Spirick Tuning

Eine C++ Klassen- und Template-Bibliothek

far performancekritische Anwendungen

Referenzhandbuch

OO

Version 1.49
Stand Juni 2023

Copyright © Dietmar Deimling 1996 - 2023. All rights reserved.

Copyright © Dietmar Deimling 1996 - 2023. All rights reserved.

Kein Teil dieses Werkes darf ohne schriftliche Genehmigung des Autors in irgendeiner Form (Fotokopie,
Mikrofilm oder andere Verfahren), auch nicht fir Zwecke der Unterrichtsgestaltung, reproduziert oder
unter Verwendung elektronischer Systeme verarbeitet, vervielfaltigt oder verbreitet werden. Bei der
Zusammenstellung wurde mit gréRter Sorgfalt vorgegangen. Fehler kdnnen trotzdem nicht véllig
ausgeschlossen werden, so dald der Autor fir fehlerhafte Angaben und deren Folgen keine juristische
Verantwortung oder irgendeine Haftung Gbernimmt. Die Wiedergabe von Gebrauchsnamen,
Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere
Kennzeichnung nicht zu der Annahme, dal3 solche Namen im Sinne der Warenzeichen- und
Markenschutzgesetzgebung als frei betrachtet waren. Flir Verbesserungsvorschldge und Hinweise auf
Fehler ist der Autor stets dankbar.

Spirick Tuning Referenzhandbuch Seite 2

Inhaltsverzeichnis

1 SPEICHERVERWALTUNG 7
1.1 Systemschnittstelle.o e e r e neaas 7
1.1.1 Globale Definitionen (tuning/defs.NPP)o s 7
1.1.2 Reservespeicher (tuning/sys/calloC.hpp)......coouiiriiiiii e 7
1.1.3 Dynamischer Speicher (tuning/sys/calloc.hpp)......cooeiniiiiiiiii e 8
1.1.4 Heapoperationen (tuning/sys/calloC.hpp)....couviiiiiiiii e 9
1.1.5 Speicheroperationen (tuning/sys/cmemory. nppP)......o.oie it 10
LI o) - PPN 11
T.2.7 StOreSCRNIttSTEIIE. ..t e 11
1.2.2 Globale Stores (tuning/defs.NPP) ..cieiiiii i 13
1.2.3 Beispiel flr eine WrapPerklasSe. .. iuiiriiii it et e et aaeaaeaas 14
JLIRC B DAY =T g Ty o TS] - 15
1.3.1 Standardstore (tuning/std/store.NPP).......oeieiiii e 15
1.3.2 Roundstore (tuning/rnd/store.nPP) ...c.ce i e 16
1.3.3 Chainstore (tuning/chn/store.Npp).....ccouiiiii e 17
1.3.4 Operatoren new und delete (tuning/Newdel.Cpp)......ccoueieiniiiiiiii e 19
I 3 = o Yo P 20
T.4.7 BloCKSCRNITESTOIIE .. et 20
1.4.2 Allgemeiner Block (tuning/bloCK.N).......ouiuiiiiii e 21
1.4.3 Miniblock (tuning/miniblock.h)..... ... 23
1.4.4 Reserveblock (tuning/resblock.h)..... ..o 25
1.4.5 Fixblock (tuning/fixbloCk.h) ..o e 26
1.4.6 Nulldatablock (tuning/nulldatablock.h) ... 27
1.4.7 Zeichenblock (tuning/charblock.h) ... e 28
1.4.8 Elementblock (tuning/itemblock.h)......cc.oiiii s 30
1.4.9 Pageblock (tuning/pageblock.hpp) ..o 32
1.4.10 Block-Instanzen (tuning/xxx/block.h)..... ..o 35
QSIS o =T A=Y | =T oL =R 35
1.5.1 Blockstore (tuning/blockstore.h) ..o 35
1.5.2 Blockstore-Instanzen (tuning/xxx/blockstore.h).......coviiiiiiiiiii i, 37
1.5.3 Referenzzahler (tuning/refcount.Npp).....ccoeieiieiii e 38
1.5.4 Refstore (tuning/refstore.h)o 39
1.5.5 Refstore-Instanzen (tuning/xxx/refstore.h) ... 41
1.5.6 Blockrefstore-Instanzen (tuning/xxx/blockrefstore.h)..........c.coooiiiiiiiiiiiiiiens 41
1.5.7 Packstore (tuning/packstore.npp) . oo 42
1.5.8 Packstore 2 (tuning/packstore.h)...... ..o 44
2 OBJEKTVERWALTUNG 46
bt B oY - 11 T PP 46
2.1.71 ContainersChnittstelle. . ..couiiiiii e 46
2.1.2 Operationen Mit CoNtaiNe M. ...t e e eaeas 50
2.1.3 Erweiterter Container (tuning/extcont.h)........ccoiiiiiiii 52
2.2 Arrays UNd LiSteN..... ..ot e e e et r e e 55
2.2.7T Array (TUNING/Array . n) ... e 55
2.2.2 Array-Instanzen (tuning/XXX/array.n)....ooooiiii i 57
2.2.3 Liste (tuning/dliSt.N) e 57
2.2.4 Listen-Instanzen (tuning/xxx/dlist.n).....c.oooiii i 58
2.3 SOrtierte CoONTAINEr.ciiiiieeeiiieei e et s ran s santarasaarasansaransansansansannaansansansansnnen 59
2.3.1 Sortiertes Array (tUNiNG/SOrtarr.n)cocieiiii i e 59

Spirick Tuning Referenzhandbuch Seite 3

2.3.2 Sortierte Array-Instanzen (tuning/xxx/sortedarray.h).........cccoooiiiiiiiiiiiiiiiiiinian, 61

2.3.3 Hashtabelle (tuning/hashtable.h)...... ... 62
2.3.4 Hashtabellen-Instanzen (tuning/xxx/hashtable.h)............coooiiiiiiiiiii 63
2.4 Block- Und ReflisSten..........ouniiiiiiiiii e aas 64
2 g T = 1 1o Yo 1= - 64
2.4.2 Blocklisten-Instanzen (tuning/xxx/blockdlist.h) ..o 64
2.4.3 Refliste (tuning/refdlist.n)o e 65
2.4.4 Reflisten-Instanzen (tuning/xxx/refdlist.h) ... 66
2.4.5 Blockreflisten-Instanzen (tuning/xxx/blockrefdlist.h)..........cooiiiii i 67
2.5 Vergleichs-, Zeiger- und Mapcontainer............ccoiiiiieiiiiiiiiier e eeas 68
2.5.1 Vergleichscontainer (tuning/compcontainer.n).......c.cocoviiiiiiiii e 68
2.5.2 Zeigercontainer (tuning/ptrcontainer.N).......cccooiiiiiiiiiiiii i 70
2.5.3 Operationen mMit ZeigerCONTaINEINttt et eae e 76
2.5.4 Zeigervergleichscontainer (tuning/ptrcompcontainer.h)........c.cccoviiiiiiiiiiiiinieinnn. 78
2.5.5 Mapcontainer (tUning/mMap.) 80
2.5.6 Zeigermapcontainer (tuning/ptrmap.h)........ocooiiiiii e 83
2.6 Zeigercontainer-INStanzZen.............vuiuiiiiiiie s 87
2.6.1 Zeigerarray-Instanzen (tuning/xxx/ptrarray.h)........cooooeiiiiiiiiiiii e 87
2.6.2 Zeigerlisten-Instanzen (tuning/xxx/ptrdlist.h) ... 88
2.6.3 Sortierte Zeigerarray-Instanzen (tuning/xxx/ptrsortedarray.h)............c..cooooiiiiiinn. 89
2.6.4 Zeigerhashtabellen-Instanzen (tuning/xxx/ptrhashtable.h)...............ccoiint 89
2.6.5 Blockzeigerlisten-Instanzen (tuning/xxx/blockptrdlist.h)..........cccoviiiiiiiiiiiiiiiin. 90
2.6.6 Refzeigerlisten-Instanzen (tuning/xxx/refptrdlist.h)...........coooiii 91
2.6.7 Blockrefzeigerlisten-Instanzen (tuning/xxx/blockrefptrdlist.h)...........ccoooiiiiiiiinn. 92
2.7 Ubersicht Container-INSTANZEN.ccuuuuiiiiriiieeiirieesereateeeessst e ersaeeaerssseeeesnnss 92
2.7.1 Vordefinierte TemplateinStanzZen.oeiuieitiii i e e 92
2.7.2 Selbstdefinierte Templateinstanzen.........ccocviii i e 93
b < T oY1 1Y o o 3 PP PS 924
2.8.1 Abstraktes Objekt (tuning/object.hpp).....c.oeiniiii e 94
2.8.2 Abstrakte Collection (tuning/collection.hpp).....c.veiiiiiiiiiii e 95
2.8.3 Operationen mit CollECTIONS. ... i e e e 96
2.8.4 Abstrakte Refcollection (tuning/refcollection.hpp)....cocoviiiiiiiiiiiiie 98
2.8.5 KONKIete ColleCtioNS. . ettt ettt e e et e r et e et aaeeaaeean 99
3 ZEICHENKETTEN UND SYSTEMDIENSTE 101
3.1 Systemschnittstelle.........ccooiiiiiiiiii e e e e 101
3.1.1 Ressourcenfehler (tuning/sys/Creserror.NPP)....ceeiceeiiiiii i 101
3.1.2 Zeichen und Zeichenketten (tuning/sys/cstring.hpp)......cccooviiiiiiiiiiie 102
3.1.3 Unicode (UTF) (tuning/sys/cutf.npp)...cocoiiiiii i e 104
3.1.4 Unicode-Const-lterator (tuning/utfcit.h)..... ... 105
3.1.5 Préazisionszeit (tuning/sys/ctimedate.nPpP)....ccoeiiiiiiiiiii i 107
3.1.6 Uhrzeit und Datum (tuning/sys/ctimedate.hpp).......cccooviiiiiiiiiiii e 107
3.1.7 Prozessorzeit (tuning/sys/ctimedate.hpp)......coovieiiiiiiii e 108
3.1.8 Taskumgebung (tuning/sys/CProCesS. NPP) .. .cuu it 108
3.1.9 Threads (tuning/sys/cthread.Npp)oooniiii e 109
3.1.10 Prozesse (tuning/sSys/CProCeSS.NPP) .. e it 109
3.1.11 Thread-Mutex (tuning/sys/cthmutexX.hpp).....ccouiiiiiii e 110
3.1.12 Thread-Semaphor (tuning/sys/cthsemaphore.hpp)......ccccoiviiiiiiiiiiiiiiiiiiies 111
3.1.13 Gemeinsame Ressource (tuning/sys/csharedres.hpp).......cccoeeviiiiiiiiiiiiiiiinnnnnn. 112
3.1.14 ProzelR-Mutex (tuning/sys/cprmuteX.npp) ..o 113
3.1.15 ProzeRR-Semaphor (tuning/sys/cprsemaphore.hpp)......ccccviiiiiiiiiiiiiiiiiieien, 115
3.1.16 Gemeinsamer Speicher (tuning/sys/csharedmem.hpp).......cccoveviiiiiiiiiiiiiiiiiiinns 116
3.1.17 Datei (tuning/sys/Cile.NPP) ... 117
3.1.18 Verzeichnis (tuning/sys/Cdir.Npp)...coeiiiiiiiiii e 119
3.1.19 Systemnahe Informationen (tuning/sys/cinfo.hpp).....cccoviiiiiiiiiiiiiiies 119
3.2 Zeichenketten und Dateinamen...........coiiiiiiiiiiiiiiii i ra e a e aneaan 122

Spirick Tuning Referenzhandbuch Seite 4

3.2.1 Stringtemplate (tuning/string.h) ..o 122

3.2.2 String-Instanzen (tuning/Xxx/[WIString.h)........ooiiiiii 132
3.2.3 Polymorphe Stringklassen (tuning/[wIstring.hpp).....cocoveiiiiiiiiiiciee 133
3.2.4 Dateiname (tuning/filename.npp) ..o 133
3.2.5 Zeichenketten formatieren (tuning/printf.hpp).....cccoeeiiiiiiii 138
3.2.6 Zeichenketten sortieren (tuning/stringsort.NPP)ccccveiieiiiiiiiiii e 138
3.2.7 Zahlen sortieren (tuning/stringsort.Npp) ... coeoe oo 139
3.3 Dateien und VerzeiChniSSe.......ccvviiiiiiiiiiii i i s e e e e s raa s raneanneaaneaannns 140
3.3.71 Datei (TuNING/File. NP D) e s 140
3.3.2 Verzeichnis (tuning/dir.npp) ..o 142
3.3.3 Verzeichnis durchlaufen (tuning/dirscan.npp).....ccoceeiiiiiiiiic s 144
3.4 Weitere WerkzZeUQge........coueiniiiiiiiiiiiiiie e e e et e e s ransansansansansansansanransansaneannsss 148
3.4.1 Uhrzeit und Datum (tuning/timedate.nPP).....covuiieiiiiiiii e 148
3.4.2 MD5 Summe (tuning/md5S.hpp) .. e 150
3.4.3 Universally Unique Identifier (tuning/uuid.npp).....cccoovieiiiiiiiiiic e 151
4 DESIGNDIAGRAMME 153
L AN T | o - 4 o o S 153
4.2 Polymorphe KlassenhierarChie.............ccocviiiiiiiiiiiiiiic e e e e e 154
L B o L V- P 155
g A T 1T - ¢ - 157
L G T o U= XT3 - PP 159
4.6 EiNe BIOCKIISTE.ot e s 161
5 INSTALLATION UND BEISPIELE 163
5.1 Hinweise zur INStallation.........cccvieiiiiiiiiii s r s saa s s s s s eaasasansaeananeannnnannnns 163
5.1.1 Verflgbare Plattformen.oiiiiii e 163
5. 1.2 ADNANGIGKEIEEN. .ot e 163
LT IR T 1 =3 - 1 - 1 o Y o 163
o I oY o g =T o=l =] i T P 164
B 1.5 INlNE-IMEthOdEN. ... e e e 164
LT I 164
B5.1.7 Globale ObJEKEE . .euueii et 164
T IR S TV 0T)4 T == T g o 165
5.1.9 Exception Handling. ..ot et 165
5.2 BeiSpielprogramme.cccieiiieieiia i s s raararae s raa s rantaranaararanraran e naranan e 166
5.2.1 Protokollklasse (SampPles/INt.CPP) .uieiriieitiiii it ea 166
5.2.2 Speicherlberlauf (samples/talloC.CPP) .. cvuiiie i e 166
5.2.3 Alignment (Samples/talign.CPP) . .u it 167
5.2.4 Globale Stores (SamMpPles/tStOre.CPP) . v ettt 167
5.2.5 Block (SAmMpPIes/thlOCK.CPP) .. ettt 168
5.2.6 Block- und Packstore (samples/tbloCKStOre.CPP) . .uuuuiitiuiii i 168
5.2.7 Container (Samples/tCONtaINEr.CPP) . uuuiu ettt e aeeeeneens 169
5.2.8 Collections (samples/tCOlECtION.CPP) .. uuiuiriitiii it e 169
5.2.9 [Zeiger]Mapcontainer (samples/tIptrImMmap.CPP) . e iiiiiiiiiier e aees 170
5.2.10 Zugriffsbeschleunigung (Samples/taCCeSS.CPP) - uvururueeeiereieie it eeeeaeeenens 170
5.2.11 Exceptions in Containern (samples/texception.CPP)....cvveiiiiiiiiiiiiiiiiiiiiieeiaens 170
5.2.12 Interlocked (samples/tinterlocked.Cpp)cvuvieiiriiiiii e 172
5.2.13 Threads (samples/tthread.CPpP)oeiieiiiiiiii s 172
5.2.14 Semaphoren (samples/tSEMaphOre.CPP) . ciueiiiiieiiiii e aes 173
5.2.15 Prozesse (SAmMPles/tE8XEC.CPP) .t utttininii ettt et ettt ae s 173
5.2.16 Starthilfe (samples/texeChelper.CPP) ..o iiiiii i e 173
5.2.17 Gemeinsame Ressourcen (samples/tshared.Cpp).....coovveveiiiiiiiiiiiiiiii i 173
5.2.18 Zeichenketten (samples/tStriNg.CPP) . et e 173
5.2.19 Zeichenketten sortieren (Samples/tSOrt.CPP) ... ocuveiiiiiiiiiii i 174

Spirick Tuning Referenzhandbuch Seite 5

5.2.20 Dateiname (samples/tfilename.CPP) .. vt 174

5.2.21 Datei (samples/tfile.CPP) ... e 175
5.2.22 Verzeichnis (Samples/tdir.Cpp) .. e e 175
5.2.23 Verzeichnis durchlaufen (samples/tdirscan.cpp).....cccooeveiiiiiiiiiii i 175
5.2.24 Verzeichnisbaum (Samples/ttre.CPoP) . v r ittt 175
5.2.25 Uhrzeit und Datum (samples/ttimedate.Cpp) . ..o veeeiiieiiiiiiier e 176
5.2.26 Systemnahe Informationen (samples/tinfo.Cpp)....ccvvieiriiiiiiiiii 176
5.2.27 MD5 und UUID (samples/tmd5.cpp und tUUId.CPP).cuereiuiiiniiiiiiiiinieieeie e 176

Spirick Tuning Referenzhandbuch Seite 6

1.1

1.1.1

1 SPEICHERVERWALTUNG

Systemschnittstelle

Globale Definitionen (tuning/defs.hpp)

In der Datei "tuning/defs.hpp’ werden compilerspezifische Makros abgefragt und eigene globale
Datentypen und Makros definiert. Diese Datei wird von allen anderen Headerdateien der Bibliothek
Spirick Tuning zuerst inkludiert. Am Ende wird optional die Datei 'tl_user.hpp' inkludiert. Damit ist es
madglich, das Verhalten der Klassenbibliothek an eigene Anforderungen anzupassen ohne den Quelltext
zu verandern. Z. B. kann auf diese Weise das Makro TL_ASSERT umdefiniert werden.

