GetValue () const;
 };

5.2.2 Speicherüberlauf (samples/talloc.cpp)

Das Beispielprogramm TAlloc demonstriert die Verwendung der Techniken zur Erkennung und
Behandlung eines Speicherüberlaufs. Die Funktionen MyReserveHandler und MyOverflowHandler dienen als
Reservehandler und Overflowhandler.

void MyReserveHandler ()
 {
 printf ("ReserveHandler HasReserve = %d ReserveSize = %d\n",
 tl_HasReserve (), tl_GetReserveSize ());
 }

void MyOverflowHandler ()
 {
 printf ("OverflowHandler\n");
 }

Spirick Tuning Referenzhandbuch Seite 166

Am Beginn der main-Funktion werden die beiden Handler registriert und die Größe des Reservespeichers
auf 1 MB festgelegt. Das erfolgreiche Setzen des Reservespeichers muß vom Reservehandler
protokolliert werden.

void main ()
 {
 tl_SetReserveHandler (MyReserveHandler);
 tl_SetOverflowHandler (MyOverflowHandler);
 tl_SetReserveSize (1024 * 1024);

Anschließend wird in einer Schleife fortlaufend 1 MB Speicher angefordert.

 for (unsigned u = 0; u < tl_MaxAlloc () / (1024 * 1024); u ++)
 {
 printf ("%d\n", u);
 tl_Alloc (1024 * 1024);
 }

Wird das Ende des verfügbaren virtuellen Speichers erreicht, liefert die C-Standardfunktion malloc den
Wert Null. Dann gibt die Bibliothek Spirick Tuning den Reservespeicher frei und versucht die
Speicheranforderung erneut. Das Freigeben des Reservespeichers muß vom Reservehandler protokolliert
werden. Da der Reservespeicher dieselbe Größe wie die zyklische Speicheranforderung besitzt, ist ein
Schleifendurchlauf später der Speicher endgültig verbraucht. Dann wird der Overflowhandler aufgerufen
und das Programm beendet.

Das Beispielprogramm TAlloc kann z. B. folgende Ausgabe erzeugen:

ReserveHandler HasReserve = 1 ReserveSize = 1048576
0
1
2
....
95
96
ReserveHandler HasReserve = 0 ReserveSize = 1048576
97
OverflowHandler

5.2.3 Alignment (samples/talign.cpp)

Das kleine Beispielprogramm TAlign gibt die Größe der Datentypen t_RefCount, ct_RefCount und t_ChnInfo
aus. Die Größe dieser Datentypen beeinflußt das Alignment im Chainstore und den verschiedenen
Refstores. Unabhängig vom gewählten Speichermodell (32 Bit oder 64 Bit) sollte folgende Ausgabe
erscheinen:

sizeof (t_RefCount) = 4
sizeof (ct_RefCount) = 8
sizeof (t_ChnInfo) = 8

5.2.4 Globale Stores (samples/tstore.cpp)

Im Beispielprogramm TStore wird jeweils ein globaler Store einem Härtetest unterworfen. Relevante
Testergebnisse sind die Gesamtrechenzeit und der Speicherbedarf des Heaps. Am Beginn der Datei kann
mit Präprozessoranweisungen ein globaler Store ausgesucht werden. Zum Testen des Standardstores
dienen die folgenden Zeilen.

#include "tuning/std/store.hpp"
#define GetStore GetStdStore

Spirick Tuning Referenzhandbuch Seite 167

Die Funktionen PrintLong und HeapInfo dienen dem Protokollieren des Heaps. Am Beginn der main-Funktion
wird ein Array mit untypisierten Zeigern angelegt. Anschließend wird der aktuelle Zustand des Heaps
ausgegeben und der Wert des Präzisionstimers gespeichert. Im Härtetest wird jedem Zeiger des Arrays
Speicher zugewiesen. Die Größe des Speichers liegt zufällig zwischen 10 und 110 Bytes und wird
mehrmals geändert. Am Ende wird der Speicher wieder freigegeben.

Nach dem Härtetest werden die verbrauchte Zeit und der Zustand des Heaps protokolliert. Nach dem
Freigeben ungenutzten Speichers wird noch einmal der Zustand des Heaps ausgegeben. Beim Aufruf
dieses Beispielprogramms ist zu beachten, daß der Compiler u. U. keine Informationen über die Freiliste
liefert. Die folgenden Ausgaben wurden auf einem Testsystem erzielt.

Standardstore: Roundstore: Chainstore:

Heap info | Heap info | Heap info
 AllocEntries 0.000.012 | AllocEntries 0.000.012 | AllocEntries 0.000.012
 FreeEntries 0.000.001 | FreeEntries 0.000.001 | FreeEntries 0.000.001
 AllocSize 0.001.960 | AllocSize 0.001.960 | AllocSize 0.001.960
 FreeSize 0.063.528 | FreeSize 0.063.528 | FreeSize 0.063.528
 HeapSize 0.065.488 | HeapSize 0.065.488 | HeapSize 0.065.488
Start | Start | Start
Ready 181 ms | Ready 135 ms | Ready 47 ms
 | |
Heap info | Heap info | Heap info
 AllocEntries 0.000.013 | AllocEntries 0.000.013 | AllocEntries 0.005.023
 FreeEntries 0.000.008 | FreeEntries 0.000.010 | FreeEntries 0.000.008
 AllocSize 0.001.976 | AllocSize 0.001.976 | AllocSize 0.470.232
 FreeSize 0.521.928 | FreeSize 0.652.904 | FreeSize 0.053.672
 HeapSize 0.523.904 | HeapSize 0.654.880 | HeapSize 0.523.904
Free unused | Free unused | Free unused
 | |
Heap info | Heap info | Heap info
 AllocEntries 0.000.013 | AllocEntries 0.000.013 | AllocEntries 0.000.013
 FreeEntries 0.000.001 | FreeEntries 0.000.001 | FreeEntries 0.000.001
 AllocSize 0.001.976 | AllocSize 0.001.976 | AllocSize 0.002.264
 FreeSize 0.063.512 | FreeSize 0.063.512 | FreeSize 0.063.224
 HeapSize 0.065.488 | HeapSize 0.065.488 | HeapSize 0.065.488

5.2.5 Block (samples/tblock.cpp)

Im Beispielprogramm TBlock wird mit einer selbstdefinierten Blockbasisklasse die Nutzung von
Paddingbytes demonstriert. Mit einem Teststore, der alle Anforderungen und Freigaben protokolliert,
wird das Verhalten des Templates gct_ResBlock bei verschiedenen Minimalgrößen überprüft.

5.2.6 Block- und Packstore (samples/tblockstore.cpp)

Das Beispielprogramm TBlockstore prüft die Funktionsweise von Block- und Packstore. Der Blockstore
wird mit einem Elementblock und einem Pageblock überprüft. Die Storeklassen auf der untersten Ebene
protokollieren alle Anforderungen und Freigaben, die von den übergeordneten Block- und Packstores an
sie weitergereicht werden.

Im Hauptprogramm werden nacheinander Anforderungen und Freigaben an Block- und Packstore erzeugt
und protokolliert. Anhand der zugehörigen Ausgaben der Protokollstores wird ersichtlich, ob sich Block-
und Packstore wie erwartet verhalten.

Spirick Tuning Referenzhandbuch Seite 168

5.2.7 Container (samples/tcontainer.cpp)

Das Beispielprogramm TContainer demonstriert einige elementare Containeroperationen. Mit
Templatefunktionen werden verschiedene Objekt- und Zeiger-Containerarten getestet. Wichtig ist, daß
zu jedem Konstruktor der Klasse ct_Int ein Destruktor aufgerufen wird. Die Funktionen PrintContainer
und PrintPtrContainer protokollieren den Inhalt eines Containers auf die Standardausgabe. Container
können unterschiedliche Datentypen für Positionszeiger verwenden. Deshalb werden sie mit eigenen
Templatefunktionen ausgegeben.

void PrintPos (t_UInt u)
 {
 printf ("%d", u);
 }

void PrintPos (void * p)
 {
 printf ("%p", p);
 }

template <class t_container>
 void PrintContainer (t_container * po_cont)
 {
 printf ("Container:");

 for (typename t_container::t_Position o_pos = po_cont-> First ();
 o_pos != 0;
 o_pos = po_cont-> Next (o_pos))
 {
 printf (" Entry[");
 PrintPos (o_pos);
 printf ("]=%d", po_cont-> GetObj (o_pos)-> GetValue ());
 }

 printf ("\n");
 }

In der Testfunktion werden ein Container erzeugt und verschiedene Methoden aufgerufen. Zwischen den
Containeroperationen wird mehrmals der aktuelle Inhalt des Containers ausgegeben, um das erwartete
Ergebnis mit dem tatsächlichen zu vergleichen.

template <class t_container>
 void Test ()
 {
 gct_CompContainer <t_container> * po_cont = new gct_CompContainer <t_container>;
 typename t_container::t_Position o_pos1;
 ct_Int co_int (1);
 PrintContainer (po_cont);
 po_cont-> AddObjCond (& co_int);
...
 po_cont-> DelObj (po_cont-> First ());
 PrintContainer (po_cont);
 delete po_cont;
 }

5.2.8 Collections (samples/tcollection.cpp)

Das Beispielprogramm TCollection demonstriert einige elementare Zeigercontainer- und
Collectionoperationen. Es ist ähnlich wie TContainer aufgebaut und erzeugt eine ähnliche Ausgabe.
Wichtig ist, daß zu jedem Konstruktor der Klasse ct_Int ein Destruktor aufgerufen wird. Mit
Templatefunktionen werden je ein Zeigercontainer und eine Collection getestet.