Datentypen
typedef ... t Int;
typedef ... t Ulnt;
typedef ... t Int8;
typedef ... t UInt8;
typedef ... t Intl6;
typedef ... t UIntl6;
typedef ... t Int32;
typedef ... t UInt32;

Diskrete numerische Datentypen mit bestimmter Anzahl von Bits, jeweils mit oder ohne Vorzeichen.
t Int und t_UInt umfassen in einer 32-Bit-Umgebung 32 Bit und in einer 64-Bit-Umgebung 64 Bit.

1.1.2

Reservespeicher (tuning/sys/calloc.hpp)

Mit Hilfe des Reservespeichers kénnen bei Speichermangel elementare Operationen zu Ende geflihrt
werden, ohne dal3 jede einzelne Speicheranforderung gepriift werden muf3. Der Reservespeicher sollte
einmalig zu Programmbeginn angefordert werden. Er wird von t1 _Alloc und t1 _Realloc automatisch
freigegeben, wenn die C-Standardbibliothek keinen Speicher mehr bereitstellen kann. Danach liefert die
Funktion t1_HasReserve den Wert false. Die Verwaltung des Reservespeichers ist gegen den
konkurrierenden Zugriff mehrerer Threads geschitzt.

Speicheriiberlauf

Innerhalb der Bibliothek Spirick Tuning wird an sehr vielen Stellen neuer Speicher angefordert oder
vorhandener vergréfRert. An jeder einzelnen Stelle im Programmcode kann ein Speichertberlauf eintreten.
Eine Behandlung des Speichertberlaufs in jedem Einzelfall wirde den Programmcode stark vergréRern
und den Rechenzeitbedarf erhéhen. Ein Speicheriberlauf ist jedoch ein Ausnahmefall, der in der Praxis
selten auftritt. Die Bibliothek Spirick Tuning ist darauf optimiert, im Normalfall eine bestmégliche
Performance zu erzielen. Deshalb wird der Speicheriberlauf an einer zentralen Stelle, in den Funktionen
t1 Alloc und t1 Realloc, behandelt. Alle anderen Programmteile gehen davon aus, daB eine angeforderte
Speicheroperation korrekt ausgefiihrt wurde.

Bei einer Speicheranforderung oder dem VergroRern eines vorhandenen Speicherblocks laufen
nacheinander die folgenden Schritte ab. Zunachst wird versucht, die Speicheroperation mit Hilfe der C-
Standardbibliothek (malloc, realloc) auszufiihren. Gelingt es nicht, wird der (eventuell vorhandene)
Reservespeicher freigegeben, und die C-Standardbibliothek wird erneut aufgerufen. Liegt kein positives
Resultat vor, wird der Overflowhandler aufgerufen. Sollte anschlieRend die Speicheranforderung von der

Spirick Tuning Referenzhandbuch Seite 7

C-Standardbibliothek immer noch nicht erfiillt werden kénnen, kann das Programm nicht weiterarbeiten.
Jede weitere Operation, z. B. das Schreiben in eine Log-Datei oder das Anzeigen einer Dialogbox, wirde
wahrscheinlich fehlschlagen, da kein Speicher mehr zur Verfiigung steht. Deshalb wird das Programm
ohne den Aufruf der Destruktoren globaler Objekte mit der Funktion t1_EndProcess beendet.

Datentypen
typedef void (* tpf AllocHandler) ();

Zeiger auf eine globale Funktion, die keinen Rickgabewert und keine Parameter besitzt.

Funktionen
tpf_AllocHandler t1_SetReserveHandler (tpf AllocHandler pf_allocHandler);

Setzt die globale Funktion fir den Reservehandler und liefert die Adresse des vorher eingestellten
Reservehandlers. Der Reservehandler wird stets aufgerufen, wenn sich der Reservespeicher verdandert
hat, also wenn Reservespeicher angefordert oder freigegeben wurde oder wenn sich seine GroRRe
verandert hat.

tpf_AllocHandler t1_SetOverflowHandler (tpf AllocHandler pf allocHandler);

Setzt die globale Funktion fiir den Overflowhandler und liefert die Adresse des vorher eingestellten
Overflowhandlers. Der Overflowhandler wird aufgerufen, wenn kein Reservespeicher mehr zur
Verfligung steht und eine Speicheranforderung von der C-Standardbibliothek nicht erfiillt werden konnte.
Innerhalb der Bibliothek Spirick Tuning wird der Speichertberlauf an einer zentralen Stelle, in den
Funktionen t1_Alloc und t1 Realloc, behandelt. Alle anderen Programmteile gehen davon aus, daR eine
angeforderte Speicheroperation korrekt ausgefiihrt wurde. Deshalb darf im Overflowhandler keine
Exception ausgeldst werden. Diese Exception wirde in der Bibliothek Spirick Tuning nicht behandelt
werden und dazu fihren, dafd das Objekt, das gerade Speicher angefordert hat, in einem inkonsistenten
Zustand verbleibt.

void t1_SetReserveSize (t UInt u_resSize);
Setzt die neue GroRe des Reservespeichers auf u_resSize. AnschlieBend kann mit t1_HasReserve gefragt
werden, ob Reservespeicher mit der neuen GréfRe bereitgestellt werden konnte.

t UInt t1_GetReserveSize ();
Liefert die Grofde des Reservespeichers. Der Rlickgabewert ist unabhéngig davon, ob gerade
Reservespeicher bereitsteht oder nicht.

bool t1 HasReserve ();

Liefert true, wenn Reservespeicher bereitsteht.

void t1_FreeReserve ();

Gibt den Reservespeicher frei. AnschlieBend liefert t1 HasReserve den Wert false.

void t1_AllocReserve ();

Versucht, den Reservespeicher anzufordern. AnschlieRend kann mit t1 HasReserve gefragt werden, ob
Reservespeicher bereitsteht.

1.1.3 Dynamischer Speicher (tuning/sys/calloc.hpp)

Die Systemschnittstelle baut direkt auf der C-Standardbibliothek auf. Sie verwendet die globalen
Funktionen malloc, realloc und free. Debughilfen und Heapwalker der C-Standardbibliothek kénnen
uneingeschrankt weitergenutzt werden. Die Funktionen t1_Alloc und t1 _Realloc nutzen darlberhinaus
den Reservespeicher. Kann z. B. malloc keinen Speicher mehr liefern, gibt t1_Alloc den Reservespeicher
frei und ruft malloc erneut auf.

Spirick Tuning Referenzhandbuch Seite 8

Funktionen

t UInt t1 _StorelnfoSize ();
Liefert die Anzahl Bytes Verwaltungsspeicher pro Speicherblock. Dieser Wert wird fiir die Berechnung
gerundeter BlockgroRen bendtigt.

t UInt t1 _MaxAlloc ();
Liefert die maximale Anzahl Bytes, die zusammenhéngend bereitgestellt werden kénnen, d. h. die
maximale Grol3e eines einzelnen Speicherblocks.

void * t1_ATloc (t_UInt u_size):

Stellt einen zusammenhéngenden Speicherblock der GroRe u_size bereit. Ist u_size gleich Null, wird Null
zuriickgegeben. Bei Speicherlberlauf werden Reservehandler und Overflowhandler aufgerufen (siehe
Abschnitt ‘Reservespeicher’).

void * t1_Realloc (void * pv_ptr, t UInt u_size);

Verandert die GroRRe des Speicherblocks pv_ptr auf u_size. Bei pv_ptr gleich Null ist t1 Realloc identisch
mit t1_Alloc. Bei u_size gleich Null ist t1_Realloc identisch mit t1_Free. Bei Speicherlberlauf werden
Reservehandler und Overflowhandler aufgerufen (siehe Abschnitt ‘Reservespeicher’).

void t1 _Free (void * pv_ptr);
Gibt den Speicherblock pv_ptr frei. Der Wert pv_ptr gleich Null ist erlaubt.

Zugehorige Klassen

Die globalen Funktionen dieser Schnittstelle dienen als Grundlage der Klassen ct_StdStore, ct_RndStore
und ct_ChnStore.

1.1.4 Heapoperationen (tuning/sys/calloc.hpp)

Debughilfen und Heapwalker sind leider nicht standardisiert. Deshalb enthélt die Systemschnittstelle nur
einige ausgewahlte Heapinformationen. Die Struktur st HeapInfo enthalt die Anzahl und die GesamtgréiRe
genutzter und ungenutzter Speicherblocke sowie die GesamtgroRe des Heaps. Die ungenutzten
Speicherblécke sind ein Mald fiir die Speicherfragmentierung. Die HeapgréfRRe gibt Auskunft Gber den
Gesamtspeicherbedarf des Programms. Zu beachten ist, daR MS Visual C++ keine Informationen Gber
die Freiliste liefert.

Strukturdeklaration

struct st_HeapInfo

{

unsigned long u_Allockntries;
unsigned long u_Freekntries;
unsigned long u_AllocSize;
unsigned long u_FreeSize;
unsigned long u_HeapSize;
s

Funktionen

pbool t1_QueryHeapInfo (st HeapInfo * pso_info);

Speichert in pso_info Daten Uber den aktuellen Zustand des Heaps. Wurden im Heap keine Fehler
gefunden, liefert die Funktion den Wert true. Der Rlickgabewert false deutet auf Inkonsistenzen im Heap
hin.

Spirick Tuning Referenzhandbuch Seite 9

bool t1_FreeUnused ();

Versucht, ungenutzten Freispeicher an das Betriebssystem zurlickzugeben. Der Riickgabewert false
deutet auf Inkonsistenzen im Heap hin.

1.1.5 Speicheroperationen (tuning/sys/cmemory.hpp)

Die Systemschnittstelle flir Speicheroperationen baut direkt auf der C-Standardbibliothek auf. Sie
verwendet globale Funktionen wie memcpy und memcmp. Zusétzlich werden einige Sonderfalle
bericksichtigt, die von der C-Standardbibliothek nicht immer korrekt behandelt werden. Ist z. B. die
Léange einer Operation gleich Null, kénnen die Zeigerparameter unglltige Werte enthalten. Alle Parameter
werden mit ASSERT-Makros UGberprift. Von allen Funktionen existiert jeweils eine Version fir die
Datentypen char und wchar_t. Alle Ldngenangaben beziehen sich auf die Anzahl der Zeichen und nicht auf
die Anzahl der Bytes.

Funktionen

void t1_CopyMemory (char * pc_dst, const char * pc_src, t _UInt u_len);
void t1_CopyMemory (wchar_t * pc_dst, const wchar_t * pc_src, t UInt u_len);:

Kopiert u_len Zeichen von pc_src nach pc_dst. Diese Funktion ist nicht fir Gberlappende Speicherbereiche
geeignet.

void t1_MoveMemory (char * pc_dst, const char * pc_src, t Ulnt u_len);
void t1_MoveMemory (wchar_t * pc_dst, const wchar t * pc_src, t UInt u_Ten);

Kopiert u_len Zeichen von pc_src nach pc_dst. Diese Funktion ist auch fir Gberlappende Speicherbereiche
geeignet.

char * t1_FillMemory (char * pc_dst, t UInt u_len, char c_fill);
wchar_t * t1 _FillMemory (wchar t * pc_dst, t UInt u_len, wchar_t c_fill);

Fillt u_len Zeichen beginnend bei pc_dst mit dem Zeichen c_fill.

int t1_CompareChar (char cl, char c2);
int t1_CompareChar (wchar_t cl, wchar t c2);

Vergleicht die Zeichen cl und c2 miteinander. Das Resultat ist bei cl < c2 kleiner Null, bei c1 == c2 gleich
Null und bei cl1 > c2 groRer Null. Die beiden Zeichen werden ohne Vorzeichen miteinander verglichen. Z.
B. gilt "\x40" < "\xC0".

int t1_CompareMemory (const char * pcl, const char * pc2, t UInt u_Ten);
int t1_CompareMemory (const wchar_t * pcl, const wchar t * pc2, t UInt u_len);

Vergleicht die ersten u_len Zeichen der Speicherbereiche pcl und pc2. Das Resultat ist bei pcl < pc2 kleiner
Null, bei pcl == pc2 gleich Null und bei pcl > pc2 groRer Null. Die einzelnen Zeichen werden ohne
Vorzeichen miteinander verglichen. Z. B. gilt "\x40" < "\xC0".

const char * t1_FirstChar (const char * pc_mem, t UInt u_len, char c_search):
const wchar_t * t1 FirstChar (const wchar t * pc_mem, t UInt u len, wchar_t c_search);

Sucht in den ersten u_len Zeichen des Speicherbereiches pc_mem nach dem ersten Auftreten des Zeichens
c_search. Wurde das Zeichen nicht gefunden, ist der Riickgabewert gleich Null.

const char * t1_FirstMemory (const char * pc mem, t UInt u_len, const char * pc_search, t UInt u_searchLen);
const wchar_t * t1 FirstMemory (const wchar t * pc_mem, t UInt u_len, const wchar t * pc_search, t Ulnt
u_searchlLen);

Sucht in den ersten u_len Zeichen des Speicherbereiches pc_mem nach dem ersten Auftreten der
Zeichenfolge pc_search, die u_searchLen Zeichen lang ist. Wurde die Zeichenfolge nicht gefunden, ist der
Rickgabewert gleich Null.

Spirick Tuning Referenzhandbuch Seite 10

const char * t1_LastChar (const char * pc_mem, t UInt u Ten, char c_search);
const wchar_t * t1_LastChar (const wchar t * pc_mem, t UInt u len, wchar_t c_search);

Sucht in den ersten u_len Zeichen des Speicherbereiches pc_mem nach dem letzten Auftreten des Zeichens
c_search. Wurde das Zeichen nicht gefunden, ist der Riickgabewert gleich Null.

const char * t1_LastMemory (const char * pc_mem, t UInt u_len, const char * pc_search, t UInt u_searchlLen);
const wchar_t * t1 _LastMemory (const wchar t * pc_mem, t UInt u_len, const wchar t * pc_search, t Ulnt
u_searchlLen);

Sucht in den ersten u_len Zeichen des Speicherbereiches pc_mem nach dem letzten Auftreten der
Zeichenfolge pc_search, die u_searchLen Zeichen lang ist. Wurde die Zeichenfolge nicht gefunden, ist der
Rickgabewert gleich Null.

template <t UInt u_Ten>
void t1_SwapMemory (void * pvl, void * pv2);

Tauscht den Inhalt der Speicherbereiche pvl und pv2 mit der Lange u_len Bytes aus.

template <class t_obj>
void t1_SwapObj (t obj & ol, t_obj & 02);

Tauscht den Wert der Objekte 01 und 02 durch dreimaliges Aufrufen von operator = aus. Dabei wird ein
drittes lokales Objekt verwendet.

Zugehorige Klassen

Die globalen Funktionen dieser Schnittstelle dienen als Grundlage der Templates gct CharBlock und
gct _String.

1.2 Store

1.2.1 Storeschnittstelle

Stores sind Speicherverwaltungsobjekte. Zur Erhdhung der Flexibilitdt und Performance besitzen sie
keine gemeinsame Basisklasse mit virtuellen Methoden. Sie verfligen jedoch Uber eine einheitliche
Schnittstelle. Diese vereinfacht die Handhabung und ermdéglicht das leichte Austauschen eines Stores
gegen einen anderen. Es werden nicht alle Methoden von allen Stores unterstlitzt. Damit beim
Verwenden einer Storeklasse als Templateparameter keine Syntaxfehler auftreten, enthalt die
Deklaration der Klasse auch nicht unterstiitzte Methoden. Diese enthalten jedoch in ihrer Definition die
Anweisung ASSERT (false).

Klassendeklaration

class ct_AnyStore
{

public:
typedef t UInt t Size;
typedef void * t Position;
void Swap (ct_AnyStore & co_swap);
t Ulnt StorelnfoSize ();
t UInt MaxAlloc ();
t Position Alloc (t_Size o_size);
t_Position Realloc (t_Position o pos, t Size o size);
void Free (t_Position o pos);
void * AddrOf (t_Position o_pos);
t_Position PosOf (void * pv_adr);:

Spirick Tuning Referenzhandbuch Seite 11

t Size SizeQf (t_Position o pos);

t Size RoundedSizeOf (t_Position o_pos);
bool CanFreeAll ();
void FreeAll ()
b
Datentypen

typedef t UInt t Size;

Der geschachtelte Typ t Size beschreibt die GroRRe der Speicherblécke, die der Store verwalten kann.
Neben t UInt werden auch t UInt8, t UIntl6 und t UInt32 verwendet. Ist z. B. t Size auf t_UInt8 definiert,
kann ein Speicherblock maximal 255 Bytes umfassen. Ein angepal3ter GréRentyp verringert den
Speicherbedarf von Objekten, die GroRenangaben enthalten.

typedef void * t Position;

Stores verwalten ihre Speicherblécke mit Hilfe von Positionszeigern. Neben void * werden auch t _UInt,
t UInt8, t UIntl6e und t UInt32 verwendet. Bei allen Positionstypen ist der Wert Null per Definition
unglltig. Der Zugriff auf den Speicher erfolgt i. a. mit der Methode AddrOf. Bei einigen Stores, die void *
als Positionstyp verwenden, ist ein Positionszeiger gleich dem physischen Zeiger. Auch in diesen Fallen
sollte die Methode AddrOf verwendet werden, denn sie ist inline definiert und bendtigt keine zusatzliche
Rechenzeit.

Methoden

void Swap (ct_AnyStore & co_swap);
Tauscht den Inhalt der beiden Objekte aus.

t UInt StorelnfoSize ();
Liefert die Anzahl Bytes Verwaltungsspeicher pro Speicherblock. Diese Methode wird nicht von allen
Stores unterstltzt.

t UInt MaxAlloc ();
Liefert die maximale Anzahl Bytes, die zusammenhangend bereitgestellt werden kénnen, d. h. die
maximale Grol3e eines einzelnen Speicherblocks.

t Position Alloc (t_Size o_size):

Stellt einen zusammenhangenden Speicherblock der Gré3e o_size bereit. Ist 0_size gleich Null, wird Null
zurlickgegeben. Bei Speicherlberlauf werden Reservehandler und Overflowhandler aufgerufen (siehe
Abschnitt ‘Reservespeicher’).

t Position Realloc (t Position o _pos, t Size o size);

Verandert die GrolRe des Speicherblocks o pos auf o size. Bei 0_pos gleich Null ist Realloc identisch mit
Alloc. Bei 0_size gleich Null ist Realloc identisch mit Free. Bei Speichertiberlauf werden Reservehandler
und Overflowhandler aufgerufen (siehe Abschnitt ‘Reservespeicher’).

void Free (t Position o pos);

Gibt den Speicherblock o pos frei. Der Wert o_pos gleich Null ist erlaubt.

void * AddrOf (t Position o_pos);

Berechnet die zum Positionszeiger o_pos gehérende Speicheradresse. Bei o_pos gleich Null liefert AddrOf
den Nullzeiger.

Spirick Tuning Referenzhandbuch Seite 12

t Position PosOf (void * pv_adr);

Berechnet den zur Speicheradresse pv_adr gehérenden Positionszeiger. Diese Methode wird nicht von
allen Stores unterstitzt.

t Size SizeOf (t_Position o_pos):

Berechnet die exakte GroRRe des Speicherbereichs, auf den o _pos zeigt, d. h. die GroRRe, die bei Alloc oder
Realloc angegeben wurde. Diese Methode wird nicht von allen Stores unterstitzt.

t_Size RoundedSizeOf (t Position o_pos);

Berechnet die aufgerundete interne GréRe des Speicherbereichs, auf den o pos zeigt. Diese Methode wird
nicht von allen Stores unterstiitzt.

bool CanFreeAll ():

Liefert true, wenn der Store samtlichen Speicher, der von ihm angefordert wurde, zusammenhangend
freigeben kann.

void FreeAll ():

Gibt samtlichen Speicher, der vom Store angefordert wurde, frei. Diese Methode wird nicht von allen
Stores unterstlitzt.

1.2.2 Globale Stores (tuning/defs.hpp)

Stores werden innerhalb der Bibliothek Spirick Tuning sehr unterschiedlich eingesetzt. Von den drei
dynamischen Stores (siehe folgende Abschnitte) wird je eine globale Instanz erzeugt, auf die mit
generierten Wrapperklassen zugegriffen wird. Z. B. reicht es in den meisten Fallen aus, vom Roundstore
nur eine einzelne Instanz zu bilden. Die eingestellten Parameter zum Runden der BlockgréRRe gelten dann
fir das gesamte Programm.

Zahlreiche Templates erwarten als Parameter eine Storeklasse und bilden eine Instanz davon. Z. B.
enthalt jeder Listencontainer ein Storeobjekt, von dem er den Speicher flr seine Nodes anfordert. Eine
Blockliste enthalt einen 'echten' Store (einen Blockstore). Eine 'normale’ Liste nutzt jedoch ein globales
Storeobjekt und greift mit Hilfe eines Wrapperobjektes darauf zu.

Zu jedem globalen Storeobjekt werden vier Wrapperklassen generiert. Diese unterscheiden sich nur
durch den GroRentyp t Size. Alle Methoden einer Wrapperklasse sind static deklariert. Sie kénnen
entweder direkt (z. B. bei gct _Block) oder Gber ein Wrapperobjekt (z. B. bei gct DList) aufgerufen werden.

Eine Wrapperklasse mappt ihre eigenen Methoden auf Methodenaufrufe des globalen Objekts. Sind fir
eine Storeklasse die Positionszeiger gleich den physischen Zeigern, kann der Zugriff auf den Speicher
Uber die Wrapperklasse beschleunigt werden. Anstatt die Methode AddrOf des globalen Objekts
aufzurufen, kann die Methode AddrOf der Wrapperklasse inline definiert werden.

Auf das generierte globale Storeobjekt kann mit einer Get-Funktion direkt zugegriffen werden. Das Objekt
wird nicht als ein globales C++-Objekt erzeugt, sondern beim ersten Zugriff tGber die Get-Funktion oder
beim Starten des ersten Threads. Dadurch ist der globale Store unabhéngig von der Reihenfolge der
Initialisierung globaler Objekte. Andere globale Objekte besitzen in ihrem Konstruktor einen sicheren
Zugriff auf globale Stores. Bei Bedarf kdnnen globale Stores mit einer Create-Funktion explizit erzeugt
werden.

Globale Stores werden nicht automatisch zerstért. Dadurch kénnen die Destruktoren anderer globaler
Objekte noch sicher auf angeforderten Speicher zugreifen. Das Zerstdren globaler Stores ist nicht
notwendig, denn sie verwalten nur rohe Speicherbldocke, die am Programmende vom Betriebssystem
automatisch freigegeben werden. Bei Bedarf kénnen globale Stores mit einer Delete-Funktion explizit
zerstort werden.

Spirick Tuning Referenzhandbuch Seite 13

GLOBAL _STORE DCLS(t store, Obj, inl_or stat)

Dieses Makro wird am Ende der Headerdatei der Storeklasse plaziert. Der Parameter t_store enthélt die
urspriingliche Storeklasse. Obj ist ein Namenskdirzel fir die generierten Namen. Es erlaubt das Generieren
mehrerer globaler Instanzen einer Storeklasse. Der Parameter inl_or_stat legt fest, ob die Methoden
AddrOf und PosOf der Wrapperklasse inline oder static deklariert werden sollen. Die Makroverwendung

GLOBAL_STORE_DCLS (ct_AnyStore, My. INLINE)
enthalt die folgenden Deklarationen (Makroparameter sind fett hervorgehoben):

void CreateMyStore ();

void DeleteMyStore ();
ct_AnyStore * GetMyStore ();
class ct_My Store;

class ct_My8Store;

class ct_MyléStore;

class ct_My32Store;

GLOBAL_STORE DEFS(t store, Obj, inl_or stat)

Dieses Makro wird in der Implementierungsdatei der Storeklasse plaziert. Es erwartet dieselben
Parameter wie GLOBAL_STORE_DCLS und generiert die Definition der Methoden.

1.2.3 Beispiel fir eine Wrapperklasse

Die vollsténdige Deklaration der Wrapperklasse ct Myl6Store aus dem vorigen Beispiel lautet:

class ct_MyléStore

{
public:
typedef t_UIntlé t_Size;
typedef ct AnyStore::t Position t Position;
typedef ct_AnyStore t_Store;
static void Swap (ct_MyléStore &);
static t_UInt StorelnfoSize ();
static t_UInt MaxATloc ();
static t_Position ATloc (t_Size o_size);
static t_Position Realloc (t_Position o _pos, t Size o size);
static void Free (t_Position o _pos);
static inline void * AddrOf (t Position o pos) { return o pos: }
static inTine t _Position PosOf (void * pv_adr) { return pv_adr; }
static t _Size SizeOf (t_Position o pos);
static t_Size RoundedSize0f (t Position o_pos):
static bool CanFreeAll ();
static void FreeAll ();
static ct_AnyStore * GetStore ();
b

Im Makro GLOBAL_STORE_DEFS werden drei Funktionen fiir das globale Objekt definiert:

static ct_AnyStore * pco MyStore;
void CreateMyStore ()

if (pco_MyStore == 0)
pco_MyStore = new ct AnyStore;

1
void DeleteMyStore ()
if (pco_MyStore != 0)

{
delete pco_MyStore;

Spirick Tuning Referenzhandbuch Seite 14

pco_MyStore = 0;
}

ct_AnyStore * GetMyStore ()

{

if (pco MyStore == 0)
CreateMyStore ();

return pco_MyStore;

}

Die generierte Definition der Methode ct Myl6Store:: Alloc lautet:

ct_Myl6Store::t Position
ct_MyléStore::Alloc (t_Size o size)
{ return GetMyStore ()-> Alloc (o _size); }

1.3 Dynamische Stores

1.3.1 Standardstore (tuning/std/store.hpp)

Die Klasse ct_StdStore enthalt keine eigene Funktionalitédt. Sie mappt die globalen Funktionen der
Systemschnittstelle auf Methoden der Storeschnittstelle. Als Beispiel folgt der Klassendeklaration die
Definition der Methode Alloc:

Klassendeklaration

class ct_StdStore
{
public:
typedef t Ulnt t Size;
typedef void * t Position;
static inline void Swap (ct_StdStore & co_swap);

static inline t_UInt StorelnfoSize ();
static inline t Ulnt MaxATloc ():

static inTine t Position Alloc (t_Size o size);
static inline t _Position Realloc (t Position o _pos, t Size o size);
static inline void Free (t_Position o _pos);

static inline void * Addr0f (t_Position o_pos):
static inline t _Position PosOf (void * pv_adr);

static inline t _Size SizeOf (t_Position o _pos);

static inline t Size RoundedSizeOf (t _Position o_pos);
static inline bool CanFreeAll ();

static inline void FreeAll ();

b

inline ct _StdStore::t Position ct _StdStore::Alloc (t Size o size)
{ return t1_Alloc (o_size): }

Besonderheiten, Wrapperklassen

Die folgenden Methoden werden vom Standardstore nicht unterstiitzt: Size0f, RoundedSizeOf und FreeAll.
Da die Klasse ct StdStore auf der Systemschnittstelle aufbaut, nutzt sie indirekt auch die Funktionalitat
des Reservespeichers. Z. B. kann mit der globalen Funktion t1 HasReserve gefragt werden, ob noch
Reservespeicher bereit steht. Jede Speicheranforderung flihrt Gber die Systemschnittstelle zu einem

Spirick Tuning Referenzhandbuch Seite 15

Aufruf von malloc. Debughilfen und Heapwalker der C-Standardbibliothek kénnen uneingeschrankt
weitergenutzt werden.

In der Headerdatei des Standardstores werden Funktionen fiir das globale Objekt und vier
Wrapperklassen deklariert:

void CreateStdStore ();

void DeleteStdStore ():
ct_StdStore * GetStdStore ();
class ct_Std Store;

class ct_Std8Store;

class ct _StdleStore;

class ct_Std32Store;

1.3.2 Roundstore (tuning/rnd/store.hpp)

Die Klasse ct _RndStore nutzt dhnlich wie ct_StdStore die Systemschnittstelle, rundet jedoch alle
GrolRenangaben, bevor sie an die globalen Funktionen weitergegeben werden. Die Berechnung der
gerundeten Werte erfolgt in der privaten Methode Round.

Klassendeklaration
class ct _RndStore
{
public:
typedef t UInt t Size;
typedef void * t Position;
ct_RndStore ():
void Swap (ct_RndStore & co_swap);

static inline t UInt StorelnfoSize ();
static inline t_UInt MaxATloc ();

inTine t_Position ATloc (t_Size o_size);

inTine t_Position Realloc (t_Position o _pos, t Size o size);
static inline void Free (t_Position o_pos);

static inline void * Addr0f (t_Position o_pos):

static inTine t Position PosOf (void * pv_adr);

static inline t Size SizeOf (t_Position o _pos);
static inline t Size RoundedSizeOf (t_Position o_pos);
static inline bool CanfFreeAll ();

static inline void FreeAll ();

b

inTine ct RndStore::t Position ct RndStore::Alloc (t Size o_size)
{ return t1_Alloc (Round (o_size)): }

Die Rundung der BlockgréRBen wirkt der Speicherfragmentierung entgegen. Dadurch verkleinert sich der
ungenutzte Freispeicher, und die Speicherverwaltung wird splirbar schneller. Der Roundstore rundet alle
Anforderungen auf die nachst héhere Zweierpotenz.

Der Speicherplatz, der durch die grobe Rundung verlorengeht, wird durch die geringere Fragmentierung
ausgeglichen, und die Speicherverwaltung wird splrbar schneller. Bei einer sehr starken Belastung des
dynamischen Speichers sollte der Chainstore verwendet werden. Er besitzt einen deutlich héheren
Wirkungsgrad als der Roundstore.

Spirick Tuning Referenzhandbuch Seite 16

Der Wirkungsgrad des Roundstores hangt stark von der Implementierung der C-Standardbibliothek ab.
Enthalt diese bereits eigene Rundungsmechanismen, fallt die Nachbereitung durch den Roundstore
weniger ins Gewicht. Der Roundstore fihrt bei vielen <eren Compilern zu einem meRbaren
Geschwindigkeitsgewinn gegenliber dem Standardstore.

Besonderheiten, Wrapperklassen

Die folgenden Methoden werden vom Roundstore nicht unterstlitzt: SizeOf, RoundedSizeOf und FreeAll. Da
die Klasse ct RndStore auf der Systemschnittstelle aufbaut, nutzt sie indirekt auch die Funktionalitat des
Reservespeichers. Z. B. kann mit der globalen Funktion t1 HasReserve gefragt werden, ob noch
Reservespeicher bereit steht. Jede Speicheranforderung flihrt Gber die Systemschnittstelle zu einem
Aufruf von malloc. Debughilfen und Heapwalker der C-Standardbibliothek kénnen uneingeschrankt
weitergenutzt werden.

In der Headerdatei des Roundstores werden Funktionen flir das globale Objekt und vier Wrapperklassen
deklariert:

void CreateRndStore ();

void DeleteRndStore ();
ct_RndStore * GetRndStore ();
class ct_Rnd Store;

class ct _Rnd8Store;

class ct_Rndl6Store;

class ct Rnd32Store;

1.3.3 Chainstore (tuning/chn/store.hpp)

Die Klasse ct_ChnStore ist eine Weiterentwicklung des Roundstores. Der Chainstore ist auf Programme
mit starker Belastung der Speicherverwaltung ausgerichtet. Er enthalt eine Optimierungstechnologie fir
maximale Geschwindigkeit. Sie wirkt auch der Speicherfragmentierung effektiv entgegen und benétigt in
einigen Fallen etwas weniger, in anderen Féllen bis zu 25% mehr Gesamtspeicher als der Standardstore.
Der Chainstore bringt Programmen mit geringer Belastung der Speicherverwaltung keine Nachteile und
ist universell einsetzbar.