Spirick Tuning Referenzhandbuch Seite 169

5.2.9 [Zeiger]Mapcontainer (samples/t[ptr]map.cpp)

Die Beispielprogramme TMap und TPtrMap demonstrieren einige elementare Operationen mit
Mapcontainern. Wichtig ist, daß zu jedem Konstruktor der Klasse ct_Int ein Destruktor aufgerufen wird
und daß eingefügte Schlüssel auch gefunden werden.

Für Mapcontainer existieren keine vordefinierten Standardinstanzen. Deshalb dienen die
Beispielprogramme TMap und TPtrMap auch als Vorlage für mögliche Parameter der Templates gct_Map
und gct_PtrMap.

5.2.10 Zugriffsbeschleunigung (samples/taccess.cpp)

Das Beispielprogramm TAccess demonstriert die Zugriffsbeschleunigung von speziellen Containern. Mit
Templatefunktionen werden je ein Array, ein sortiertes Array und eine Hashtabelle getestet. In der
Testfunktion werden ein Container und einige Hilfsvariable erzeugt. Der Container wird mit zufällig
erzeugten Zeichenketten der Länge 1 bis 40 gefüllt. Die für den Aufbau des Containers benötigte Zeit
wird protokolliert. Anschließend wird jede einzelne Zeichenkette mit der Methode SearchFirstObj im
Container gesucht. Die gesamte für das Suchen benötigte Zeit wird protokolliert. Das Programm kann für
die verschiedenen Containerarten folgende Ausgaben erzeugen:

Array: Sortiertes Array: Hashtabelle:

Begin construction . . . | Begin construction . . . | Begin construction . . .
Ready: 89 ms | Ready: 1224 ms | Ready: 111 ms
Begin searching . . . | Begin searching . . . | Begin searching . . .
Ready: 49667 ms | Ready: 215 ms | Ready: 94 ms

5.2.11 Exceptions in Containern (samples/texception.cpp)

Das Beispielprogramm TException demonstriert das Verhalten von Containern beim Auftreten von
Exceptions im Konstruktor oder Destruktor enthaltener Objekte. Relevante Testergebnisse sind das
Zerstören vollständig konstruierter Objekte und das Erhalten der Konsistenz im Container. Zum Testen
der Container wird die Klasse ct_Throw verwendet.

bool b_Throw = true;

class ct_Throw
 {
 int i;
public:
 static int i_Num;
 static int i_Throw;

 ct_Throw ();
 ct_Throw (const ct_Throw &);
 ~ct_Throw ();
 ct_Throw & operator = (const ct_Throw &);

 int GetHash () const { return i_Num; }
 };

Alle Methoden der Klasse übertragen eine Meldung auf die Standardausgabe und lösen unter bestimmten
Bedingungen eine Exception aus. Als Beispiel folgt der Default-Konstruktor.

ct_Throw::ct_Throw ()
 {
 printf ("%2d ct_Throw ()\n", ++ i_Num);

Spirick Tuning Referenzhandbuch Seite 170

 if ((b_Throw) || (i_Num == i_Throw))
 {
 i_Num --;
 throw 1;
 }
 }

Von mehreren Containerarten werden Instanzen erzeugt.

gct_Std32DList <ct_Throw> co_DList;
gct_Std32BlockDList <ct_Throw> co_BDList;
gct_Std32Array <ct_Throw> co_Array;
gct_Std32Array <ct_Throw> co_Array2;
gct_Std32HashTable <ct_Throw> co_HashTable;

Die Funktion TArrayConstructor testet den Konstruktor eines Arraycontainers.

void TArrayConstructor ()
 {
 b_Throw = false;
 co_Array. AddObj ();
 co_Array. AddObj ();
 co_Array. AddObj ();
 co_Array. AddObj ();
 ct_Throw::i_Throw = ct_Throw::i_Num + 3;
 gct_Std32Array <ct_Throw> co_array2 = co_Array;
 }

Die Funktion TArrayDestructor testet den Destruktor eines Arraycontainers.

void TArrayDestructor ()
 {
 b_Throw = false;
 gct_Std32Array <ct_Throw> co_array;
 co_array. AddObj ();
 co_array. AddObj ();
 co_array. AddObj ();
 co_array. AddObj ();
 b_Throw = true;
 }

In der main-Funktion werden die verschiedenen Containerarten überprüft. Für jeden einzelnen Container
werden mehrere Methoden aufgerufen, die Exceptionhandler enthalten. Zum Beispiel wird die Methode
AddObj eines Arraycontainers getestet.

void main ()
 {

 try
 {
 co_Array. AddObj ();
 }
 catch (int i)
 {
 printf ("Exception %d from co_Array. AddObj ()\n", i);
 printf ("Array length %d\n", co_Array. GetLen ());
 }

Nach dem Prüfen einzelner Methoden werden Konstruktor und Destruktor des Containers getestet.

 try
 {
 TArrayConstructor ();
 }
 catch (int i)

Spirick Tuning Referenzhandbuch Seite 171

 {
 printf ("Exception %d from TArrayConstructor ()\n", i);
 ct_Throw:: i_Throw = 1000;
 co_Array. DelAll ();
 }

Das Programm erzeugt unter anderem folgende Ausgaben:

1 ct_Throw ()
Exception 1 from co_Array. AddObj ()
Array length 0
....
 2 ct_Throw ()
 3 ct_Throw ()
 4 ct_Throw ()
 5 ct_Throw ()
 6 ct_Throw (copy)
 7 ct_Throw (copy)
 8 ct_Throw (copy)
 7 ~ct_Throw ()
 6 ~ct_Throw ()
Exception 2 from TArrayConstructor ()
 5 ~ct_Throw ()
 4 ~ct_Throw ()
 3 ~ct_Throw ()
 2 ~ct_Throw ()

5.2.12 Interlocked (samples/tinterlocked.cpp)

Das Beispielprogramm TInterlocked prüft das Verhalten der Funktionen tl_InterlockedIncrement und
tl_InterlockedDecrement. Es werden fünf Threads gestartet, die gleichzeitig und ohne Synchronisierung
mit den Interlocked-Funktionen auf die eine Variable und mit den Operatoren ++ und -- auf eine andere
Variable zugreifen. Am Ende wird erwartet, daß die Interlocked-Variable den Wert der Testkonstanten
enthält und die andere Variable einen zufälligen Wert.

5.2.13 Threads (samples/tthread.cpp)

Das Beispielprogramm TThread prüft das Starten und Beenden von Threads sowie die Thread-
synchronisation. Zum Protokollieren des Programmablaufs werden von der main-Funktion und den
Threadfunktionen Informationen zur Standardausgabe übertragen. Das Programm wird an verschiedenen
Stellen mit tl_Delay unterbrochen. Die Länge der Pausen ist so gewählt, daß nie zwei Threads
gleichzeitig versuchen etwas auszugeben. Dadurch erscheinen die asynchronen Ausgaben in einer
geordneten Reihenfolge.

Zu Beginn der main-Funktion werden drei Threads gestartet und deren Ende abgewartet. Danach werden
zwei kritische Abschnitte geschachtelt. Dabei darf sich das Programm nicht selbst blockieren.
Anschließend wird ein Thread gestartet, der zehnmal in einen kritischen Abschnitt eintritt und nach dem
Verlassen eine Pause einlegt. In der Mitte dieser Schleife tritt der Hauptthread in einen kritischen
Abschnitt ein und wartet eine Sekunde. In dieser Zeit dürfen vom zweiten Thread keine Ausgaben
erscheinen. Anschließend wird die Schleife fortgesetzt. Am Ende der main-Funktion werden dieselben
Tests mit kritischen Abschnitten für Prozeßsynchronisation durchgeführt. Dabei wird auch das
versuchsweise Sperren des Mutexobjekts mit einem Timeout getestet.

Spirick Tuning Referenzhandbuch Seite 172

5.2.14 Semaphoren (samples/tsemaphore.cpp)

Im Beispielprogramm TSemaphore wird die Funktionsweise von Thread- und Prozeß-Semaphoren
geprüft. Zunächst werden die Semaphoren wie Mutexobjekte verwendet. Die Ausgaben erscheinen
ähnlich wie vom Programm TThread. Anschließend wird mit einem Semaphor eine einfache Message-
Queue getestet.

5.2.15 Prozesse (samples/texec.cpp)

Das Beispielprogramm TExec prüft das Verhalten der Funktionen tl_Exec und tl_IsProcessRunning. Der
zweite Prozeß wird einmal asynchron und einmal synchron gestartet. Nach dem asynchronen Aufruf
wartet das Hauptprogramm mit tl_IsProcessRunning, bis der zweite Prozeß beendet ist. Nach dem
synchronen Aufruf gibt das Hauptprogramm den Rückgabecode aus.