Klassendeklaration
class ct_ChnStore
{
pubTlic:
typedef t UInt t Size;
typedef void * t Position;
ct_ChnStore ();
~ct_ChnStore ();
void Swap (ct_ChnStore & co_swap);

static inline t_UInt StoreInfoSize ();
static inline t Ulnt MaxAlloc ();

t_Position Alloc (t _Size o_size);

t_Position Realloc (t_Position o pos, t Size o size);
void Free (t_Position o _pos);

static inline void * AddrOf (t _Position o_pos);

static inline t _Position PosOf (void * pv_adr);

static inline t Size SizeOf (t_Position o_pos);
inTine t Size RoundedSizeOf (t_Position o_pos);
static bool CanFreeAlT ();

Spirick Tuning Referenzhandbuch Seite 17

static void FreeAll ();

unsigned GetMaxChainExp ();

void SetMaxChainExp (unsigned u_exp);
t UInt GetEntries ();

t UInt GetSize ();

t UInt QueryAllocEntries ();

t UInt QueryAllocSize ():

t UInt QueryFreeEntries ();

t UInt QueryFreeSize ();

void FreeUnused ():

b

Der Chainstore rundet dhnlich wie der Roundstore alle Anforderungen auf die nachst héhere
Zweierpotenz. Normalerweise bildet eine dynamische Speicherverwaltung eine lineare Liste der
Freielemente. Bei jeder neuen Speicheranforderung wird diese Liste durchlaufen, bis ein passendes
Element gefunden wird. Die Suche benétigt bei zunehmender Speicherfragmentierung (langere Liste)
immer mehr Rechenzeit. Die Rundung fihrt jedoch zu wesentlich weniger mdéglichen BlockgréRen. Damit
wachst die Wahrscheinlichkeit, sehr schnell einen passenden Block zu finden.

Der Chainstore besitzt zusétzlich eine eigene Verwaltung des Freispeichers. Er legt fiir jede einzelne
BlockgroRRe eine eigene Liste (Chain) der Freielemente an. Bei einer neuen Speicheranforderung greift er
direkt auf die passende Freiliste zu. Existiert dort ein Element, wird es aus der Liste entfernt. Andernfalls
wird Uber die Systemschnittstelle mit der Funktion t1_Alloc neuer Speicher angefordert.

Wird ein Speicherblock an den Chainstore zuriickgegeben, reicht dieser ihn nicht sofort an die C-
Standardbibliothek weiter, sondern ordnet ihn der passenden eigenen Freiliste zu. Dort steht der
Speicherblock fir neue Anforderungen direkt zur Verfligung. Zum Ermitteln der BlockgréRe bendtigt der
Chainstore acht zusatzliche Bytes pro Block. Am Anfang jedes Speicherblocks wird seine exakte und
gerundete GroRe untergebracht. Mit Hilfe dieser Zusatzinformationen kann der Chainstore die Methoden
SizeOf und RoundedSizeOf der allgemeinen Storeschnittstelle unterstlitzen, und sie ermdglichen eine
Buchfihrung Uber die genutzten und freien Blécke.

Die eigene Verwaltung des Freispeichers ist besonders effektiv bei speicherintensiven Rechenvorgéngen,
die etwa gleichviel Speicher freigeben und wieder anfordern. Wurde jedoch wesentlich mehr Speicher
freigegeben als neu angefordert (z. B. beim SchlieRen eines Dokuments in einer interaktiven
Anwendung), besitzt der Chainstore unndétig grof3e Freilisten. Am Ende des Vorgangs sollte die Methode
FreeUnused aufgerufen werden. Sie leert samtliche Freilisten und gibt deren Elemente mit der Funktion

t1 Free an die C-Standardbibliothek zurtick.

Mit zunehmender BlockgroRe wird die Wahrscheinlichkeit der Speicherfragmentierung immer geringer.
Gleichzeitig erhoht sich die Wahrscheinlichkeit, daf? sich in den Freilisten unndétig viel ungenutzter
Speicher befindet. Z. B. ist es bei einem Gesamtspeicher von 4 GB unwahrscheinlich, dal Blécke mit
einer GroRe von 100 MB oder mehr fragmentieren. Wenn mehrere Blécke der GroRe 100 MB ungenutzt
in einer Freiliste auf eine neue Verwendung warten, erhéht sich unnétig der Gesamtspeicherbedarf.
Deshalb kann man im Chainstore die maximale GréRRe fir die Verwendung von Freilisten einstellen.
Blocke mit einer GroRe oberhalb dieser Grenze werden bei der Freigabe nicht in die zugehdrige Freiliste
einsortiert, sondern mit der Funktion t1_Free direkt an die C-Standardbibliothek zuriickgegeben. Der
Chainstore funktioniert oberhalb dieser Grenze also ahnlich wie der Roundstore beim Schritt-Teiler Eins.

Neben den allgemeinen Storemethoden enthélt die Klasse ct ChnStore noch Buchfliihrungsmethoden. Da
vom Chainstore ein globales Objekt gebildet wird, sind seine privaten Attribute gegen den
konkurrierenden Zugriff mehrerer Threads geschitzt.

Zusatzliche Methoden
unsigned GetMaxChainExp ();

Liefert den maximalen Exponenten fir Freilisten.

Spirick Tuning Referenzhandbuch Seite 18

void SetMaxChainExp (unsigned u_exp);
Setzt den maximalen Exponenten fir Freilisten. Die maximale GroRe fir Blécke in Freilisten wird nicht als
BytegréfRe, sondern als Exponent angegeben. Z. B. bedeutet der Exponent 10, dal3 alle Blécke, die
groBer als 2710 (1 KB) sind, nicht in Freilisten einsortiert werden. Der Defaultwert ist 22 (4 MB).

t UInt GetEntries ();
Liefert die Gesamtzahl der genutzten und ungenutzten Speicherblécke, die von dieser Instanz des
Chainstores verwaltet werden.

t UInt GetSize ()

Liefert die GesamtgréfRe der genutzten und ungenutzten Speicherblocke.

t UInt QueryAllocEntries ();

Berechnet die Anzahl der genutzten Speicherblocke.

t UInt QueryAllocSize ();

Berechnet die GesamtgroRe der genutzten Speicherblécke.

t UInt QueryFreeEntries ();

Berechnet die Anzahl der ungenutzten Speicherblocke.

t UInt QueryFreeSize ();

Berechnet die GesamtgréRe der ungenutzten Speicherbldcke.

void FreeUnused ():

Leert alle Freilisten und gibt deren Speicher an die C-Standardbibliothek zurlick.

Besonderheiten, Wrapperklassen

Die Methode FreeAll wird vom Chainstore nicht unterstliitzt. Da die Klasse ct_ChnStore auf der
Systemschnittstelle aufbaut, nutzt sie indirekt auch die Funktionalitdt des Reservespeichers. Z. B. kann
mit der globalen Funktion t1 HasReserve gefragt werden, ob noch Reservespeicher bereit steht. Jede
Speicheranforderung flihrt Uber die Systemschnittstelle zu einem Aufruf von malloc. Debughilfen und
Heapwalker der C-Standardbibliothek kénnen uneingeschrankt weitergenutzt werden. Es ist jedoch zu
beachten, daR Elemente der eigenen Freilisten des Chainstores beim Durchlaufen des Heaps nicht als
frei, sondern als genutzt erscheinen, und daf sich am Anfang jedes Blocks acht Bytes
Zusatzinformationen befinden.

In der Headerdatei des Chainstores werden Funktionen fir das globale Objekt und vier Wrapperklassen
deklariert:

void CreateChnStore ();

void DeleteChnStore ();
ct_ChnStore * GetChnStore ();
class ct_Chn_Store;

class ct_Chn8Store;

class ct_ChnléStore;

class ct _Chn32Store;

1.3.4 Operatoren new und delete (tuning/newdel.cpp)

Um die Vorteile des Chainstores der globalen C++-Speicherverwaltung zur Verfligung zu stellen, werden
in der Datei "tuning/newdel.cpp’ die globalen Operatoren new und delete Gberschrieben. Sie greifen auf
das globale Chainstore-Objekt zu. Unterstiitzt der verwendete Compiler die Operatoren new [] und delete
[1, werden auch diese Uberschrieben.

Spirick Tuning Referenzhandbuch Seite 19

void * operator new (size t u size)

return GetChnStore ()-> Alloc (u_size);

}

void operator delete (void * pv)

GetChnStore ()-> Free (pv);
}

void * operator new [] (size t u_size)

return GetChnStore ()-> Alloc (u_size);

}

void operator delete [] (void * pv)

{
GetChnStore ()-> Free (pv);

}

1.4 Block

1.4.1 Blockschnittstelle

Zahlreiche Klassen der Bibliothek Spirick Tuning verwenden dynamische Speicherblécke zur
Unterbringung ihrer Daten. lhre gemeinsame Grundlage ist das Blockkonzept. Ein Block ist ein Objekt,
das einen Speicherbereich dynamischer GréRe verwaltet. Ahnlich wie Storeklassen besitzen auch
Blockklassen keine gemeinsame Basisklasse mit virtuellen Methoden, aber eine einheitliche Schnittstelle.
Diese vereinfacht die Handhabung und ermdglicht das leichte Austauschen eines Blocks gegen einen
anderen. Blockklassen dienen als Templateparameter fiir Strings, Arrays und Blockstores.

Klassendeklaration
class ct_AnyBlock
{
public:
typedef t Ulnt t Size;
ct_AnyBlock ():
ct_AnyBlock (const ct AnyBlock & co_init);
~ct_AnyBlock ();
ct_AnyBlock & operator = (const ct AnyBlock & co_asgn);
void Swap (ct_AnyBlock & co_swap);
static t_UInt GetMaxByteSize ();
t Size GetByteSize () const;
void SetByteSize (t Size o newSize);
void * GetAddr () const;
b
Datentypen

typedef t UInt t_Size;

Der geschachtelte GroRentyp einer Blockklasse bestimmt den Wertebereich der Gré3en- und
Positionsangaben. AufRer t UInt werden auch t UInt8, t UIntl6 und t UInt32 verwendet. Ist z. B. der
GroRentyp auf t_UInt8 definiert, kann der dynamische Speicherbereich maximal 255 Bytes umfassen. Der

Spirick Tuning Referenzhandbuch Seite 20

GrolRentyp beeinflul3t auch die GroRe des Blockobjekts, denn die meisten Blockklassen enthalten ein
Attribut des Typs t_Size.

Konstruktoren, Destruktor, Gleichoperator, Swap

Blockobjekte werden haufig kopiert. Deshalb enthélt jede Blockklasse einen Konstruktor,
Kopierkonstruktor, Destruktor und Gleichoperator. Viele Anwender von Blockklassen verlassen sich auf
das einwandfreie Funktionieren dieser Methoden.

ct_AnyBlock ();

Initialisiert ein leeres Blockobjekt (GroRe Null).

ct AnyBlock (const ct AnyBlock & co init);
Initialisiert ein Blockobjekt durch Kopieren des Inhalts von co_init. Es wird eine echte Kopie (deep copy)
angefertigt. Der Inhalt von co_init wird in einen eigenen Speicherbereich kopiert.

~ct_AnyBlock ();
Gibt den belegten Speicher frei.

ct_AnyBlock & operator = (const ct AnyBlock & co_asgn);:
Weist dem Blockobjekt einen neuen Inhalt zu. Es wird eine echte Kopie (deep copy) angefertigt. Nach
der Anpassung der GréRRe wird der Inhalt von co_asgn in den eigenen Speicherbereich kopiert.

void Swap (ct_AnyBlock & co_swap);
Tauscht den Inhalt der beiden Objekte aus.

Weitere Methoden
static t_UInt GetMaxByteSize ();

Liefert die maximale Groflie des dynamischen Speicherbereichs.

t Size GetByteSize () const;

Liefert die GrolRe des dynamischen Speicherbereichs.

void SetByteSize (t Size o newSize);

Setzt die GroRe des dynamischen Speicherbereichs auf o newSize. Der Wert Null ist erlaubt.

void * GetAddr () const;

Liefert die Anfangsadresse des dynamischen Speicherbereichs. Ist die Gré3e gleich Null, wird ein
Nullzeiger zuriickgegeben.

In den folgenden Abschnitten werden verschiedene Implementierungen der Blockschnittstelle vorgestellt.

1.4.2 Allgemeiner Block (tuning/block.h)

Das Klassentemplate gct Block enthélt die Standardimplementierung der Blockschnittstelle. Es basiert auf
einer Storeklasse, in der alle Methoden static deklariert sind. Diese Bedingung erfillen die
Wrapperklassen fir globale Storeobjekte, z. B. ct_Rndl6Store. Die Implementierung besteht aus der
Basisklasse gct BlockBase, der eigentlichen Blockklasse gct Block und den Erweiterungen

gct _EmptyBaseBlock und gct ObjectBaseBlock.

Spirick Tuning Referenzhandbuch Seite 21

Basisklasse

Die Basisklasse gct BlockBase enthélt je ein Attribut der Typen t Position und t_Size der Storeklasse.
Durch einen angepaldten GroRentyp t Size (z. B. t UIntl6 statt t UInt32) kann die GréRRe des Blockobjekts
optimiert werden. Fir die korrekte Ausrichtung der Attribute im Speicher kann der Compiler
Paddingbytes einfligen. Diese Paddingbytes kénnen nur innerhalb einer Klasse durch zusatzliche
Attribute nutzbar gemacht werden. Es ist z. B. nicht mdglich, in einer abgeleiteten Klasse die
Paddingbytes am Ende der Basisklasse zu nutzen. Im Beispielprogramm TBlock werden Paddingbytes in
einer modifizierten Block-Basisklasse verwendet.

Das Klassentemplate gct BlockBase erwartet als Parameter t _staticStore eine statische Storeklasse und
als Parameter t_base eine frei definierbare Basisklasse. Wegen der Mdglichkeit zuséatzlicher Attribute und
der variablen Basisklasse wird die Blockmethode Swap nicht in gct Block, sondern in gct_BlockBase
definiert.

Templatedeklaration

template <class t_staticStore, class t_base>
class gct BlockBase: public t base
{
public:
typedef t staticStore t StaticStore;
typedef t StaticStore::t Size t Size;

protected:
t StaticStore::t Position o Pos;
t Size 0 Size;

public:
inTine void Swap (gct BlockBase & co_swap);
inTine t _StaticStore::t Store * GetStore () const;
IE

Blockklasse

Das Klassentemplate gct Block erwartet als Parameter t_blockBase eine Klasse, die mindestens die
Datentypen, Attribute und Methoden wie gct BlockBase enthalt.

Templatedeklaration

template < class t _blockBase>
class gct Block: public t blockBase
{
public:
typedef t blockBase::t Size t Size;
typedef t blockBase::t StaticStore t StaticStore;

inline gct Block ();
inTine gct Block (const gct Block & co_init);
inline ~gct Block ();

inline gct Block & operator = (const gct Block & co_asgn);

static inline t _UInt GetMaxByteSize ();

inline t_Size GetByteSize () const;

inTine void SetByteSize (t_Size o_newSize):
inTine void * GetAddr () const;

b

Die Methoden des Klassentemplates gct Block enthalten nur wenige Anweisungen und sind durchgéangig
inline definiert. Da die Methoden der Storeklasse static deklariert sind, werden sie direkt aufgerufen.
Der Rechenzeitbedarf der Blockmethoden ist sehr gering

Spirick Tuning Referenzhandbuch Seite 22

template <class t staticStore>
inline void gct Block <t staticStore>::SetByteSize (t Size 0 newSize)

{
0 Size = 0_newSize;
0 _Pos = t_staticStore::Realloc (o _Pos. o Size);

}

Erweiterungen

Als oberste Basisklasse kdnnen z. B. die leere Klasse ct _Empty oder ct_Object verwendet werden. Dafir
existieren die beiden Erweiterungen gct EmptyBaseBlock und gct ObjectBaseBlock.

Templatedeklaration

template <class t_staticStore>
class gct EmptyBaseBlock:
public gct Block <gct BlockBase <t staticStore, ct Empty> >

{
1%

Templatedeklaration

template <class t_staticStore>
class gct ObjectBaseBlock:
public gct Block <gct BlockBase <t staticStore, ct Object> >

{
1%

1.4.3 Miniblock (tuning/miniblock.h)

Eine aus dem Template gct Block abgeleitete Klasse enthélt ein GroR3en- und ein Positionsattribut.
Unterstltzt der zugrunde gelegte Store die Methode Size0f, ist das GroRenattribut redundant. Diese
Eigenschaft wurde im Template gct _MiniBlock berlicksichtigt. Die Implementierung besteht dhnlich wie
bei gct _Block aus der Basisklasse gct MiniBlockBase, der eigentlichen Blockklasse gct MiniBlock und den
Erweiterungen gct_EmptyBaseMiniBlock und gct ObjectBaseMiniBlock.

Basisklasse

Das Klassentemplate gct MiniBlockBase enthalt ein Attribut des Typs t Position der Storeklasse. Es
erwartet als Parameter t_staticStore eine statische Storeklasse und als Parameter t_base eine frei
definierbare Basisklasse. Wegen der Mdglichkeit zusatzlicher Attribute und der variablen Basisklasse wird
die Blockmethode Swap nicht in gct MiniBlock, sondern in gct MiniBlockBase definiert.

Templatedeklaration

template <class t_staticStore, class t_base>
class gct MiniBlockBase: public t base
{
public:
typedef t staticStore t StaticStore;
typedef t StaticStore::t Size t Size;

protected:
t StaticStore::t Position o Pos;
public:
inTine void Swap (gct_MiniBlockBase & co_swap);
inTine t _StaticStore::t Store * GetStore () const;
b

Spirick Tuning Referenzhandbuch Seite 23

Blockklasse

Das Klassentemplate gct MiniBlock erwartet als Parameter t blockBase eine Klasse, die mindestens die
Datentypen, Attribute und Methoden wie gct MiniBlockBase enthalt.

Templatedeklaration

template <class t blockBase>
class gct MiniBlock: public t_blockBase
{
public:
typedef t blockBase::t Size t Size;
typedef t blockBase::t StaticStore t StaticStore;

inline gct _MiniBlock ();
inTine gct MiniBlock (const gct MiniBlock & co init);
inTine ~gct_MiniBlock ();

inline gct MiniBlock & operator = (const gct MiniBlock & co_asgn);

static inline t UInt GetMaxByteSize ();

inline t_Size GetByteSize () const;

inline void SetByteSize (t _Size o newSize);
inline void * GetAddr () const;

b

Ein Miniblockobjekt ist kleiner als ein vergleichbares Blockobjekt. Die Methode GetByteSize, die von
Blockanwendern (z. B. Strings) haufig aufgerufen wird, ist jedoch etwas langsamer. Das Template
gct _MiniBlock ist insbesondere fir Objekte geeignet, die in groRen Stiickzahlen auftreten.

template <class t blockBase>
inline gct MiniBlock <t blockBase>::t Size
gct_MiniBlock <t blockBase>::GetByteSize () const

return (t_Size) t_staticStore::SizeOf (o_Pos):

}

Erweiterungen

Als oberste Basisklasse konnen z. B. die leere Klasse ct_Empty oder ct_Object verwendet werden. Dafir
existieren die beiden Erweiterungen gct EmptyBaseMiniBTock und gct ObjectBaseMiniBlock.

Templatedeklaration

template <class t_staticStore>
class gct_EmptyBaseMiniBlock:
pubTic gct MiniBlock <gct MiniBlockBase <t staticStore, ct Empty> >
{
}

Templatedeklaration

template <class t _staticStore>
class gct ObjectBaseMiniBlock:
public gct MiniBlock <gct MiniBlockBase <t staticStore, ct Object> >
{
b

Spirick Tuning Referenzhandbuch Seite 24

1.4.4 Reserveblock (tuning/resblock.h)

Bei den Templates gct_Block und gct_MiniBlock werden Reallokationen vom verwendeten Store optimiert.
In einigen Fallen méchte der Anwender jedoch diese Optimierung selber durchfiihren, indem er zeitweise
mehr Speicher allokiert, als tatsédchlich verwendet wird. Diese Eigenschaft wurde im Template
gct_ResBlock berticksichtigt. Es hat als zuséatzliches Attribut eine MinimalgréRRe. Die GréRRe des allokierten
Speichers ist gleich dem Maximum aus Gréf3e und MinimalgréBe. D. h. bei Bedarf kann zusatzlicher
Speicher reserviert werden, um die Anzahl der Reallokationen zu verringern.

Ein typischer Anwendungsfall ist eine Zeichenkettenverarbeitung, bei der in einem bestimmten
Arbeitsschritt sehr viele Anderungen an einem Objekt vorgenommen werden, die i. a. auch mit einer
GroRenanderung verbunden sind. Wenn zusatzlich bekannt ist, dal3 die Zeichenkette nicht groRer als z.
B. 4096 Bytes wird, so setzt man die MinimalgroRe vor dem Arbeitsschritt auf 4096 und am Ende
wieder auf Null.

Die Implementierung besteht &hnlich wie bei gct Block aus der Basisklasse gct ResBlockBase, der
eigentlichen Blockklasse gct ResBlock und den Erweiterungen gct _EmptyBaseResBlock und
gct_ObjectBaseResBlock.

Basisklasse

Das Klassentemplate gct _ResBlockBase enthalt ein Attribut des Typs t Position und zwei Attribute des
Typs t_Size der Storeklasse. Es erwartet als Parameter t staticStore eine statische Storeklasse und als
Parameter t_base eine frei definierbare Basisklasse. Wegen der Méglichkeit zusatzlicher Attribute und der
variablen Basisklasse wird die Blockmethode Swap nicht in gct ResBlock, sondern in gct_ResBlockBase
definiert.

Templatedeklaration

template <class t staticStore, class t _base>
class gct ResBlockBase: public t base
{
public:
typedef t staticStore t StaticStore;
typedef t StaticStore::t Size t Size;

protected:
t StaticStore::t Position o _Pos;
t Size 0 Size;
t Size 0_MinSize;

public:
inline void Swap (gct_ResBlockBase & co_swap);
inline t StaticStore::t Store * GetStore () const;
b

Blockklasse

Das Klassentemplate gct_ResBlock erwartet als Parameter t _blockBase eine Klasse, die mindestens die
Datentypen, Attribute und Methoden wie gct ResBlockBase enthalt.

Templatedeklaration

template <class t blockBase>
class gct ResBlock: public t blockBase
{
public:
typedef t_blockBase::t Size t Size;
typedef t blockBase::t StaticStore t StaticStore;

Spirick Tuning Referenzhandbuch Seite 25

inline gct ResBlock ();
inline gct ResBlock (const gct ResBlock & co_init);
inline ~gct_ResBlock ();
inline gct ResBlock & operator = (const gct ResBlock & co _asgn);

static inline t _UInt GetMaxByteSize ();

inTine t_Size GetByteSize () const;

inTine void SetByteSize (t_Size o_newSize):
inline void * GetAddr () const;

inTine t _Size GetMinByteSize () const;

inTine t Size GetAllocByteSize () const;

inline void SetMinByteSize (t _Size o newSize):
b

Zusatzliche Methoden
t Size GetMinByteSize () const;

Liefert die Minimalgréf3e in Bytes.

t Size GetAllocByteSize () const;

Liefert die allokierten Bytes, d. h. das Maximum von Gréf3e und Minimalgréfe.

void SetMinByteSize (t Size o newSize);

Setzt die neue MinimalgréRRe in Bytes.

Erweiterungen

Als oberste Basisklasse kénnen z. B. die leere Klasse ct_Empty oder ct Object verwendet werden. Daflr
existieren die beiden Erweiterungen gct EmptyBaseResBlock und gct ObjectBaseResBlock.

Templatedeklaration

template <class t _staticStore>
class gct EmptyBaseResBlock:
public gct ResBlock <gct ResBlockBase <t staticStore, ct Empty> >

{
b

Templatedeklaration

template <class t_staticStore>
class gct _ObjectBaseResBlock:
public gct ResBlock <gct ResBlockBase <t staticStore, ct Object> >

{
b

1.4.5 Fixblock (tuning/fixblock.h)

Jede dynamische Speicherverwaltung besitzt eine MinimalgroRe fiir Speicherblécke und beansprucht pro
Block einige Bytes Verwaltungsspeicher. Dieser doppelte Overhead wirkt sich besonders bei kleinen
Anforderungen von 10 oder 16 Bytes aus. Ist von Instanzen eines Blocktyps bekannt, daf ihre GroRe
einen bestimmten Wert nicht Gberschreitet, kann mit Hilfe des Templates gct FixBlock der
Verwaltungsaufwand gesenkt werden.

Spirick Tuning Referenzhandbuch Seite 26

Templatedeklaration

template <class t size, t UInt u_fixSize>
class gct FixBlock

{
public:
typedef t size t Size;
protected:
t Size 0 Size;
char ac_Block [u_fixSizel;
public:
inTine gct FixBlock ():
inTine gct FixBlock (const gct FixBlock & co_init);
inline gct FixBlock & operator = (const gct FixBlock & co_asgn);
void Swap (gct FixBlock & co_swap);
static inline t_UInt GetMaxByteSize ();
inline t_Size GetByteSize () const;
inTine void SetByteSize (t_Size o newSize);
inline void * GetAddr () const;
1%

Ein Fixblockobjekt fordert den bendtigten Speicher nicht von einem Store an, sondern enthalt ihn als
Attribut ac_Block. Die Parameter t size und u_fixSize sollten aufeinander abgestimmt sein. Z. B. ist
gct FixBlock <t _UInt8, 15> eine sinnvolle Kombination. Das Blockobjekt umfal3t insgesamt 16 Bytes.

Der Parameter t_size beeinfluRt die Ausrichtung des Arrays ac_Block im Speicher. Ist z. B. t_size auf
t UIntlé gesetzt, dann belegt o Size 2 Bytes, ac_Block liegt auf einer 2-Byte-Grenze und das Blockobjekt

endet auf einer 2-Byte-Grenze. In diesem Block kénnen nur Objekte gespeichert werden, die eine 1- oder

2-Byte-Ausrichtung erfordern.

1.4.6 Nulldatablock (tuning/nulldatablock.h)

Stringklassen, die nullterminierte Zeichenketten verwalten, belegen auch im leeren Zustand den Speicher

fur das Nullzeichen. Durch die Rundung der BlockgréRen werden effektiv mindestens 8 oder 16 Bytes
belegt. Treten in einer Anwendung sehr haufig leere Stringobjekte auf, kann sich dieser Overhead zu
einem grofRen Betrag summieren. Der Nulldatablock behandelt dieses Problem, indem er statischen
Speicher fir ein einzelnes Zeichen bereitstellt und bei BlockgréRe 1 keinen dynamischen Speicher
verwendet.

Templatedeklaration

template <class t _block, class t null>
class gct NullDataBlock: public t block

{
public:
typedef t block::t Size t Size;
private:
static t_null o NullData;
public:
inTine t _Size GetByteSize () const;
inTine void SetByteSize (t_Size o _newSize);
inTine void * GetAddr () const;
b

Der Anwender des Nulldatablock mufd darauf achten, dafd bei BlockgréRe 1 nur das Nullzeichen in den
Speicher geschrieben wird und keine anderen Daten. Auf diese Weise ist der Nulldatablock auch ohne

Spirick Tuning Referenzhandbuch Seite 27

Synchronisierung sicher beim Zugriff durch mehrere Threads. Das Klassentemplate gct NullDataBlock
erwartet als Parameter eine Blockklasse, z. B. gct_EmptyBaseBlock <ct_Chn_Store>, und einen
Zeichendatentyp, also char oder wchar_t.

1.4.7 Zeichenblock (tuning/charblock.h)

Das Klassentemplate gct CharBlock erweitert die Blockschnittstelle um Zusatzfunktionen fir Zugriff,
Einfigen und Léschen von Zeichen. Es erwartet als Parameter eine Blockklasse, z. B. gct _EmptyBaseBlock
<ct_Chn_Store>, und einen Zeichendatentyp, also char oder wchar_t. Die byte-orientierten Aufrufe werden
privat deklariert, damit byte- und zeichen-orientierte Aufrufe nicht gemischt verwendet werden kénnen,
z. B. SetByteSize und GetCharSize.

Basisklasse

ct_AnyBlock (siehe Abschnitt ‘Blockschnittstelle’)

Templatedeklaration

template <class t _block, class t_char>
class gct CharBlock: public t block

{
public:
inline t _Size GetMaxCharSize () const;
inline t_Size GetCharSize () const;
inline void SetCharSize (t Size o size);
inTine void IncCharSize (t_Size o _inc);
inline void DecCharSize (t Size o dec);
inTine t_char * GetRawAddr () const:
inline t _char * GetRawAddr (t_Size o _pos) const;
inTine t_char * GetCharAddr () const;
inline t _char * GetCharAddr (t _Size o_pos) const;
t char * AppendChars (t_Size o_Ten);
t char * InsertChars (t_Size o pos, t Size o_count);
t char * DeleteChars (t_Size o pos, t Size o _count);
inTine t_char * Fil1Chars (t_Size o _pos, t Size o _count, t _char c_fill = (t _char) 0);
inline void AssignChars (const t_char * pc_asgn, t Size o _len);
inline void AppendChars (const t_char * pc_app, t _Size o_Ten);
inline void InsertChars (t_Size o_pos, const t char * pc_ins, t Size o_len);
void ReplaceChars (t Size o _pos, t Size o _dellen,
const t_char * pc_ins, t _Size o_inslLen);
inline t _Size GetDefaultPageSize () const;
inline void AlignPageSize (t_Size o_itemSize, t Size o _pageSize);
B
Methoden

t Size GetMaxCharSize ();

Liefert die maximale Anzahl der Zeichen im Block.

t Size GetCharSize () const;

Liefert die Anzahl der Zeichen im Block.

void SetCharSize (t Size o size);

Setzt die Anzahl der Zeichen im Block auf o_size.

Spirick Tuning Referenzhandbuch Seite 28

void IncCharSize (t Size o_inc);

VergroéRert den Block um o_inc Zeichen.

void DecCharSize (t Size o _dec);

Verkleinert den Block um o_dec Zeichen. Es mul3 o_dec <= GetCharSize () gelten.

t _char * GetRawAddr () const;

Liefert die Anfangsadresse des Blocks mit dem Typ t char *.

t_char * GetRawAddr (t_Size o_pos) const;
Liefert die Adresse des Zeichens an der Position o _pos. Es mufd o pos <= GetCharSize () gelten. Die
angegebene Position kann also auch hinter dem letzten Zeichen sein.
t _char * GetCharAddr () const;
Liefert die Anfangsadresse des Blocks mit dem Typ t char *. Der Block muf3 mindestens ein Zeichen
enthalten, d. h. der Rickgabewert zeigt garantiert auf ein Zeichen innerhalb des Blocks.
t char * GetCharAddr (t Size o _pos) const;
Liefert die Adresse des Zeichens an der Position 0_pos. Es mulR o _pos < GetCharSize () gelten, d. h. der
Rickgabewert zeigt garantiert auf ein Zeichen innerhalb des Blocks.
t char * AppendChars (t Size o _len);
VergroRert den Block um o_len Zeichen und gibt die Adresse des freigewordenen Speicherbereichs
zurtck.
t char * InsertChars (t Size o pos, t Size o len);
VergroéRert den Block um o Tlen Zeichen, verschiebt den Speicher an der Position o pos um o _len Zeichen
nach hinten (zu héheren Positionen) und gibt die Adresse des freigewordenen Speicherbereichs zuriick.
t _char * DeleteChars (t Size o pos, t Size o _len);
Verschiebt den Speicher an der Position 0 _pos um o_len Zeichen nach vorn (zu niedrigeren Positionen),
verkleinert den Block um o _len Zeichen und gibt die Adresse des verschobenen Speicherbereichs zurtick.
t _char * FillChars (t_Size o _pos, t Size o_len, t char c_fill = (t_char) 0);
Fallt o_Ten Zeichen ab der Position 0_pos mit dem Zeichen c_fi11 und gibt die Adresse des veranderten
Speicherbereichs zurick.
void AssignChars (const t _char * pc_asgn, t Size o_len);
Setzt die GroRRe auf o len Zeichen und kopiert die ersten o_len Zeichen der Zeichenkette pc_asgn in den
eigenen Speicherbereich (mit Priifung auf Selbstzuweisung).
void AppendChars (const t_char * pc_app, t _Size o _len);
VergroRert den Block um o_Tlen Zeichen und kopiert die ersten o_len Zeichen der Zeichenkette pc_app in
den freigewordenen Speicherbereich (ohne Prifung auf Selbstzuweisung).
void InsertChars (t_Size o_pos, const t_char * pc_ins, t_Size o_len);

VergroéRert den Block um o_Ten Zeichen, verschiebt den Speicher an der Position 0 _pos um o_len Zeichen
nach hinten (zu héheren Positionen) und kopiert die ersten o_len Zeichen der Zeichenkette pc_ins in den
freigewordenen Speicherbereich.

void ReplaceChars (t Size o pos, t Size o dellen, const t _char * pc_ins, t Size o _insLen);

Ersetzt o_dellLen Zeichen an der Position o_pos durch die ersten o_insLen Zeichen der Zeichenkette pc_ins.
Dabei kann der Block vergroRert oder verkleinert werden.