Es werden auch die verschiedenen Arten der Parameterübergabe geprüft. Ein Prozeßparameter ist im
einfachsten Fall eine nullterminierte Zeichenkette ohne Leerzeichen und Anführungsstriche. Es kann
jedoch auch eine leere Zeichenkette, ein Nullzeiger, eine Zeichenkette mit Leerzeichen und eine
Zeichenkette mit Anführungsstrichen verwendet werden. Der zweite Prozeß überträgt die Parameter zur
Kontrolle auf die Standardausgabe.

5.2.16 Starthilfe (samples/texechelper.cpp)

Hintergrund: Bei UNIX-ähnlichen Betriebssystemen werden neue Prozesse meist mit fork oder davon
abgeleiteten Funktionen gestartet. Dabei kann es zu Ressourcenproblemen kommen, wenn der Prozeß
mehrere Threads gestartet, mehrere Dateien geöffnet und/oder viel Arbeitsspeicher belegt hat. Diese
Probleme kann man umgehen, indem man relativ früh in der Startphase des Prozesses einen Hilfsprozeß
startet, der nur dazu dient, weitere Prozesse zu starten. Haupt- und Hilfsprozeß kommunizieren über
zwei Semaphoren und Sharedmemory miteinander.

Das Beispielprogramm TExecHelper enthält dieselben Schritte wie TExec. Statt der Funktion tl_Exec wird
aber die Klasse ct_ExecHelper verwendet.

5.2.17 Gemeinsame Ressourcen (samples/tshared.cpp)

Das Beispielprogramm TShared prüft das Verhalten der gemeinsamen Ressourcen Mutex und
Sharedmemory. Für jeden der beiden Tests wird mit tl_Exec ein zweiter Prozeß gestartet. Im ersten Test
sperrt der zweite Prozeß das gemeinsame Mutexobjekt zehnmal in einer Schleife. Nach der Freigabe wird
jeweils eine Pause eingelegt. In der Mitte dieser Schleife sperrt der Hauptprozeß das Mutexobjekt und
wartet eine Sekunde. In dieser Zeit dürfen vom zweiten Prozeß keine Ausgaben erscheinen.
Anschließend wird die Schleife fortgesetzt. Im zweiten Test wird der Zugriff auf den gemeinsamen
Speicher geprüft und protokolliert.

5.2.18 Zeichenketten (samples/tstring.cpp)

Das Beispielprogramm TString prüft einige elementare Operationen für Zeichenketten. Die Tests werden
parallel mit einer char- und einer wchar_t-Klasse durchgeführt, z. B. ct_String und ct_WString oder
ct_Rnd_String und ct_Rnd_WString. Bei der Standardausgabe eines Programms können printf und wprintf
nicht gemischt verwendet werden. Deshalb wird bei wchar_t-Zeichenketten jedes Zeichen einzeln mit
printf ausgegeben. Die meisten Teiltests werden mit char und wchar_t durchgeführt und protokolliert.
Anschließend wird das erwartete Ergebnis als eine Stringkonstante ausgegeben, d. h. auf der
Standardausgabe erscheint dreimal hintereinander dieselbe Ausgabe.

Spirick Tuning Referenzhandbuch Seite 173

Im einzelnen werden die folgenden Tests durchgeführt: Suche nach Zeichen und Zeichenketten,
Vergleich von Zeichen und Zeichenketten, Einfügen, Löschen, Ersetzen, Austauschen, temporäre
Stringobjekte, Zeichenketten formatieren, Konstruktoren und Umwandeln von char- und wchar_t-
Zeichenketten.

5.2.19 Zeichenketten sortieren (samples/tsort.cpp)

Das Beispielprogramm TSort demonstriert das Sortieren von Zeichenketten mit Hilfe der Klasse
ct_StringSort. Der Sortieralgorithmus wird mit der Standardfunktion qsort () im Zusammenspiel mit
strcmp () und stricmp () verglichen. Es werden 1 000 000 Zeichenketten zufällig erzeugt und sortiert.
Beim Sortieren wird die Zeit in Millisekunden gemessen und ausgegeben. Das Programm kann folgende
Ausgabe erzeugen:

StrCmp 937
StrICmp 1176
StringSort 212

Im zweiten Teil des Programms werden Zahlen mit Hilfe der Klasse ct_UInt32Sort sortiert. Dieselbe
Sortierung wird noch einmal mit qsort () durchgeführt, und die Rechenergebnisse werden miteinander
verglichen.

5.2.20 Dateiname (samples/tfilename.cpp)

Das Beispielprogramm TFileName demonstriert elementare Operationen der Klasse ct_FileName. Der
Zugriff auf die einzelnen Komponenten wird überprüft. Am Beginn der main-Funktion wird ein
Dateinamen-Objekt angelegt und mit einer Zeichenkette versehen. Alle Komponenten werden einzeln
abgefragt und ausgegeben.

void main ()
 {
 ct_FileName co_name;
 co_name. AssignAsName ("A:\\PATH\\NAME.EXT");
 printf ("\n");
 printf ("Drive : \"%s\"\n", co_name. GetDrive (). GetStr ());
 printf ("Path : \"%s\"\n", co_name. GetPath (). GetStr ());
 printf ("PurePath : \"%s\"\n", co_name. GetPurePath (). GetStr ());
 printf ("DrivePath : \"%s\"\n", co_name. GetDrivePath (). GetStr ());
 printf ("PureDrivePath: \"%s\"\n", co_name. GetPureDrivePath (). GetStr ());
 printf ("Name : \"%s\"\n", co_name. GetName (). GetStr ());
 printf ("Ext : \"%s\"\n", co_name. GetExt (). GetStr ());
 printf ("NameExt : \"%s\"\n", co_name. GetNameExt (). GetStr ());
 printf ("All : \"%s\"\n", co_name. GetAllStr ());

Anschließend wird die Umwandlung in relative und absolute Dateinamen geprüft.

 co_name. ToRel ("A:\\PATH\\X");
 printf ("ToRel : \"%s\"\n", co_name. GetAllStr ());
 co_name. ToAbs ("A:\\PATH\\X");
 printf ("ToAbs : \"%s\"\n", co_name. GetAllStr ());
 co_name. ToLower ();
 printf ("ToLower : \"%s\"\n", co_name. GetAllStr ());
 printf ("Wildc : %d\n", co_name. HasWildCards ());
 printf ("Abs : %d\n", co_name. IsAbs ());
 printf ("Rel : %d\n", co_name. IsRel ());

Am Ende wird eine Methode überprüft, die ein temporäres ct_String-Objekt liefert.

Spirick Tuning Referenzhandbuch Seite 174

 if (co_name. GetExt () == "ext")
 printf ("\nGetExt () == \"ext\"\n");

Das Programm erzeugt folgende Ausgabe:

Drive : "A:"
Path : "\PATH\"
PurePath : "\PATH"
DrivePath : "A:\PATH\"
PureDrivePath: "A:\PATH"
Name : "NAME"
Ext : "EXT"
NameExt : "NAME.EXT"
All : "A:\PATH\NAME.EXT"
ToRel : "..\NAME.EXT"
ToAbs : "A:\PATH\NAME.EXT"
ToLower : "a:\path\name.ext"
Wildc : 0
Abs : 1
Rel : 0

GetExt () == "ext"

5.2.21 Datei (samples/tfile.cpp)

Das Beispielprogramm TFile prüft im Verzeichnis für temporäre Dateien einige elementare Operationen
der Klasse ct_File. An zwei Stellen im Programm versucht ein zweiter Prozeß auf die Datei zuzugreifen,
die im Hauptprozeß zum Lesen oder Schreiben geöffnet ist. Im einzelnen werden die folgenden Tests
durchgeführt: Erzeugen, Öffnen, Schließen, Lesen, Schreiben, Positionieren, Ändern der Größe,
Verschieben und Löschen.

5.2.22 Verzeichnis (samples/tdir.cpp)

Das Beispielprogramm TDir prüft im Verzeichnis für temporäre Dateien einige elementare Operationen der
Klasse ct_Directory. Im einzelnen werden die folgenden Tests durchgeführt: Abfrage des aktuellen
Verzeichnisses, Erzeugen, Verschieben und Löschen.

5.2.23 Verzeichnis durchlaufen (samples/tdirscan.cpp)

Das Beispielprogramm TDirScan demonstriert elementare Operationen der Klasse ct_DirScan. Der Inhalt
eines Verzeichnisses wird gelesen und ähnlich dem MS-DOS-Kommando dir auf die Standardausgabe
übertragen. Die Funktion PrintEntry gibt die Daten eines einzelnen Verzeichniseintrags aus. In der main-
Funktion wird eine ct_DirScan-Variable angelegt und überprüft, ob das Verzeichnis existiert. In der ersten
Schleife werden alle Verzeichniseinträge ungefiltert durchlaufen. In der zweiten Schleife werden nur
Dateien und in der dritten Schleife nur Unterverzeichnisse ausgegeben.