Spirick Tuning Referenzhandbuch Seite 29

t Size GetDefaultPageSize () const;
void AlignPageSize (t Size o itemSize, t Size o pageSize);

Mit diesen beiden Methoden wird gct_CharBlock kompatibel zur PageBlock-Schnittstelle..

1.4.8 Elementblock (tuning/itemblock.h)

Das Klassentemplate gct ItemBlock erweitert die Blockschnittstelle um Zusatzfunktionen fir Zugriff,
Einfligen und Léschen von Elementen gleicher Grof3e. Die byte-orientierten Aufrufe werden privat
deklariert, damit byte- und element-orientierte Aufrufe nicht gemischt verwendet werden kénnen, z. B.
SetByteSize und GetItemSize.

Basisklasse

ct_AnyBlock (siehe Abschnitt ‘Blockschnittstelle’)

Templatedeklaration

template <class t_block>
class gct_ItemBlock: public t_block

{
public:
inline t _Size GetFixSize () const;
inline t _Size GetMaxItemSize () const;
inline t_Size GetItemSize () const;
inline void SetltemSize (t Size o size);
inTine void IncItemSizel ()
inTine void DecltemSizel ()
inline void IncItemSize (t_Size o _inc);
inline void DecltemSize (t Size o dec);
inTine void * GetItemAddr (t Size o pos) const;
void * AppendItems (t_Size o_count);
void * InsertItems (t Size o _pos, t Size o_count);
void * Deleteltems (t _Size o pos, t Size o _count);
inTine t _Size GetDefaultPageSize () const;
inTine void ATignPageSize (t_Size o_fixSize, t Size o_pageSize);
b
Methoden

t Size GetFixSize () const;

Liefert die GroRRe eines Elements in Bytes.

t Size GetMaxItemSize () const;

Liefert die maximale Anzahl der Elemente im Block.

t Size GetItemSize () const;

Liefert die Anzahl der Elemente im Block.

void SetItemSize (t Size o _size) const;

Setzt die Anzahl der Elemente im Block auf o_size.

void IncItemSizel ();

Vergroliert den Block um 1 Element.

Spirick Tuning Referenzhandbuch Seite 30

void DecItemSizel ():

Verkleinert den Block um 1 Element. Es mul3 1 <= GetItemSize () gelten.

void IncItemSize (t Size o_inc);

Vergrofiert den Block um o_inc Elemente.

void DecItemSize (t Size o _dec);

Verkleinert den Block um o_dec Elemente. Es mul3 o dec <= GetItemSize () gelten.

void * GetItemAddr (t_Size o_pos) const;

Liefert die Adresse des Elements an der Position o _pos. Es mufd 0 pos < GetItemSize () gelten, d. h. der
Rickgabewert zeigt garantiert auf ein Element innerhalb des Blocks.

void * AppendItems (t Size o_count);

VergrofRRert den Block am Ende um o_count Elemente. Die Adresse des freigewordenen Speicherbereichs
wird zurlickgegeben.

void * InsertItems (t Size o_pos, t Size o _count):

VergroRert den Block um o_count Elemente und verschiebt den Speicher an der Position o0 pos um o_count
Elemente nach hinten (zu héheren Positionen). Die Adresse des freigewordenen Speicherbereichs wird
zurlickgegeben.

void * Deleteltems (t Size o pos, t Size o_count);

Verschiebt den Speicher an der Position 0 _pos um o _count Elemente nach vorn (zu niedrigeren Positionen)
und verkleinert den Block um o _count Elemente. Die Adresse des verschobenen Speicherbereichs wird
zurlickgegeben.

t Size GetDefaultPageSize () const;
void AlignPageSize (t Size o_itemSize, t Size o_pageSize);

Mit diesen beiden Methoden wird gct_ItemBlock kompatibel zur PageBlock-Schnittstelle..

Erweiterungen

Die GroRe eines Elements im Klassentemplate gct_ItemBlock kann zur Laufzeit oder zur Ubersetzungszeit
festgelegt werden. Daflir existieren die beiden Erweiterungen gct VarItemBlock und gct FixItemBlock.

Das Klassentemplate gct VarltemBlock erweitert gct ItemBlock. Die GroRe eines Elements wird zur Laufzeit
mit der Methode AlignPageSize festgelegt, wahrend der Block noch die GréRe Null hat. Eine typische
Anwendung ist der Blockstore.

Templatedeklaration

template <class t_block>
class gct VarItemBlock:
public gct ItemBlock <gct VarltemBlockBase <t block> >
{
}

Das Klassentemplate gct FixItemBlock erweitert gct ItemBlock. Die GrofRe eines Elements wird mit dem
Templateparameter o_itemSize festgelegt. Eine typische Anwendung ist der Arraycontainer.

Templatedeklaration

template <class t _block, t UInt o_itemSize>
class gct FixItemBlock:
public gct ItemBlock <gct FixItemBlockBase <t block, o_itemSize> >

{

Spirick Tuning Referenzhandbuch Seite 31

1.4.9 Pageblock (tuning/pageblock.hpp)

Der Pageblock unterteilt den angeforderten Speicher in mehrere, gleichgrolRe Pages. Dadurch ergeben
sich gegeniiber einem zusammenhangenden Block folgende Vorteile:

1. Geringere Anzahl an Speicheranforderungen und -freigaben bei GroRenanderung.
2. Geringere Speicherfragmentierung durch wenige, immer gleichgroRe Teilblocke.

3. Kein Umkopieren beim Andern der GroRe.

4. Speicheradressen innerhalb des Blocks bleiben auch beim Andern der GroRe gliltig.

Der Pageblock ist nur flr groRere Speichermengen sinnvoll, denn auch bei einer geringen BlockgrélRe
wird immer mindestens eine Page belegt. Die GréfRe des Blockobjekts spielt im Verhaltnis zum
verwalteten Datenspeicher keine wesentliche Rolle. Deshalb wurde der Pageblock als eine Klasse
implementiert und nicht als ein Template mit variablen Gré3en- und Positionstypen.

Neben den gleichgroRen Pages mit Nutzdaten enthalt der Pageblock noch einen Speicherblock, der
Zeiger auf die Pages verwaltet. Fiir beide Speichertypen kénnen unterschiedliche Storeobjekte
verwendet werden. Der Verwaltungsspeicher kann eine feste oder eine variable GréRRe haben. Ein fest
dimensionierter Verwaltungsspeicher hat in einer multithreaded Umgebung den Vorteil, dal? fir die
Berechnung der Speicheradresse aus einem Index (GetCharAddr oder GetItemAddr) kein Mutex bendtigt
wird. Die maximale Anzahl der Pages und damit auch die MaximalgroRe des Blocks sind in diesem Fall
jedoch begrenzt, und es muR darauf geachtet werden, daR es nicht zu einem Uberlauf kommt.

Da ganze Pages relativ selten angefordert und freigegeben werden, erfolgt der Zugriff auf die
Storeobjekte nicht als Templateparameter, sondern Gber virtuelle Methoden. Die Implementierung
besteht aus der Basisklasse ct_PageBlockBase mit rein virtuellen Methoden und der abgeleiteten Klasse
ct_PageBlock mit dem Zugriff auf zwei Default-Storeobjekte.

Neben der allgemeinen Blockschnittstelle enthalt der Pageblock auch die Methoden von gct_CharBlock
und gct_ItemBlock. Bei der Verwendung als Elementblock muf darauf geachtet werden, dal3 der Speicher
eines Elements nicht Uber eine Pagegrenze gehen darf. Deshalb muRR der Pageblock, solange er noch die
GroRRe Null hat, mit der Methode AlignPageSize justiert werden.

Klassendeklaration

class ct_PageBlockBase

{

public:
typedef t UInt t Size;
protected:
void SetByteSize0d ():
virtual void * ATlocPtr (t_Size o_size) = 0;
virtual void * ReallocPtr (void * pv_mem, t Size o size) = 0;
virtual void * AllocData (t_Size o_size) = 0;
virtual void FreeData (void * pv_mem) = 0;
virtual void LastPageWarning () { }
virtual void LastPagekrror () { }
public:
// Block
ct_PageBlockBase ();
inTine ct_PageBlockBase (const ct_PageBlockBase & co_init);
virtual ~ct_PageBlockBase () { }
inTine ct _PageBlockBase & operator = (const ct PageBlockBase & co_asgn);
void Swap (ct_PageBlockBase & co_swap);

// CharBlock

Spirick Tuning Referenzhandbuch Seite 32

inTine t Size GetMaxCharSize () const;

inline t _Size GetCharSize () const;

inTine void SetCharSize (t_Size o_size);

inline void IncCharSize (t _Size o_inc);

inTine void DecCharSize (t_Size o_dec);

inline char * GetRawAddr () const:

inline char * GetRawAddr (t_Size o pos) const;

inline char * GetCharAddr () const;

inline char * GetCharAddr (t_Size o _pos) const;

char * AppendChars (t_Size o_count);

char * InsertChars (t_Size o pos, t Size o_count);

char * DeleteChars (t_Size o pos, t_Size o _count);

char * Fi11Chars (t_Size o _pos, t Size o _count,
char c¢_fill = "\0");

// TtemBlock

inline t_Size GetFixSize () const;

inline t Size GetMaxItemSize () const;

inline t_Size GetItemSize () const;

inline void SetltemSize (t Size o size);

inline void IncItemSizel ()

inline void DecItemSizel ()

inline void IncItemSize (t_Size o _inc);

inline void DecItemSize (t Size o dec);

inline void * GetItemAddr (t Size o pos) const;

inline void * AppendItems (t Size o_count);

inTine void * InsertItems (t Size o_pos, t Size o_count);

inline void * Deleteltems (t _Size o pos, t Size o _count);

// PageBlock only Methods

inTine t _Size GetDefaultPageSize () const:

inTine t _Size GetFixPagePtrs () const;

void SetFixPagePtrs (t_Size o ptrs);

void ATignPageSize (t_Size o fixSize, t Size o _pageSize);
inline t_Size GetPageSize () const;

inTine t _Size GetRoundedSize () const:

s

Zusatzliche Methoden

void LastPageWarning ();

Diese virtuelle Methode wird aufgerufen, wenn der Verwaltungsspeicher flir Pages fest dimensioniert ist
und die letzte Page allokiert werden soll. Das bedeutet, dafd fir weitere VergréRerungen des Blocks nur
noch Speicher im Umfang von einer Page zur Verfligung steht.

void LastPageError ():

Diese virtuelle Methode wird aufgerufen, wenn der Verwaltungsspeicher flir Pages fest dimensioniert ist
und die letzte Page aufgebraucht ist, d. h. der Pageblock kann nicht weiter vergroRert werden. Der
Aufrufer mu3 vor dem VergrélRern des Pageblocks sicherstellen, dafd dieser Fall nicht eintritt. Andernfalls
kann das Programm nicht sinnvoll weitergefiihrt werden.

Bei Klassen und Templates, die die Blockschnittstelle verwenden, wird dieser Fall nicht behandelt.
Deshalb darf im Pageerrorhandler keine Exception ausgeldst werden. Diese Exception wirde in der
Bibliothek Spirick Tuning nicht behandelt werden und dazu fihren, daR das Objekt, das gerade Speicher
angefordert hat, in einem inkonsistenten Zustand verbleibt (siehe Funktion t1_SetOverflowHandler).

t Size GetDefaultPageSize () const:

Die DefaultPageSize kann von abgeleiteten Klassen verwendet werden, wenn sie keine eigene GroRe fir
Pages konfigurieren.

Spirick Tuning Referenzhandbuch Seite 33

t Size GetFixPagePtrs () const;
Liefert die Anzahl der Pages fiir den fest dimensionierten Verwaltungsspeicher. Das ist gleichzeitig die
maximale Anzahl der Pages. Der Wert Null bedeutet, da die GroRe des Verwaltungsspeichers nicht fest,
sondern dynamisch ist.

void SetFixPagePtrs (t Size o ptrs);
Setzt die Anzahl der Pages fiir den fest dimensionierten Verwaltungsspeicher auf den Wert o ptrs. Der
Aufruf ist nur méglich, wenn die BlockgréfRe gleich Null ist.

void AlignPageSize (t Size o fixSize, t Size o_pageSize);
Die interne GroRe fiir Pages wird so justiert, dal® sie ein Vielfaches der ElementgréRRe o fixSize und
gréRRer oder gleich o pageSize ist. Der Aufruf ist nur méglich, wenn die BlockgréfR3e gleich Null ist.

t Size GetPageSize () const;

Liefert die tatsachliche GroRe einer Page nach dem Aufruf von AlignPageSize.

t Size GetRoundedSize () const;

Liefert das Produkt aus GréfRRe einer Page und Anzahl der Pages.

Klassendeklaration
class ct _PageBlock: public ct PageBlockBase
{
protected:
virtual void * ATlocPtr (t Size o size);
virtual void * ReallocPtr (void * pv_mem, t Size o _size);
virtual void * AllocData (t Size o_size);
virtual void FreeData (void * pv_mem);
public:
~ct _PageBlock ();
b
Methoden

void * AlTocPtr (t_Size o _size);

Allokiert Speicher fir den Zeigerblock (Verwaltungsspeicher).

void * ReallocPtr (void * pv_mem, t Size o_size);

Reallokiert Speicher flir den Zeigerblock (Verwaltungsspeicher).

void * AllocData (t_Size o_size):

Allokiert eine Page fiir Nutzdaten.

void FreeData (void * pv_mem);

Gibt eine Page fir Nutzdaten frei.

~ct _PageBlock ();

Im Destruktor der abgeleiteten Klasse mufd der angeforderte Speicher frei gegeben werden, denn im
Destruktor der Basisklasse besteht kein Zugriff auf die virtuellen Methoden mehr.

Spirick Tuning Referenzhandbuch Seite 34

1.4.10 Block-Instanzen (tuning/xxx/block.h)

Zur Erleichterung des Umgangs mit der Blockschnittstelle werden in der Bibliothek Spirick Tuning einige
Standardinstanzen des Klassentemplates gct Block vordefiniert. Das Makro BLOCK DCLS(Obj) generiert fir
jede der vier Wrapperklassen eines globalen Storeobjekts je eine Blockklasse. Die Makroverwendung

BLOCK_DCLS (Any)
expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

class ct_Any Block:

public gct EmptyBaseBlock <ct Any Store> { };
class ct_Any8Block:

public gct EmptyBaseBlock <ct Any8Store> { };
class ct_AnyléBlock:

public gct EmptyBaseBlock <ct AnyléStore> { };
class ct_Any32Block:

public gct EmptyBaseBlock <ct Any32Store> { };

Jedes Verzeichnis eines dynamischen Stores enthéalt eine Datei 'block.h’. Darin werden mit Hilfe des
Makros BLOCK DCLS vier Blockklassen deklariert. Z. B. enthalt die Klasse ct_Std8Block den GroRentyp
t UInt8 und fordert den Speicher fir den dynamischen Block vom globalen Standardstoreobjekt an.

In der Datei 'tuning/std/block.h’ werden deklariert:

class ct_Std Block;
class ct_Std8Block;
class ct _StdléBlock;
class ct_Std32Block;

In der Datei "tuning/rnd/block.h’ werden deklariert:

class ct Rnd Block;
class ct Rnd8Block ;
class ct Rnd1l6Block;
class ct Rnd32BTock;

In der Datei 'tuning/chn/block.h' werden deklariert:

class ct_Chn Block;
class ct_Chn8Block ;
class ct_Chnl6Block;
class ct_Chn32Block ;

1.5 Spezielle Stores

1.5.1 Blockstore (tuning/blockstore.h)

Blockstores verwalten in einem umfassenden Block mehrere gleichgro3e Speicherblécke. Ihr
Hauptanwendungsgebiet sind Listencontainer, denn deren Nodes besitzen stets dieselbe GréfRRe. Eine
dynamische Speicherverwaltung rundet (auch ohne Round- und Chainstore) die Blockgréen und
beansprucht pro Block einige Bytes Verwaltungsspeicher. Werden viele gleichgroRe Speicherbldcke
angefordert, ist dieser Verwaltungsaufwand unnétig. Eine dynamische Speicherverwaltung ist darauf
nicht eingerichtet. Ein Blockstore bringt jedoch die gleichgroRen Elemente fortlaufend ohne
Zwischenraum im umfassenden Block unter und erzielt damit eine bessere Speicherauslastung.