5.2.24 Verzeichnisbaum (samples/ttree.cpp)

Das Beispielprogramm TTree demonstriert ähnlich wie TDirScan elementare Operationen der Klasse
ct_DirScan. Das aktuelle Verzeichnis wird rekursiv durchlaufen. Alternativ kann auch ein anderes
Verzeichnis als Kommandozeilenparameter übergeben werden. Der Verzeichnisbaum wird ähnlich dem
MS-DOS-Kommando tree auf die Standardausgabe übertragen.

Spirick Tuning Referenzhandbuch Seite 175

5.2.25 Uhrzeit und Datum (samples/ttimedate.cpp)

Das Beispielprogramm TTimeDate vergleicht die Genauigkeit der Systemzeit mit der Präzisionszeit. In der
main-Funktion werden zwei Objekte der Klasse ct_TimeDate angelegt. In einer Schleife werden fortlaufend
die aktuelle Systemzeit und die Präzisionszeit ausgegeben. Im zweiten Teil des Programms wird die
Präzisionszeit in Millisekunden mit der Präzisionszeit in Mikrosekunden verglichen.

5.2.26 Systemnahe Informationen (samples/tinfo.cpp)

Das Beispielprogramm TInfo fragt der Reihe nach alle systemnahen Informationen ab, die in der Datei
'tuning/sys/cinfo.hpp' bereit gestellt werden, und überträgt sie auf die Standardausgabe.

5.2.27 MD5 und UUID (samples/tmd5.cpp und tuuid.cpp)

Die Beispielprogramme TMD5 und TUUID enthalten kleine Testsequenzen für die Klassen ct_MD5 und
ct_UUID. Dabei werden die textuellen Repräsentationen der Rechenergebnisse ausgegeben.

Spirick Tuning Referenzhandbuch Seite 176

Index
A

AbortFind..146
Acquire...112, 116
AddKeyAndValPtr....................................86
AddKeyAndValPtrCond.............................86
AddKeyAndValue.....................................82
AddKeyAndValueCond..............................83
AddObj...49
AddObjAfter..49
AddObjAfterLast......................................53
AddObjAfterLastCond...............................69
AddObjAfterNth.......................................53
AddObjBefore..49
AddObjBeforeFirst....................................53
AddObjBeforeFirstCond.............................69
AddObjBeforeNth.....................................53
AddObjCond..69
AddPtr..73
AddPtrAfter...73
AddPtrAfterLast.......................................73
AddPtrAfterLastCond................................75
AddPtrAfterNth..73
AddPtrBefore...73
AddPtrBeforeFirst.....................................73
AddPtrBeforeFirstCond.............................75
AddPtrBeforeNth......................................73
AddPtrCond...75
AddRefAfterLastCond...............................79
AddRefBeforeFirstCond.............................79
AddRefCond..79
AddrOf...12
AlignPageSize..............................30, 31, 34
Alles ersetzen..129
Alloc...12
AllocData..34, 44
AllocPtr...34
Anfügen..128
Anfügen und Löschen mehrerer Objekte.....49
Anfügeoperatoren..................................131
Anzahl der Objekte...................................48
Append...128
AppendChars...29
AppendF...130
AppendItems...31
AppendObj..49
AppendPath...137
ARRAY_DCLS..57
Assign..127
AssignAsName......................................136
AssignAsPath..136
AssignChars..29
AssignF...130

B
Bedingtes Einfügen.............................69, 79
Bedingtes Einfügen von Zeigern.................75
Bedingtes Löschen gefundener Objekte.......70

Bedingtes Löschen gefundener Paare....83, 86
Bedingtes Löschen gefundener Paare und
referenzierter Objekte...............................87
Bedingtes Löschen gefundener Zeiger.........76
Bedingtes Löschen gefundener Zeiger und
referenzierter Objekte.........................76, 80
Bedingtes Löschen von Zeigern gefundener
Objekte...80
Before...61
BLOCK_DCLS..35
BLOCK_DLIST_DCLS................................64
BLOCK_STORE_DCLS...............................37
BLOCKPTR_DLIST_DCLS...........................90
BLOCKREF_DLIST_DCLS...........................67
BLOCKREF_STORE_DCLS..........................42
BLOCKREFPTR_DLIST_DCLS.....................92

C
CanFreeAll..13
Clear.....................................127, 149, 152
Close.............................114, 116, 117, 141
co_AttrArchive.......................................144
co_AttrDirectory....................................144
co_AttrHidden..144
co_AttrReadOnly....................................144
co_AttrSystem.......................................144
co_DayFactor..107
co_HourFactor.......................................107
co_InvalidFileId......................................118
co_MicroSecondFactor............................107
co_MilliSecondFactor..............................107
co_MinuteFactor....................................107
co_SecondFactor....................................107
COLLMAP_DCL..99
COLLMAP_DEF..99
CompressPath..138
CompSubStr..127
CompTo..127
ContainsKey......................................82, 85
ContainsObj...68
ContainsPtr...75
ContainsRef...79
Convert...132
Copy..142
CopyDriveFrom......................................137
CopyDrivePathFrom................................137
CopyExtFrom...137
CopyNameExtFrom.................................137
CopyNameFrom.....................................137
CopyPathFrom.......................................137
CountKeys...82, 85
CountObjs...68
CountPtrs..75
CountRefs...79
Create............114, 116, 117, 141, 144, 152
CreateChnStore.......................................19
CreateRndStore.......................................17

Spirick Tuning Referenzhandbuch Seite 177

CreateStdStore..16
ct_AnyBlock......................................20, 21
ct_AnyStore..11
ct_Array..99
ct_BlockDList...100
ct_BlockRefDList....................................100
ct_Chn_[W]String...................................132
ct_Chn_Block...35
ct_Chn_BlockRefStore..............................42
ct_Chn_BlockStore...................................38
ct_Chn_RefStore......................................41
ct_Chn_Store...19
ct_Chn16Block..35
ct_Chn16BlockRefStore............................42
ct_Chn16BlockStore.................................38
ct_Chn16RefStore....................................41
ct_Chn16Store..19
ct_Chn32Block..35
ct_Chn32BlockRefStore............................42
ct_Chn32BlockStore.................................38
ct_Chn32RefStore....................................41
ct_Chn32Store..19
ct_Chn8Block..35
ct_Chn8BlockRefStore..............................42
ct_Chn8BlockStore...................................38
ct_Chn8RefStore......................................41
ct_Chn8Store..19
ct_ChnStore..17
ct_Collection...95
ct_Directory...143
ct_DirScan...145
ct_DList..99
ct_File...140, 141
ct_FileName...................................134, 135
ct_MD5...150
ct_Object..94
ct_PackStore...43
ct_PackStoreBase....................................43
ct_PageBlock...34
ct_PageBlockBase....................................32
ct_PrMutex....................................113, 114
ct_PrSemaphore.....................................115
ct_RefCollection.......................................98
ct_RefCount......................................38, 39
ct_RefDList..100
ct_Rnd_[W]String...................................132
ct_Rnd_Block...35
ct_Rnd_BlockRefStore..............................42
ct_Rnd_BlockStore...................................38
ct_Rnd_RefStore......................................41
ct_Rnd_Store...17
ct_Rnd16Block..35
ct_Rnd16BlockRefStore............................42
ct_Rnd16BlockStore.................................38
ct_Rnd16RefStore....................................41
ct_Rnd16Store...17
ct_Rnd32Block..35
ct_Rnd32BlockRefStore............................42
ct_Rnd32BlockStore.................................38
ct_Rnd32RefStore....................................41

ct_Rnd32Store...17
ct_Rnd8Block..35
ct_Rnd8BlockRefStore..............................42
ct_Rnd8BlockStore...................................38
ct_Rnd8RefStore......................................41
ct_Rnd8Store..17
ct_RndStore..16
ct_SharedMemory...........................116, 117
ct_SharedResource.................................112
ct_SortedArray..99
ct_Std_[W]String....................................132
ct_Std_Block...35
ct_Std_BlockRefStore...............................42
ct_Std_BlockStore....................................38
ct_Std_RefStore.......................................41
ct_Std_Store...16
ct_Std16Block...35
ct_Std16BlockRefStore.............................42
ct_Std16BlockStore..................................38
ct_Std16RefStore....................................41
ct_Std16Store...16
ct_Std32Block...35
ct_Std32BlockRefStore.............................42
ct_Std32BlockStore..................................38
ct_Std32RefStore....................................41
ct_Std32Store...16
ct_Std8Block...35
ct_Std8BlockRefStore...............................42
ct_Std8BlockStore...................................38
ct_Std8RefStore......................................41
ct_Std8Store...16
ct_StdStore...15
ct_String...133
ct_StringSort...139
ct_ThMutex...110
ct_ThSemaphore............................111, 112
ct_TimeDate..................................148, 149
ct_UInt32Sort..139
ct_UUID..151
ct_WString..133
cu_HashPrime1..63
cu_HashPrime16......................................63
cu_HashPrime2..63
cu_HashPrime4..63
cu_HashPrime8..63

D
DecCharSize..29
DecItemSize..31
DecItemSize1..31
DecRef..................................39, 40, 66, 98
DelAll...49
DelAllKey..86
DelAllKeyAndValue.............................83, 87
DelAllPtr...74
DelAllPtrAndObj.......................................74
Delete...................................129, 142, 144
DeleteChars...29
DeleteChnStore..19
DeleteItems...31
DeleteRev..129

Spirick Tuning Referenzhandbuch Seite 178

DeleteRndStore..17
DeleteStdStore..16
DelFirstEqualObj.......................................70
DelFirstEqualObjCond...............................70
DelFirstEqualPtr.......................................75
DelFirstEqualPtrAndObj.............................76
DelFirstEqualPtrAndObjCond......................76
DelFirstEqualPtrCond................................76
DelFirstEqualRef.......................................80
DelFirstEqualRefAndObj............................80
DelFirstEqualRefAndObjCond.....................80
DelFirstEqualRefCond...............................80
DelFirstKey..86
DelFirstKeyAndValue..........................83, 87
DelFirstKeyAndValueCond...................83, 87
DelFirstKeyCond......................................86
DelFirstObj..54
DelFirstPtr...73
DelFirstPtrAndObj.....................................74
DelKey..86
DelKeyAndValue................................83, 87
DelLastEqualObj.......................................70
DelLastEqualObjCond...............................70
DelLastEqualPtr..76
DelLastEqualPtrAndObj.............................76
DelLastEqualPtrAndObjCond......................76
DelLastEqualPtrCond................................76
DelLastEqualRef.......................................80
DelLastEqualRefAndObj............................80
DelLastEqualRefAndObjCond.....................80
DelLastEqualRefCond...............................80
DelLastKey..86
DelLastKeyAndValue..........................83, 87
DelLastKeyAndValueCond...................83, 87
DelLastKeyCond.......................................87
DelLastObj..55
DelLastPtr...74
DelLastPtrAndObj.....................................74
DelNextObj..55
DelNextPtr...74
DelNextPtrAndObj....................................74
DelNthObj...55
DelNthPtr..74
DelNthPtrAndObj......................................74
DelObj..49
DelPrevObj..55
DelPrevPtr...74
DelPrevPtrAndObj.....................................74
DelPtr...73
DelPtrAndObj...74
DLIST_DCLS..59

E
Einfügen..128
Einfügen von Objekten........................49, 53
Einfügen von Paaren...........................82, 86
Einfügen von Zeigern................................73
EndOfFile..142
Ersetzen..129
et_Compiler...120
et_ResError..101

et_System...121
et_UtfError..104
Exception......................................8, 33, 50
Exists..142, 144

F
FillChars..29
Finalize...151
FindFirst..146
FindFirstDirectory...................................146
FindFirstFile...146
FindNext...146
FindNextDirectory..................................146
FindNextFile..146
FindOnce...146
FindOncePath..146
First..48, 106, 126
Formatierte Zeichenketten.......................130
Found...146
Free..12
FreeAll..13, 50
FreeData...34, 44
FreeFirstObj...55
FreeLastObj...55
FreeNextObj..55
FreeNthObj..55
FreeObj...50
FreePrevObj...55
FreeUnused.......................................19, 37
FromStr...152
ft_ThreadFunc.......................................109

G
gct_AnyContainer...............................46, 48
gct_Array..56
gct_Block..22
gct_BlockBase...22
gct_BlockStore..36
gct_CharBlock...28
gct_Chn_Array...57
gct_Chn_BlockDList..................................65
gct_Chn_BlockPtrDList..............................91
gct_Chn_BlockRefDList.............................67
gct_Chn_BlockRefPtrDList.........................92
gct_Chn_DList...59
gct_Chn_HashTable..................................64
gct_Chn_PtrArray.....................................88
gct_Chn_PtrDList.....................................89
gct_Chn_PtrHashTable..............................90
gct_Chn_PtrSortedArray............................89
gct_Chn_RefDList.....................................67
gct_Chn_RefPtrDList.................................91
gct_Chn_SortedArray................................61
gct_Chn16Array.......................................57
gct_Chn16BlockDList...............................65
gct_Chn16BlockPtrDList...........................91
gct_Chn16BlockRefDList...........................68
gct_Chn16BlockRefPtrDList.......................92
gct_Chn16DList.......................................59
gct_Chn16HashTable...............................64
gct_Chn16PtrArray...................................88
gct_Chn16PtrDList...................................89

Spirick Tuning Referenzhandbuch Seite 179

gct_Chn16PtrHashTable............................90
gct_Chn16PtrSortedArray.........................89
gct_Chn16RefDList..................................67
gct_Chn16RefPtrDList..............................91
gct_Chn16SortedArray.............................62
gct_Chn32Array.......................................57
gct_Chn32BlockDList...............................65
gct_Chn32BlockPtrDList...........................91
gct_Chn32BlockRefDList...........................68
gct_Chn32BlockRefPtrDList.......................92
gct_Chn32DList.......................................59
gct_Chn32HashTable...............................64
gct_Chn32PtrArray...................................88
gct_Chn32PtrDList...................................89
gct_Chn32PtrHashTable............................90
gct_Chn32PtrSortedArray.........................89
gct_Chn32RefDList..................................67
gct_Chn32RefPtrDList..............................92
gct_Chn32SortedArray.............................62
gct_Chn8Array..57
gct_Chn8BlockDList.................................65
gct_Chn8BlockPtrDList.............................91
gct_Chn8BlockRefDList.............................67
gct_Chn8BlockRefPtrDList.........................92
gct_Chn8DList...59
gct_Chn8HashTable.................................64
gct_Chn8PtrArray.....................................88
gct_Chn8PtrDList.....................................89
gct_Chn8PtrHashTable.............................90
gct_Chn8PtrSortedArray...........................89
gct_Chn8RefDList....................................67
gct_Chn8RefPtrDList................................91
gct_Chn8SortedArray...............................61
gct_CompContainer..................................68
gct_DList..58
gct_EmptyBaseBlock................................23
gct_EmptyBaseMiniBlock..........................24
gct_EmptyBaseResBlock...........................26
gct_ExtContainer......................................52
gct_FixBlock..27
gct_FixItemArray......................................57
gct_FixItemBlock......................................31
gct_FixItemSortedArray............................61
gct_HashTable...62
gct_ItemBlock..30
gct_Key..81, 84
gct_Map...81
gct_MiniBlock..24
gct_MiniBlockBase...................................23
gct_NullDataBlock....................................27
gct_ObjectBaseBlock................................23
gct_ObjectBaseMiniBlock..........................24
gct_ObjectBaseResBlock...........................26
gct_PackStore...44
gct_PtrCompContainer..............................78
gct_PtrContainer......................................71
gct_PtrMap..84
gct_RefDList..65
gct_RefStore...39
gct_ResBlock...25

gct_ResBlockBase....................................25
gct_Rnd_Array...57
gct_Rnd_BlockDList..................................65
gct_Rnd_BlockPtrDList..............................91
gct_Rnd_BlockRefDList.............................67
gct_Rnd_BlockRefPtrDList.........................92
gct_Rnd_DList...59
gct_Rnd_HashTable..................................64
gct_Rnd_PtrArray.....................................88
gct_Rnd_PtrDList.....................................88
gct_Rnd_PtrHashTable..............................90
gct_Rnd_PtrSortedArray............................89
gct_Rnd_RefDList.....................................67
gct_Rnd_RefPtrDList.................................91
gct_Rnd_SortedArray................................61
gct_Rnd16Array.......................................57
gct_Rnd16BlockDList................................65
gct_Rnd16BlockPtrDList............................91
gct_Rnd16BlockRefDList...........................67
gct_Rnd16BlockRefPtrDList.......................92
gct_Rnd16DList.......................................59
gct_Rnd16HashTable................................64
gct_Rnd16PtrArray...................................88
gct_Rnd16PtrDList...................................88
gct_Rnd16PtrHashTable............................90
gct_Rnd16PtrSortedArray.........................89
gct_Rnd16RefDList..................................67
gct_Rnd16RefPtrDList..............................91
gct_Rnd16SortedArray.............................61
gct_Rnd32Array.......................................57
gct_Rnd32BlockDList................................65
gct_Rnd32BlockPtrDList............................91
gct_Rnd32BlockRefDList...........................67
gct_Rnd32BlockRefPtrDList.......................92
gct_Rnd32DList.......................................59
gct_Rnd32HashTable................................64
gct_Rnd32PtrArray...................................88
gct_Rnd32PtrDList...................................88
gct_Rnd32PtrHashTable............................90
gct_Rnd32PtrSortedArray.........................89
gct_Rnd32RefDList..................................67
gct_Rnd32RefPtrDList..............................91
gct_Rnd32SortedArray.............................61
gct_Rnd8Array...57
gct_Rnd8BlockDList.................................65
gct_Rnd8BlockPtrDList.............................91
gct_Rnd8BlockRefDList.............................67
gct_Rnd8BlockRefPtrDList.........................92
gct_Rnd8DList...59
gct_Rnd8HashTable..................................64
gct_Rnd8PtrArray.....................................88
gct_Rnd8PtrDList.....................................88
gct_Rnd8PtrHashTable..............................90
gct_Rnd8PtrSortedArray...........................89
gct_Rnd8RefDList....................................67
gct_Rnd8RefPtrDList................................91
gct_Rnd8SortedArray...............................61
gct_SortedArray.......................................60
gct_Std_Array..57
gct_Std_BlockDList..................................65