Spirick Tuning Referenzhandbuch Seite 35

Das Klassentemplate gct _BlockStore erwartet als Parameter t_itemBlock eine Blockklasse mit
Elementblock-Schnittstelle, z. B. gct _VarItemBlock <ct Chnl6Block> oder ct PageBlock. Sie dient dem
Blockstore als Basisklasse. Der zweite Templateparameter t _charBlock ist eine Blockklasse mit
Zeichenblock-Schnittstelle, z. B. gct _CharBlock <ct Chnl6Block, char>. Sie wird in der Methode FreeUnused
als temporarer Zwischenspeicher verwendet.

Basisklassen

t_itemBlock (siehe Abschnitt ‘Elementblock’)

Templatedeklaration

template <class t_itemBlock, class t_charBlock>
class gct BlockStore: public t_itemBlock
{
public:
typedef t_itemBlock::t Size t Size;
typedef t_itemBlock::t Size t Position;

inline gct_BlockStore ();

inline t_Ulnt StoreInfoSize () const;

inTine t UInt MaxAlloc () const;

t Position Alloc (t_Size o _size);

t Position Realloc (t Position o _pos, t Size o size);
void Free (t_Position o _pos);

inTine void * Addr0Of (t_Position o_pos) const;

inTine t _Position PosOf (void * pv_adr) const;

inline t Size Size0f (t_Position o _pos) const;

inTine t Size RoundedSizeOf (t Position o_pos) const;
inline bool CanFreeAlT () const;

inline void FreeAll ();

void SetSortedFree (bool b);

void SetPageSize (t_Size o size);

inTine t Position LastIdx () const;

inline bool HasFree () const;

void FreeUnused ();

1%

GrolRen- und Positionstyp eines Blockstores sind gleich dem GréRentyp der (bergebenen Blockklasse. Als
Positionszeiger dienen Indizes. Es wird nicht das Byte-Offset eines inneren Blocks verwendet, sondern
seine fortlaufende Nummer. Der Positionswert Null ist wie bei allen anderen Stores per Definition
unglltig. Die Positionswerte eines Blockstores beginnen also mit 1, 2, 3 usw.

Ein Blockstore stellt sicher, dal3 Positionszeiger stets auf dieselben Elemente verweisen. Die
Speicheradressen sind jedoch nur eingeschrankt giltig. Beim VergroBern oder Verkleinern des
umfassenden Blocks wird dieser u. U. an eine andere Stelle im Speicher verschoben. Dabei dndern sich
die physischen Adressen der Elemente im Blockstore. Die Adressen (die mit AddrOf ermittelt werden) sind
nur solange gliltig, wie der Store nicht mit Alloc, Realloc oder Free verandert wurde. Wurde als Parameter
t_itemBlock jedoch ct_PageBlock angegeben, bleiben die Speicheradressen der Elemente im Blockstore
erhalten.

Wird ein Element freigegeben, kann der Blockstore nicht die dahinterliegenden Elemente verschieben,
denn damit wirden sich ihre Positionszeiger dndern. Ein Blockstore muf3 also ahnlich wie ein
dynamischer Store eine Liste der Freielemente verwalten. Daflr existieren zwei Strategien.

Spirick Tuning Referenzhandbuch Seite 36

Die erste ist auf eine maximale Geschwindigkeit ausgerichtet. Beim Freigeben eines Elements wird nur
geprift, ob es sich am physischen Ende befindet. In diesem Fall wird der umfassende Block verkleinert.
Befindet sich das Element 'mittendrin’, wird es der Freiliste ohne weitere Priifung zugeordnet. Diese
Stategie ist sehr schnell. Die Wahrscheinlichkeit, daR am Ende des umfassenden Blocks etwas
freigegeben werden kann und sich dieser verkleinert, ist jedoch gering.

Die zweite Strategie ist auf eine gute Speichernutzung ausgerichtet und arbeitet mit einer sortierten
Freiliste. Wird am Ende des umfassenden Blocks ein Element freigegeben, kann mit Hilfe der Sortierung
leicht festgestellt werden, ob sich unmittelbar davor weitere freie Elemente befinden und der
umfassende Block um mehrere Einheiten verkirzt werden kann. Befindet sich das Element 'mittendrin’,
wird es in aufsteigender Reihenfolge in die Freiliste einsortiert. Die Sortierung der Freiliste ermdglicht es,
beim Anfordern eines neuen Elements das freie mit dem kleinsten Index zu verwenden. Damit verdichtet
sich die Auslastung am physischen Anfang des umfassenden Blocks, und es steigt die
Wahrscheinlichkeit, da® am Ende etwas freigegeben werden kann.

Die beiden Strategien filhren zu einer unterschiedlichen Implementierung der Blockstoremethode Free.
Wegen des groReren Rechenzeitaufwandes der zweiten Stategie wird standardmaRig die erste
verwendet. Die Methode SetSortedFree steuert ein Umschalten auf die zweite Strategie. Beim Verwenden
der ersten Strategie besteht die Méglichkeit, von Zeit zu Zeit mit der Methode FreelUnused die Freiliste zu
sortieren und Freielemente am physischen Ende des umfassenden Blocks zu entfernen.

Die Methode SizeOf wird vom Template gct BlockStore nicht unterstiitzt. Neben der allgemeinen
Storeschnittstelle enthélt es noch die folgenden Methoden:

Zusatzliche Methoden
void SetSortedFree (bool b);

Steuert das Umschalten der Strategie zum Sortieren der Freiliste.

void SetPageSize (t Size o_size);

Setzt die GroRe der Pages, wenn als Parameter t_itemBlock die Klasse ct_PageBlock angegeben wurde.

t Position LastIdx () const;
Liefert den grofRten gultigen Positionswert, unabhangig davon, ob das zugehérige Element frei oder
belegt ist. Bei einem leeren Blockstore ist der Riickgabewert gleich Null.

bool HasFree () const;

Liefert true, wenn sich mindestens ein Element in der Freiliste befindet.

void FreeUnused ():

Sortiert die Freiliste aufsteigend und I6scht Freielemente am physischen Ende des umfassenden Blocks.

1.56.2 Blockstore-Instanzen (tuning/xxx/blockstore.h)

Zur Erleichterung des Umgangs mit Blockstores werden in der Bibliothek Spirick Tuning einige
Standardinstanzen des Klassentemplates gct BlockStore vordefiniert. Das Makro BLOCK _STORE DCLS(0bj)
generiert ahnlich wie BLOCK DCLS(Obj) fur jede der vier Wrapperklassen eines globalen Storeobjekts je eine
Blockstoreklasse. Die Makroverwendung

BLOCK_STORE_DCLS (Any)
expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

class ct_Any BlockStore:
public gct_BlockStore <gct_VarItemBlock <ct_Any Block>, gct_CharBlock <ct_Any Block, char> > { }:
class ct_Any8BlockStore:

Spirick Tuning Referenzhandbuch Seite 37

pubTic gct_BlockStore <gct_VarItemBlock <ct Any8Block>. gct_CharBlock <ct_Any8Block. char> > { }:
class ct_Anyl6BlockStore:

public gct BlockStore <gct VarltemBlock <ct AnyléBlock>, gct CharBlock <ct Anyl6Block, char> > { };
class ct_Any32BlockStore:

public gct BlockStore <gct VarItemBlock <ct Any32Block>, gct CharBlock <ct Any32Block, char> > { };

Jedes Verzeichnis eines dynamischen Stores enthalt eine Datei 'blockstore.h’. Darin werden mit Hilfe
des Makros BLOCK_STORE DCLS nach obigem Muster vier Blockstoreklassen deklariert.

In der Datei 'tuning/std/blockstore.h’ werden deklariert:

class ct_Std BlockStore;
class ct_Std8BlockStore;
class ct _Stdl6BlockStore;
class ct_Std32BlockStore;

In der Datei "tuning/rnd/blockstore.h’ werden deklariert:

class ct_Rnd BlockStore;
class ct Rnd8BlockStore;
class ct_Rndl6BlockStore;
class ct_Rnd32BlockStore;

In der Datei "tuning/chn/blockstore.h’ werden deklariert:

class ct Chn BlockStore;
class ct_Chn8BlockStore;
class ct_Chnl6BlockStore;
class ct_Chn32BlockStore;

1.5.3 Referenzzahler (tuning/refcount.hpp)

Die Bibliothek Spirick Tuning enthalt die spezialisierte Referenzzahlerklasse ct RefCount. Sie wird in
Refstores und allen darauf aufbauenden Klassen eingesetzt und ist an deren Bedlrfnisse angepaldt. Ein
Refstore ordnet jedem Speicherblock ein ct RefCount-Objekt zu. Neben einem 'flachen' Referenzzahler
enthélt ct_RefCount ein boolesches Attribut (das Alloc-Bit). Es besitzt den Wert true, wenn der zugehdérige
Block belegt ist.

Klassendeklaration
typedef t UInt32 t RefCount;

class ct_RefCount

{

public:
inline ct RefCount ();
inline void Initialize ();

inline t_RefCount GetRef () const;

inline void IncRef ()

inline void DecRef ()

inline bool IsAlloc () const;
inline void SetAlloc ():
inTine bool IsFree () const;
inline void SetFree ();
inTine bool IsNull () const;
b

Spirick Tuning Referenzhandbuch Seite 38

Datentypen
typedef t UInt32 t RefCount;

Der 'flache' Referenzzahlertyp besitzt eine Breite von 32 Bits.

Methoden
ct RefCount ();

Setzt den Referenzzahler auf Null und das Alloc-Bit auf true.

void Initialize ();

Setzt den Referenzzahler auf Null und das Alloc-Bit auf true.

t RefCount GetRef () const:

Liefert den Wert des 'flachen' Referenzzahlers.

void IncRef ();

Erhéht den Referenzzahler um Eins.

void DecRef ();

Verkleinert den Referenzzahler um Eins.

bool IsAlloc () const;

Liefert true, wenn das Alloc-Bit gesetzt ist.

void SetAlloc ();
Setzt das Alloc-Bit.

bool IsFree () const;

Liefert true, wenn das Alloc-Bit nicht gesetzt ist.

void SetFree ():
Loscht das Alloc-Bit.

bool IsNull () const;

Liefert true, wenn das Alloc-Bit nicht gesetzt und der Referenzzéhler gleich Null ist.

1.5.4 Refstore (tuning/refstore.h)

Ein Refstore besitzt keine eigene Speicherverwaltung, sondern baut auf einer vorhandenen auf und
ordnet jedem Speicherblock einen Referenzzahler zu. Mit deren Hilfe kénnen sichere Zeiger implementiert
werden. Das Klassentemplate gct RefStore erwartet als Parameter eine Storeklasse, Gbernimmt von ihr
den GroRen- und Positionstyp und enthalt ein Objekt der Storeklasse.

Templatedeklaration

template <class t_store>
class gct RefStore
{
public:
typedef t _store::t Size t Size;
typedef t store::t Position t _Position;

void Swap (gct RefStore & co_swap);

Spirick Tuning Referenzhandbuch

Seite 39

inTine t UInt StoreInfoSize () const:

inTine t UInt MaxAlloc () const;

t Position Alloc (t_Size o _size);

t Position Realloc (t_Position o _pos, t Size o size);
inline void Free (t_Position o _pos);

inTine void * Addr0Of (t_Position o_pos) const;

inTine t Position PosOf (void * pv_adr) const;

inline t_Size Size0f (t_Position o_pos) const;
inTine t Size RoundedSizeOf (t Position o_pos) const;
inline bool CanFreeAll () const;

inline void FreeAll ();

inTine void IncRef (t_Position o _pos);

inTine void DecRef (t_Position o _pos);

inTine t_RefCount GetRef (t_Position o _pos) const;
inTine bool IsAlloc (t_Position o _pos) const;
inline bool IsFree (t_Position o_pos) const:
inline t_store * GetStore ():

1%

Wird von einem Refstore Speicher angefordert, gibt er die Anforderung an den darunterliegenden Store
weiter, plaziert am Anfang des bereitgestellten Speicherblocks ein ct_RefCount-Objekt und initialisiert es.
Der 'flache' Referenzzahler erhalt den Wert Null, und das Alloc-Bit wird auf true gesetzt. Auf den
Referenzzahler und den dahinterliegenden Nutzerbereich wird mit Hilfe desselben Positionszeigers
zugegriffen. Die Methode AddrOf der allgemeinen Storeschnittstelle liefert die Adresse des
Nutzerbereichs. Zur Manipulation des Referenzzahlers dienen die zusatzlichen Methoden IncRef und
DecRef.

Wird mit der Methode Free ein Speicherblock an den Refstore zuriickgegeben, 16scht er das Alloc-Bit im
zugehorigen ct_RefCount-Objekt. Ist zusatzlich der Wert des Referenzzéhlers gleich Null, wird der
Speicherblock im darunter liegenden Store freigegeben. Andernfalls bleibt der Speicher weiter genutzt,
und der Positionszeiger behalt seine Gliltigkeit. Der Versuch, mit AddrOf auf den Nutzerbereich
zuzugreifen, fuhrt zu einer ASSERT-Meldung. Mit den Methoden IncRef und DecRef kann jedoch der
Referenzzahler weiterhin geandert werden. Erreicht er den Wert Null, gibt der Refstore den
Speicherblock im darunter liegenden Store frei, und der Positionszeiger verliert seine Giiltigkeit.

Die Methode FreeAll wird vom Template gct RefStore nicht unterstitzt. Neben der allgemeinen
Storeschnittstelle enthéalt es noch die folgenden Methoden:

Zusatzliche Methoden

void IncRef (t Position o pos);

Erhdht den zum Positionszeiger o_pos gehérenden Referenzzahler. o _pos mulR eine glltige Position sein.

void DecRef (t Position o _pos);

Verkleinert den zum Positionszeiger o_pos gehérenden Referenzzahler. o_pos muf eine glltige Position
sein.

t_RefCount GetRef (t_Position o_pos) const;

Liefert den Wert des zum Positionszeiger o_pos gehérenden Referenzzéhlers. o _pos mul} eine glltige
Position sein.

bool IsAlToc (t _Position o _pos) const;

Liefert true, wenn der zum Positionszeiger o_pos gehérende Speicherbereich im Refstore genutzt ist und
mit AddrOf auf den Nutzerbereich zugegriffen werden kann. o_pos muf} eine giltige Position sein.

Spirick Tuning Referenzhandbuch Seite 40

bool IsFree (t Position o _pos) const;

Diese Methode ist die logische Negation von IsAlToc. o_pos mulf3 eine gultige Position sein.

t _store * GetStore ();

Liefert einen Zeiger auf das enthaltene Storeobjekt.

1.5.5 Refstore-Instanzen (tuning/xxx/refstore.h)

Zur Erleichterung des Umgangs mit Refstores werden in der Bibliothek Spirick Tuning einige
Standardinstanzen des Klassentemplates gct RefStore vordefiniert. Das Makro REF_STORE DCLS(Obj)
generiert ahnlich wie BLOCK DCLS(0Obj) fiir jede der vier Wrapperklassen eines globalen Storeobjekts je eine
Refstoreklasse. Die Makroverwendung

REF_STORE_DCLS (Any)
expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

class ct_Any RefStore:

public gct RefStore <ct Any Store> { };
class ct_Any8RefStore:

public gct RefStore <ct Any8Store> { };
class ct_Anyl6RefStore:

public gct RefStore <ct Anyl6Store> { };
class ct_Any32RefStore:

public gct RefStore <ct Any32Store> { };

Jedes Verzeichnis eines dynamischen Stores enthalt eine Datei 'refstore.h’. Darin werden mit Hilfe des
Makros REF_STORE DCLS nach obigem Muster vier Refstoreklassen deklariert.

In der Datei 'tuning/std/refstore.h’ werden deklariert:

class ct_Std RefStore;
class ct_Std8RefStore;
class ct_Stdl6RefStore;
class ct_Std32RefStore;

In der Datei "tuning/rnd/refstore.h’ werden deklariert:

class ct Rnd RefStore;
class ct Rnd8RefStore;
class ct_Rndl6RefStore;
class ct Rnd32RefStore;

In der Datei 'tuning/chn/refstore.h’ werden deklariert:

class ct_Chn_RefStore;
class ct_Chn8RefStore;
class ct_Chnl6RefStore;
class ct _Chn32RefStore;

1.5.6 Blockrefstore-Instanzen (tuning/xxx/blockrefstore.h)

Ein Blockrefstore entsteht, wenn dem Klassentemplate gct RefStore als Parameter t_store eine
Blockstoreklasse Ubergeben wird. Er nutzt die Speicherverwaltung des Blockstores, der gleichgrof3e
Speicherblécke in einem umfassenden Block unterbringt. Zusétzlich ordnet der Blockrefstore jedem
Speicherblock einen Referenzzahler zu.