Spirick Tuning Referenzhandbuch Seite 180

gct_Std_BlockPtrDList..............................91
gct_Std_BlockRefDList..............................67
gct_Std_BlockRefPtrDList..........................92
gct_Std_DList..59
gct_Std_HashTable...................................64
gct_Std_PtrArray......................................88
gct_Std_PtrDList......................................88
gct_Std_PtrHashTable...............................90
gct_Std_PtrSortedArray............................89
gct_Std_RefDList.....................................67
gct_Std_RefPtrDList.................................91
gct_Std_SortedArray................................61
gct_Std16Array.......................................57
gct_Std16BlockDList................................65
gct_Std16BlockPtrDList............................91
gct_Std16BlockRefDList...........................67
gct_Std16BlockRefPtrDList.......................92
gct_Std16DList..59
gct_Std16HashTable................................64
gct_Std16PtrArray...................................88
gct_Std16PtrDList....................................88
gct_Std16PtrHashTable............................90
gct_Std16PtrSortedArray..........................89
gct_Std16RefDList...................................67
gct_Std16RefPtrDList...............................91
gct_Std16SortedArray..............................61
gct_Std32Array.......................................57
gct_Std32BlockDList................................65
gct_Std32BlockPtrDList............................91
gct_Std32BlockRefDList...........................67
gct_Std32BlockRefPtrDList.......................92
gct_Std32DList..59
gct_Std32HashTable................................64
gct_Std32PtrArray...................................88
gct_Std32PtrDList....................................88
gct_Std32PtrHashTable............................90
gct_Std32PtrSortedArray..........................89
gct_Std32RefDList...................................67
gct_Std32RefPtrDList...............................91
gct_Std32SortedArray..............................61
gct_Std8Array...57
gct_Std8BlockDList..................................65
gct_Std8BlockPtrDList..............................91
gct_Std8BlockRefDList.............................67
gct_Std8BlockRefPtrDList.........................92
gct_Std8DList..59
gct_Std8HashTable..................................64
gct_Std8PtrArray.....................................88
gct_Std8PtrDList......................................88
gct_Std8PtrHashTable..............................90
gct_Std8PtrSortedArray............................89
gct_Std8RefDList.....................................67
gct_Std8RefPtrDList.................................91
gct_Std8SortedArray................................61
gct_String...122
gct_UtfCit...105
gct_VarItemBlock.....................................31
GetAddr..21
GetAllLen..136
GetAllocByteSize.....................................26

GetAllStr...137
GetAttributes...147
GetByteSize...21
GetChar...106, 126
GetCharAddr...29
GetCharPos...106
GetCharSize..28
GetChnStore..19
GetCreationTime....................................147
GetData..117
GetDay...150
GetDayOfWeek......................................150
GetDefaultPageSize......................30, 31, 33
GetDotLen...136
GetDrive..137
GetDriveLen..136
GetDriveOffs...136
GetDrivePath...137
GetDrivePathLen....................................136
GetDriveStr...137
GetEntries...19
GetError..106
GetExt..137
GetExtLen...136
GetExtOffs..136
GetExtStr..137
GetFirstEqualObj......................................69
GetFirstEqualRef......................................79
GetFirstObj..53
GetFirstPtr...72
GetFirstValPtr..85
GetFirstValue...82
GetFixPagePtrs..34
GetFixSize...30
GetHash..................................95, 125, 152
GetHashSize..63
GetHour..150
GetInitSuccess.......................110, 112, 113
GetItemAddr..31
GetItemSize...30
GetKey......................................82, 85, 113
GetLastAccessTime................................147
GetLastEqualObj......................................69
GetLastEqualRef......................................79
GetLastObj..53
GetLastPtr...72
GetLastValPtr..86
GetLastValue...82
GetLastWriteTime..................................147
GetLen..48, 125
GetMaxByteSize.......................................21
GetMaxChainExp.....................................18
GetMaxCharSize......................................28
GetMaxItemSize.......................................30
GetMaxLen................................56, 60, 125
GetMicroSecond....................................150
GetMinByteSize.......................................26
GetMinute...150
GetMonth..150
GetName...137

Spirick Tuning Referenzhandbuch Seite 181

GetNameExt..137
GetNameExtLen.....................................136
GetNameLen..136
GetNameOffs...136
GetNameStr...137
GetNewFirstObj.......................................54
GetNewLastObj..54
GetNewObj...54
GetNewObjAfter......................................54
GetNewObjAfterNth.................................54
GetNewObjBefore....................................54
GetNewObjBeforeNth...............................54
GetNextObj...53
GetNextPtr..72
GetNthObj...53
GetNthPtr..73
GetObj..49
GetPageSize..34
GetPath..137
GetPathLen...136
GetPathOffs..136
GetPathStr..137
GetPrevObj..53
GetPrevPtr...73
GetPtr...72
GetPureDrivePath...................................137
GetPureDrivePathLen..............................136
GetPurePath..137
GetPurePathLen.....................................136
GetRawAddr..29
GetRawLen..106
GetRawPos..106
GetRef..................................39, 40, 66, 98
GetResult..151
GetResultStr..151
GetRevChar...126
GetRndStore..17
GetRoundedSize.......................................34
GetSecond..150
GetSize...................................19, 117, 147
GetStdStore..16
GetStore...41
GetStr...125
GetTime..149
GetUUID...152
GetValPtr..85
GetValue...82
GetYear..150
GLOBAL_STORE_DCLS.............................14
GLOBAL_STORE_DEFS.............................14

H
HasDot...136
HasDrive...136
HasDriveOrUNC.....................................136
HasExt..136
HasFree..37
HASHTABLE_DCLS..................................63
HasName..136
HasPath..136
HasUNC..136

HasWildCards..136
I

IncCharSize...29
IncItemSize...31
IncItemSize1..30
IncRef...................................39, 40, 66, 98
Init...43, 45
Initialize..39
Insert..128
InsertChars..29
InsertDrivePath......................................137
InsertF..130
InsertItems..31
InsertPath..137
IsAbs..138
IsAlloc...................................39, 40, 66, 98
IsArchive...147
IsDirectory...147
IsEmpty...................................48, 125, 152
IsFree....................................39, 41, 66, 99
IsHidden..147
IsNull..39
IsReadOnly..147
IsRel...138
IsSystem...147
Iterieren des Containers............................48
Iterieren und verändern.................51, 77, 97

K
Klein-/Großbuchstaben............................130
Konvertieren..131

L
Last..48, 126
LastIdx...37
LastPageError..33
LastPageWarning.....................................33
Load...141
Lock...110, 114
Löschen..129
Löschen gefundener Objekte.....................70
Löschen gefundener Paare...................83, 86
Löschen gefundener Paare und referenzierter
Objekte...87
Löschen gefundener Zeiger.......................75
Löschen gefundener Zeiger und referenzierter
Objekte...76, 80
Löschen von Objekten........................49, 54
Löschen von Paaren...........................83, 86
Löschen von Paaren und referenzierten
Objekten...87
Löschen von Zeigern................................73
Löschen von Zeigern gefundener Objekte....80
Löschen von Zeigern und referenzierten
Objekten...74

M
MaxAlloc...12
MaxDataAlloc..44
MbConvert..132
Move..142, 144
MS Visual C++..9

N

Spirick Tuning Referenzhandbuch Seite 182

Next...48, 106
Nth...48

O
Open.............................114, 116, 117, 141
operator !=............................130, 150, 152
operator ().....................................125, 126
operator []...126
operator +..131
operator +=...131
operator <.......................95, 130, 133, 150
operator <=.................................130, 150
operator = 21, 48, 131, 136, 141, 143, 145,
152
operator ==..................130, 150, 151, 152
operator >....................................130, 150
operator >=.................................130, 150
operator delete..20
operator delete [].....................................20
operator new...20
operator new []..20

P
Parameterarten für Verzeichnisse.............147
PosOf...13
Prev...48
PTR_ARRAY_DCLS...................................87
PTR_DLIST_DCLS.....................................88
PTR_HASHTABLE_DCLS...........................89
PTR_SORTEDARRAY_DCLS.......................89

Q
QueryAllocEntries.....................................19
QueryAllocSize..19
QueryCurrentDirectory............................143
QueryCurrentDrive..................................143
QueryCurrentDriveDirectory.....................143
QueryFreeEntries......................................19
QueryFreeSize...19
QueryLocalTime.....................................149
QueryPos..142
QuerySize..142
QueryUTCTime......................................149

R
Read...142
Ready...106
Realloc..12
ReallocPtr..34, 44
REF_DLIST_DCLS.....................................66
REF_STORE_DCLS...................................41
REFCOLLMAP_DCL..................................99
REFCOLLMAP_DEF...................................99
REFPTR_DLIST_DCLS...............................91
Release...112, 116
Replace...129
ReplaceAll...129
ReplaceChars...29
ReplaceF...130
RevSubStr...126
RoundedSizeOf..13
Rückgabewert von Löschmethoden....49, 54,
69, 73, 79, 83, 86
Rückwärts iterieren.......................51, 77, 97

S
Save...142
SearchFirstKey...................................82, 85
SearchFirstObj...69
SearchFirstPtr..75
SearchFirstRef...79
SearchLastKey...................................82, 85
SearchLastObj...69
SearchLastPtr..75
SearchLastRef...79
SearchNextKey..................................82, 85
SearchNextObj...69
SearchNextPtr...75
SearchNextRef...79
SearchPrevKey...................................82, 85
SearchPrevObj...69
SearchPrevPtr..75
SearchPrevRef...79
SeekAbs...142
SeekRel...142
Selbstzuweisung....................................124
SetAlloc..39
SetByteSize...21
SetCharSize...28
SetDay..150
SetDayOfWeek......................................150
SetDrive..137
SetDrivePath...137
SetExt..137
SetFixPagePtrs...34
SetFree...39
SetHashSize..63
SetHour..150
SetItemSize...30
SetKey..113
SetMaxChainExp......................................19
SetMicroSecond.....................................150
SetMinByteSize..26
SetMinute...150
SetMonth..150
SetName...137
SetNameExt..137
SetPageSize.................................37, 56, 61
SetPath...137
SetSecond...150
SetSortedFree..37
SetTime..149
SetYear...150
SizeOf..13
Sort..139, 140
SORTEDARRAY_DCLS..............................61
Speicherüberlauf..7
st_BatteryInfo..121
st_CompilerInfo......................................120
st_FileSystemInfo...................................120
st_HardwareInfo.....................................120
st_HeapInfo...9
st_ProcessMemoryInfo............................120
st_SystemInfo..121
st_UserKernelTime..................................108

Spirick Tuning Referenzhandbuch Seite 183

StoreInfoSize...12
STRING_DCL...132
SubStr..126
Suche nach Objekten................................68
Suche nach Paaren.............................82, 85
Suche nach referenzierten Objekten...........79
Suche nach Zeichen und Teilzeichenketten
..126
Suche nach Zeigern..................................75
Swap..12, 21, 48

T
t_FileAttributes......................................144
t_FileId..118
t_FileSize...118
t_Int...7
t_Int16...7
t_Int32...7
t_Int8...7
t_Key..81, 85
t_Length...47
t_MD5Result..150
t_MicroTime..107
t_Object..48
t_Position..12, 47
t_RefCount..38, 39
t_RefObject...72
t_Size..12, 20, 125
t_UInt...7
t_UInt16...7
t_UInt32...7
t_UInt8...7
t_UUID..151
t_Value...81, 85
Teilvergleich..127
Temporäres Anfügen..............................131
tl_Alloc...9
tl_AllocReserve..8
tl_BeginThread.......................................109
tl_CloseFile..118
tl_CompareChar.......................................10
tl_CompareMemory..................................10
tl_CopyFile..118
tl_CopyMemory..10
tl_CreateDirectory..................................119
tl_CreateFile..118
tl_CriticalPrSectionInitSuccess.................114
tl_CriticalSectionInitSuccess....................111
tl_Delay...109
tl_DeleteCriticalPrSection........................114
tl_DeleteCriticalSection...........................111
tl_DeleteDirectory...................................119
tl_DeleteFile...118
tl_EndProcess..109
tl_EndThread...109
tl_EnterCriticalPrSection..........................115
tl_EnterCriticalSection.............................111
tl_Exec..110
tl_ExistsFile...118
tl_FillMemory...10
tl_FirstChar..10

tl_FirstMemory...10
tl_Free..9
tl_FreeReserve...8
tl_FreeUnused..10
tl_GetEnv..109
tl_GetReserveSize......................................8
tl_GetTempPath.....................................109
tl_HasReserve..8
tl_InterlockedAdd...................................108
tl_InterlockedDecrement..........................108
tl_InterlockedIncrement...........................108
tl_InterlockedRead..................................108
tl_InterlockedWrite.................................108
tl_IsProcessRunning................................110
tl_LastChar..11
tl_LastMemory...11
tl_LeaveCriticalPrSection.........................115
tl_LeaveCriticalSection............................111
tl_LocalToUTCTime................................107
tl_MaxAlloc...9
tl_MbConvert...103
tl_MbConvertCount................................103
tl_MoveDirectory....................................119
tl_MoveFile..118
tl_MoveMemory.......................................10
tl_OpenFile..118
tl_ProcessId...109
tl_QueryBatteryInfo................................122
tl_QueryCompilerInfo..............................121
tl_QueryCurrentDirectory.........................119
tl_QueryFileSystemInfo...........................121
tl_QueryHardwareInfo.............................121
tl_QueryHeapInfo.......................................9
tl_QueryLocalTime..................................107
tl_QueryPos...118
tl_QueryPrecisionTime............................107
tl_QueryProcessMemoryInfo....................121
tl_QueryProcessTimes.............................108
tl_QuerySize..118
tl_QuerySystemInfo................................122
tl_QueryThreadTimes..............................108
tl_QueryUTCTime...................................107
tl_Read...119
tl_Realloc..9
tl_RelinquishTimeSlice.............................109
tl_SeekAbs..118
tl_SeekRel...118
tl_SetOverflowHandler..........................8, 33
tl_SetReserveHandler..................................8
tl_SetReserveSize.......................................8
tl_StoreInfoSize...9
tl_StringHash...103
tl_StringLength......................................103
tl_SwapMemory.......................................11
tl_SwapObj..11
tl_ThreadId..109
tl_ToLower..103
tl_ToLower2..103
tl_ToUpper..103
tl_ToUpper2..103

Spirick Tuning Referenzhandbuch Seite 184

tl_Truncate..118
tl_TryEnterCriticalPrSection.....................115
tl_TryEnterCriticalSection........................111
tl_UTCToLocalTime................................107
tl_UtfConvert...105
tl_UtfConvertCount................................105
tl_UtfLength..105
tl_UtfToLower..105
tl_UtfToUpper..105
tl_VSprintf...138
tl_Write...119
ToAbs...138
ToLower...130
ToLower2..130
ToRel..138
ToStr..152
ToUpper..130
ToUpper2..130
tpf_AllocHandler..8
Truncate...142
TruncateObj..49
TryAcquire.....................................112, 116
TryLock...110, 114
TryOpen..141

U
Unlock..110, 114
Update..151

V
Vergleich im Zeigercontainer.....................74
Vergleichsoperatoren..............................130
Verzeichnis durchlaufen, nur Dateien........148

Verzeichnis durchlaufen, nur
Unterverzeichnisse.................................148
Verzeichnis vollständig durchlaufen..........148
Vollständiger Vergleich...........................127
Vorwärts iterieren.........................51, 77, 97

W
Write..142
WSTRING_DCL......................................132

Z
Zugriff auf gefundene Objekte..69, 79, 82, 85
Zugriff auf Länge und Zeichenkette..........125
Zugriff auf neue Objekte...........................54
Zugriff auf Objekte.............................49, 53
Zugriff auf referenzierte Objekte................72
Zugriff auf Schlüssel und Wert.............82, 85
Zuweisen..127
Zuweisungsoperatoren............................131

~
~ct_AnyBlock...21
~ct_DirScan..145
~ct_File..141
~ct_Object...94
~ct_PackStore..44
~ct_PageBlock..34
~ct_PrMutex...114
~ct_PrSemaphore..................................115
~ct_SharedMemory...............................117
~ct_SharedResource..............................113
~gct_AnyContainer.................................48
~gct_PtrContainer...................................72

Spirick Tuning Referenzhandbuch Seite 185

	1 SPEICHERVERWALTUNG
	1.1 Systemschnittstelle
	1.1.1 Globale Definitionen (tuning/defs.hpp)
	1.1.2 Reservespeicher (tuning/sys/calloc.hpp)
	1.1.3 Dynamischer Speicher (tuning/sys/calloc.hpp)
	1.1.4 Heapoperationen (tuning/sys/calloc.hpp)
	1.1.5 Speicheroperationen (tuning/sys/cmemory.hpp)

	1.2 Store
	1.2.1 Storeschnittstelle
	1.2.2 Globale Stores (tuning/defs.hpp)
	1.2.3 Beispiel für eine Wrapperklasse

	1.3 Dynamische Stores
	1.3.1 Standardstore (tuning/std/store.hpp)
	1.3.2 Roundstore (tuning/rnd/store.hpp)
	1.3.3 Chainstore (tuning/chn/store.hpp)
	1.3.4 Operatoren new und delete (tuning/newdel.cpp)

	1.4 Block
	1.4.1 Blockschnittstelle
	1.4.2 Allgemeiner Block (tuning/block.h)
	1.4.3 Miniblock (tuning/miniblock.h)
	1.4.4 Reserveblock (tuning/resblock.h)
	1.4.5 Fixblock (tuning/fixblock.h)
	1.4.6 Nulldatablock (tuning/nulldatablock.h)
	1.4.7 Zeichenblock (tuning/charblock.h)
	1.4.8 Elementblock (tuning/itemblock.h)
	1.4.9 Pageblock (tuning/pageblock.hpp)
	1.4.10 Block-Instanzen (tuning/xxx/block.h)

	1.5 Spezielle Stores
	1.5.1 Blockstore (tuning/blockstore.h)
	1.5.2 Blockstore-Instanzen (tuning/xxx/blockstore.h)
	1.5.3 Referenzzähler (tuning/refcount.hpp)
	1.5.4 Refstore (tuning/refstore.h)
	1.5.5 Refstore-Instanzen (tuning/xxx/refstore.h)
	1.5.6 Blockrefstore-Instanzen (tuning/xxx/blockrefstore.h)
	1.5.7 Packstore (tuning/packstore.hpp)
	1.5.8 Packstore 2 (tuning/packstore.h)

	2 OBJEKTVERWALTUNG
	2.1 Container
	2.1.1 Containerschnittstelle
	2.1.2 Operationen mit Containern
	2.1.3 Erweiterter Container (tuning/extcont.h)

	2.2 Arrays und Listen
	2.2.1 Array (tuning/array.h)
	2.2.2 Array-Instanzen (tuning/xxx/array.h)
	2.2.3 Liste (tuning/dlist.h)
	2.2.4 Listen-Instanzen (tuning/xxx/dlist.h)

	2.3 Sortierte Container
	2.3.1 Sortiertes Array (tuning/sortarr.h)
	2.3.2 Sortierte Array-Instanzen (tuning/xxx/sortedarray.h)
	2.3.3 Hashtabelle (tuning/hashtable.h)
	2.3.4 Hashtabellen-Instanzen (tuning/xxx/hashtable.h)

	2.4 Block- und Reflisten
	2.4.1 Blockliste
	2.4.2 Blocklisten-Instanzen (tuning/xxx/blockdlist.h)
	2.4.3 Refliste (tuning/refdlist.h)
	2.4.4 Reflisten-Instanzen (tuning/xxx/refdlist.h)
	2.4.5 Blockreflisten-Instanzen (tuning/xxx/blockrefdlist.h)

	2.5 Vergleichs-, Zeiger- und Mapcontainer
	2.5.1 Vergleichscontainer (tuning/compcontainer.h)
	2.5.2 Zeigercontainer (tuning/ptrcontainer.h)
	2.5.3 Operationen mit Zeigercontainern
	2.5.4 Zeigervergleichscontainer (tuning/ptrcompcontainer.h)
	2.5.5 Mapcontainer (tuning/map.h)
	2.5.6 Zeigermapcontainer (tuning/ptrmap.h)

	2.6 Zeigercontainer-Instanzen
	2.6.1 Zeigerarray-Instanzen (tuning/xxx/ptrarray.h)
	2.6.2 Zeigerlisten-Instanzen (tuning/xxx/ptrdlist.h)
	2.6.3 Sortierte Zeigerarray-Instanzen (tuning/xxx/ptrsortedarray.h)
	2.6.4 Zeigerhashtabellen-Instanzen (tuning/xxx/ptrhashtable.h)
	2.6.5 Blockzeigerlisten-Instanzen (tuning/xxx/blockptrdlist.h)
	2.6.6 Refzeigerlisten-Instanzen (tuning/xxx/refptrdlist.h)
	2.6.7 Blockrefzeigerlisten-Instanzen (tuning/xxx/blockrefptrdlist.h)

	2.7 Übersicht Container-Instanzen
	2.7.1 Vordefinierte Templateinstanzen
	2.7.2 Selbstdefinierte Templateinstanzen

	2.8 Collections
	2.8.1 Abstraktes Objekt (tuning/object.hpp)
	2.8.2 Abstrakte Collection (tuning/collection.hpp)
	2.8.3 Operationen mit Collections
	2.8.4 Abstrakte Refcollection (tuning/refcollection.hpp)
	2.8.5 Konkrete Collections

	3 ZEICHENKETTEN UND SYSTEMDIENSTE
	3.1 Systemschnittstelle
	3.1.1 Ressourcenfehler (tuning/sys/creserror.hpp)
	3.1.2 Zeichen und Zeichenketten (tuning/sys/cstring.hpp)
	3.1.3 Unicode (UTF) (tuning/sys/cutf.hpp)
	3.1.4 Unicode-Const-Iterator (tuning/utfcit.h)
	3.1.5 Präzisionszeit (tuning/sys/ctimedate.hpp)
	3.1.6 Uhrzeit und Datum (tuning/sys/ctimedate.hpp)
	3.1.7 Prozessorzeit (tuning/sys/ctimedate.hpp)
	3.1.8 Taskumgebung (tuning/sys/cprocess.hpp)
	3.1.9 Threads (tuning/sys/cthread.hpp)
	3.1.10 Prozesse (tuning/sys/cprocess.hpp)
	3.1.11 Thread-Mutex (tuning/sys/cthmutex.hpp)
	3.1.12 Thread-Semaphor (tuning/sys/cthsemaphore.hpp)
	3.1.13 Gemeinsame Ressource (tuning/sys/csharedres.hpp)
	3.1.14 Prozeß-Mutex (tuning/sys/cprmutex.hpp)
	3.1.15 Prozeß-Semaphor (tuning/sys/cprsemaphore.hpp)
	3.1.16 Gemeinsamer Speicher (tuning/sys/csharedmem.hpp)
	3.1.17 Datei (tuning/sys/cfile.hpp)
	3.1.18 Verzeichnis (tuning/sys/cdir.hpp)
	3.1.19 Systemnahe Informationen (tuning/sys/cinfo.hpp)

	3.2 Zeichenketten und Dateinamen
	3.2.1 Stringtemplate (tuning/string.h)
	3.2.2 String-Instanzen (tuning/xxx/[w]string.h)
	3.2.3 Polymorphe Stringklassen (tuning/[w]string.hpp)
	3.2.4 Dateiname (tuning/filename.hpp)
	3.2.5 Zeichenketten formatieren (tuning/printf.hpp)
	3.2.6 Zeichenketten sortieren (tuning/stringsort.hpp)
	3.2.7 Zahlen sortieren (tuning/stringsort.hpp)

	3.3 Dateien und Verzeichnisse
	3.3.1 Datei (tuning/file.hpp)
	3.3.2 Verzeichnis (tuning/dir.hpp)
	3.3.3 Verzeichnis durchlaufen (tuning/dirscan.hpp)

	3.4 Weitere Werkzeuge
	3.4.1 Uhrzeit und Datum (tuning/timedate.hpp)
	3.4.2 MD5 Summe (tuning/md5.hpp)
	3.4.3 Universally Unique Identifier (tuning/uuid.hpp)

	4 DESIGNDIAGRAMME
	4.1 Zur Notation
	4.2 Polymorphe Klassenhierarchie
	4.3 Ein Array
	4.4 Ein Zeigerarray
	4.5 Eine Liste
	4.6 Eine Blockliste

	5 INSTALLATION UND BEISPIELE
	5.1 Hinweise zur Installation
	5.1.1 Verfügbare Plattformen
	5.1.2 Abhängigkeiten
	5.1.3 Installation
	5.1.4 Performance-Tests
	5.1.5 Inline-Methoden
	5.1.6 DLL's
	5.1.7 Globale Objekte
	5.1.8 Multithreading
	5.1.9 Exception Handling

	5.2 Beispielprogramme
	5.2.1 Protokollklasse (samples/int.cpp)
	5.2.2 Speicherüberlauf (samples/talloc.cpp)
	5.2.3 Alignment (samples/talign.cpp)
	5.2.4 Globale Stores (samples/tstore.cpp)
	5.2.5 Block (samples/tblock.cpp)
	5.2.6 Block- und Packstore (samples/tblockstore.cpp)
	5.2.7 Container (samples/tcontainer.cpp)
	5.2.8 Collections (samples/tcollection.cpp)
	5.2.9 [Zeiger]Mapcontainer (samples/t[ptr]map.cpp)
	5.2.10 Zugriffsbeschleunigung (samples/taccess.cpp)
	5.2.11 Exceptions in Containern (samples/texception.cpp)
	5.2.12 Interlocked (samples/tinterlocked.cpp)
	5.2.13 Threads (samples/tthread.cpp)
	5.2.14 Semaphoren (samples/tsemaphore.cpp)
	5.2.15 Prozesse (samples/texec.cpp)
	5.2.16 Starthilfe (samples/texechelper.cpp)
	5.2.17 Gemeinsame Ressourcen (samples/tshared.cpp)
	5.2.18 Zeichenketten (samples/tstring.cpp)
	5.2.19 Zeichenketten sortieren (samples/tsort.cpp)
	5.2.20 Dateiname (samples/tfilename.cpp)
	5.2.21 Datei (samples/tfile.cpp)
	5.2.22 Verzeichnis (samples/tdir.cpp)
	5.2.23 Verzeichnis durchlaufen (samples/tdirscan.cpp)
	5.2.24 Verzeichnisbaum (samples/ttree.cpp)
	5.2.25 Uhrzeit und Datum (samples/ttimedate.cpp)
	5.2.26 Systemnahe Informationen (samples/tinfo.cpp)
	5.2.27 MD5 und UUID (samples/tmd5.cpp und tuuid.cpp)