Spirick Tuning Referenzhandbuch Seite 41

Zur Erleichterung des Umgangs mit Blockrefstores werden in der Bibliothek Spirick Tuning einige
Standardinstanzen vordefiniert. Das Makro BLOCKREF _STORE DCLS(0bj) generiert &hnlich wie BLOCK _DCLS(0bj)
fur jede der vier Wrapperklassen eines globalen Storeobjekts je eine Blockrefstoreklasse. Die
Makroverwendung

BLOCKREF _STORE_DCLS (Any)
expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

class ct_Any BlockRefStore:

public gct RefStore <ct Any BlockStore> { };
class ct_Any8BlockRefStore:

public gct RefStore <ct Any8BlockStore> { };
class ct_Anyl6BlockRefStore:

public gct RefStore <ct Anyl6BlockStore> { };
class ct_Any32BlockRefStore:

public gct RefStore <ct Any32BlockStore> { };

Jedes Verzeichnis eines dynamischen Stores enthalt eine Datei 'blockrefstore.h'. Darin werden mit Hilfe
des Makros BLOCKREF_STORE_DCLS nach obigem Muster vier Blockrefstoreklassen deklariert.

In der Datei 'tuning/std/blockrefstore.h’ werden deklariert:

class ct _Std BlockRefStore;
class ct_Std8BlockRefStore;
class ct _Stdl6BlockRefStore;
class ct_Std32BlockRefStore;

In der Datei "tuning/rnd/blockrefstore.h’ werden deklariert:

class ct _Rnd BlockRefStore;
class ct_Rnd8BlockRefStore;:
class ct Rnd16BTockRefStore;
class ct_Rnd32BlockRefStore;

In der Datei 'tuning/chn/blockrefstore.h’ werden deklariert:

class ct_Chn_BlockRefStore;
class ct_Chn8BlockRefStore;
class ct_Chnl6BlockRefStore;
class ct _Chn32BlockRefStore;

1.5.7 Packstore (tuning/packstore.hpp)

Der Packstore ist darauf optimiert, mehrere zusammengehdérige Speicheranforderungen ohne unnétigen
Zwischenraum und Rechenzeitaufwand hintereinander im Speicher abzulegen. Er arbeitet nach einem
sehr einfachen Verfahren. Die angeforderten Speicherblécke werden nacheinander in gleichgroRen Pages
untergebracht. Ist der Restspeicher in der aktuellen Page zu klein fir eine neue Anforderung, wird eine
neue Page allokiert. Ab einer konfigurierbaren MinimalgroRe erhalt eine Speicheranforderung eine eigene
Page.

Die Freigabe einzelner Speicherblocke ist nicht vorgesehen. Der Packstore kann jedoch mit der Methode
FreeAl1l den gesamten Speicher freigeben. Wird ein Packstore-Objekt mehrmals mit FreeAll geleert und
wiederverwendet, kann man mit dem Parameter b _keepPage verhindern, dal} die erste Page freigegeben
und anschlielend neu allokiert wird.

Neben den gleichgroRen Pages mit Nutzdaten verwaltet der Packstore noch einen Speicherblock
variabler GroRe, der Zeiger auf die Pages enthalt. Fiir beide Speichertypen kénnen unterschiedliche
Storeobjekte verwendet werden. Da ganze Pages relativ selten angefordert und freigegeben werden,

Spirick Tuning Referenzhandbuch Seite 42

erfolgt der Zugriff auf die Storeobjekte nicht als Templateparameter, sondern Uber virtuelle Methoden.
Die Implementierung besteht aus der Basisklasse ct_PackStoreBase mit rein virtuellen Methoden und der
abgeleiteten Klasse ct_PackStore mit dem Zugriff auf zwei Default-Storeobjekte.

Klassendeklaration
class ct_PackStoreBase
{
public:
typedef t Ulnt t Size;
typedef void * t Position;
protected:
virtual void * ReallocPtr (void * pv_mem, t Size o _size) = 0;
virtual t Ulnt MaxDataAlloc () const = 0;
virtual void * AllocData (t_Size o_size) = 0;
virtual void FreeData (void * pv_mem) = 0;
public:
ct_PackStoreBase ();
virtual ~ct_PackStoreBase () { }
void Swap (ct_PackStoreBase & co_swap);
static inline t Ulnt StorelnfoSize ();
inTine t Ulnt MaxAlloc ();
t Position Alloc (t_Size o size);
t Position Realloc (t_Position o pos, t Size o size);
void Free (t_Position o _pos);
static inline void * AddrOf (t_Position o_pos);

static inline t Position PosOf (void * pv_adr);

t Size SizeOf (t_Position o _pos);

t Size RoundedSizeOf (t_Position o_pos):

bool CanFreeAll ();

void FreeAll (bool b _keepPage = false);

bool Init (t_Size o_align. t Size o pageSize,

t Size o _ownPageSize = 0);

Zusatzliche Methoden

bool Init (t Size o align, t Size o pageSize, t Size o ownPageSize = 0);

Initialisiert den Packstore, solange noch kein Speicher angefordert wurde. Mit dem Parameter 0 _align

wird das Alignment gesteuert. Zulassige Werte sind 1, 2, 4, 8 und 16. Der Parameter o _pageSize gibt die
GrolRe einer Page an. Mit dem optionalen Parameter o _ownPageSize wird festgelegt, ab welcher Grof3e eine

Speicheranforderung eine eigene Page erhalt. Ist der Parameter nicht angegeben, wird ein Viertel der

Pagesize verwendet. Der Rickgabewert ist false, wenn im Packstore bereits Speicher angefordert wurde

oder ein Parameter einen ungultigen Wert enthalt.

Klassendeklaration

class ct _PackStore: public ct_PackStoreBase
{

protected:
virtual void * ReallocPtr (void * pv_mem, t Size o0 size);
virtual t_UInt MaxDataAlloc () const:
virtual void * AllocData (t_Size o_size);
virtual void FreeData (void * pv_mem);

pubTlic:

Spirick Tuning Referenzhandbuch Seite 43

~ct_PackStore ();

Methoden

void * ReallocPtr (void * pv_mem, t Size o size);

Reallokiert Speicher fiir den Zeigerblock.

t UInt MaxDataAlloc () const;

Liefert die maximale Anzahl Bytes fiir Nutzdaten.

void * AllocData (t_Size o_size):

Allokiert eine Page fir Nutzdaten.

void FreeData (void * pv_mem);

Gibt eine Page fir Nutzdaten frei.

~ct _PackStore ();

Im Destruktor der abgeleiteten Klasse mufl3 der angeforderte Speicher frei gegeben werden, denn im
Destruktor der Basisklasse besteht kein Zugriff auf die virtuellen Methoden mehr.

1.5.8 Packstore 2 (tuning/packstore.h)

Das Klassentemplate gct PackStore enthalt eine alternative Implementierung des Packstore-Konzepts
(siehe voriger Abschnitt). Das Template verwaltet keinen separaten Speicherblock, der Zeiger auf die
Pages enthélt. Stattdessen werden diese Zeiger in den Pages selbst untergebracht (Single Linked List).
Der Parameter t staticStore ist eine Storeklasse, in der alle Methoden static deklariert sind. Diese
Bedingung erfillen die Wrapperklassen fir globale Storeobjekte, z. B. ct Rnd Store. Jedes Verzeichnis
eines dynamischen Stores enthélt eine Datei 'packstore.h’ mit einer vordefinierten Templateinstanz.

Die Freigabe einzelner Speicherblocke ist nicht vorgesehen. Der Packstore kann jedoch mit der Methode
FreeAll den gesamten Speicher freigeben. Wird ein Packstore-Objekt mehrmals mit FreeAll geleert und
wiederverwendet, kann man mit dem Parameter b_keepPage verhindern, dal} die erste Page freigegeben
und anschlieRend neu allokiert wird.

Templatedeklaration

template <class t_staticStore>
class gct PackStore
{
public:
typedef t_staticStore t StaticStore;
typedef t StaticStore::t Size t Size;
typedef void * t_Position;

gct_PackStore ()
~gct_PackStore ();
inline void Swap (gct_PackStore & co_swap);

static inline t UInt StorelnfoSize ();
static inline t_UInt MaxAlloc ();

t Position Alloc (t_Size o size);
inTine t _Position Realloc (t_Position o _pos, t Size o size);
inTine void Free (t_Position o _pos);

static inline void * AddrOf (t_Position o_pos);

Spirick Tuning Referenzhandbuch Seite 44

static inline t Position PosOf (void * pv_adr);

static inline t Size SizeOf (t_Position o _pos);
static inline t_Size RoundedSizeOf (t Position o pos);:

static inline bool CanFreeAll ();
void FreeAll (bool b _keepPage = false);

bool Init (unsigned u_align, unsigned u_pageExp,
t Size o_ownPageSize = 0);
b

Zusatzliche Methoden

bool Init (unsigned u_align, unsigned u_pageExp, t Size o ownPageSize = 0);

Initialisiert den Packstore, solange noch kein Speicher angefordert wurde. Mit dem Parameter u_align
wird das Alignment gesteuert. Zulassige Werte sind 1, 2, 4, 8 und 16. Der Parameter u_pagekxp (>= 7) ist
der Exponent der Pagesize (2”exp). Mit dem optionalen Parameter o_ownPageSize wird festgelegt, ab
welcher GréfRe eine Speicheranforderung eine eigene Page erhalt. Ist der Parameter nicht angegeben,
wird ein Viertel der Pagesize verwendet. Der Rickgabewert ist false, wenn im Packstore bereits
Speicher angefordert wurde oder ein Parameter einen ungultigen Wert enthalt.

Spirick Tuning Referenzhandbuch Seite 45

2 OBJEKTVERWALTUNG

2.1 Container

2.1.1 Containerschnittstelle

Die Bibliothek Spirick Tuning enthalt zwei verschiedene Konzepte fiir die Objektverwaltung: Container
und Collections. Collections sind auf leichte Bedienbarkeit und schnelles Ubersetzen ausgerichtet. Sie
sind polymorph, d. h. sie kénnen Objekte unterschiedlicher Typen enthalten. Bei Containern steht die
Laufzeiteffizienz im Vordergrund. Sie sind homogen, d. h. sie enthalten nur Objekte eines bestimmten
Typs. Die Anpassung an den konkreten Objekttyp ermdglicht zahlreiche Optimierungen.

Ahnlich wie Storeklassen besitzen auch Containerklassen keine gemeinsame Basisklasse mit virtuellen
Methoden, aber eine einheitliche Schnittstelle. Diese vereinfacht die Handhabung und ermdglicht das
leichte Austauschen eines Containers gegen einen anderen.

Templatedeklaration

template <class t_obj>
class gct_AnyContainer

{

public:
typedef t Ulnt t_Length;
typedef void * t_Position;
typedef t_obj t Object;

gct_AnyContainer ();
gct_AnyContainer (const gct AnyContainer & co);
~gct_AnyContainer ();

gct_AnyContainer & operator = (const gct AnyContainer & co_asgn);

void Swap (gct_AnyContainer & co_swap);

bool Iskmpty () const;

t_Length GetLen () const;

t Position First () const;

t Position Last () const;

t Position Next (t_Position o_pos) const;

t Position Prev (t_Position o _pos) const;

t Position Nth (t_Length u_idx) const;

t Object * GetObj (t_Position o _pos) const;

t Position AddObj (const t Object * po obj = 0);

t Position AddObjBefore (t_Position o _pos, const t Object * po obj = 0);
t_Position AddObjAfter (t_Position o _pos, const t Object * po_obj = 0);
void AppendObj (const t Object * po obj = 0, t _Length o _count = 1);
void TruncateObj (t_Length o _count = 1);

t Position DelObj (t_Position o _pos);

void DelAlT ();

t Position FreeObj (t_Position o pos);

void FreeAll ();

b

Spirick Tuning Referenzhandbuch Seite 46

Container werden als Klassentemplates mit mindestens einem Parameter, dem Typ der enthaltenen
Objekte t obj, deklariert. Dieser muld weder von einer abstrakten Basisklasse erben noch einen Gleich-
oder Vergleichsoperator besitzen. Es mul3 nur sichergestellt sein, dal3 der normale und der
Kopierkonstruktor verfligbar sind und korrekt arbeiten. Wegen der Implementierung als Template und der
geringen Anforderungen an die enthaltenen Objekte sind Container universell einsetzbar und sehr
effizient. Es kénnen beliebige Klassen und auch primitive Datentypen wie int oder float in Containern
untergebracht werden.

Collections verwalten Zeiger auf aufderhalb erzeugte Objekte. Container enthalten dagegen ihre Objekte
physisch und kénnen den Speicher wesentlich besser auslasten. Container stellen den Speicherplatz der
Objekte zur Verfligung und rufen deren Konstruktoren und Destruktoren auf. Ein neues Objekt wird mit
seinem normalen Konstruktor erzeugt. Ein vorhandenes Objekt kann nicht Glbernommen, sondern nur mit
seinem Kopierkonstruktor in den Container kopiert werden. Beim Léschen eines Objektes wird dessen
Destruktor aufgerufen.

Bei vielen Operationen, die Veranderungen am Container bewirken, miissen die enthaltenen Objekte
umorganisiert werden. Daflr existieren im wesentlichen zwei Strategien: Bei der ersten Strategie werden
die Objekte mit Kopierkonstruktoren und Gleichoperatoren kopiert. Dabei kann ein erheblicher Overhead
entstehen. Die Verwendung der C++11 Move-Semantik bringt nur wenig Abhilfe. Bei der zweiten
Strategie werden die Objekte mit memcpy und memmove in einen anderen Speicherbereich kopiert. Dieses
Verfahren kommt bei allen Containern in der Bibliothek Spirick Tuning zur Anwendung. Es muR darauf
geachtet werden, daR die enthaltenen Objekte mit memcpy kopierbar sind. In realen C++-Programmen
existieren nur sehr wenige Klassen, die diese Eigenschaft nicht besitzen. Z. B. diirfen die Klassen
ct_ThMutex und ct_ThSemaphore nicht mit memcpy kopiert werden.

Die Implementierung der Container ist der Speicherverwaltung sehr nahe. Container besitzen zahlreiche
Ahnlichkeiten mit Stores. Auch Container verwalten ihre Eintrage mit Hilfe von Positionszeigern.
Waéhrend ein Store nur 'rohe' Speicherblocke verwaltet, verarbeitet ein Container auch noch den Inhalt,
d. h. die darin enthaltenen Objekte. Der Storemethode Alloc entspricht etwa die Containermethode
Addobj. Sie erzeugt im Container ein neues Objekt und liefert seine Position. Mit AddrOf erhalt man eine
untypisierte Adresse eines Speicherblocks. Die Containermethode GetObj liefert dagen einen typisierten
Zeiger auf den konkreten Objekttyp. Mit Free wird ein Speicherblock freigegeben. Die Containermethode
Del0bj ruft vorher noch den Destruktor des enthaltenen Objekts auf.

Im Gegensatz zu Stores sichern nicht alle Container die Gultigkeit der Positionszeiger. Die Positionszeiger
eines Containers muissen nur dann ihre Glltigkeit behalten, wenn die Objekte von auf3en referenziert
werden. Werden die Elemente jedoch ausschlieBlich mit First und Next durchlaufen, kénnen die
Positionszeiger zugunsten einer besseren Speicherauslastung nach Veranderungen des Containers ihre
Gultigkeit verlieren. Das ist in der Bibliothek Spirick Tuning bei allen Arraytypen der Fall. Bei
Listencontainern behalten jedoch die Positionszeiger auch nach einer Anderung ihre Giiltigkeit und
verweisen auf dasselbe Objekt.

Datentypen
typedef t UInt t_Length;

Der geschachtelte Typ t_Length beschreibt die maximale Anzahl der Objekte. Neben t UInt werden auch
t UInt8, t UIntl6e und t UInt32 verwendet. Ist z. B. t Length auf t UInt8 definiert, kann der Container nur

maximal 255 Eintrdge verwalten. Jeder Container enthélt ein Attribut des Typs t Length. Ein angepal3ter
Langentyp verringert somit den Speicherbedarf des Containerobjekts.

typedef void * t Position;

Container verwalten ahnlich wie Stores ihre Objekte mit Hilfe von Positionszeigern. Neben void * werden
auch t UInt, t UInt8, t UIntl6 und t UInt32 verwendet. Bei allen Positionstypen ist der Wert Null per
Definition ungdiltig.

Spirick Tuning Referenzhandbuch Seite 47

typedef t obj t Object;

Der geschachtelte Datentyp t Object entspricht dem Parameter t obj des Containertemplates. Die
Typdefinition ermdglicht Anwendern des Containers und abgeleiteten Klassen den Zugriff auf den
Objekttyp.

Konstruktoren, Destruktor, Gleichoperator, Swap
gct_AnyContainer ();

Der normale Konstruktor erzeugt einen leeren Container.

gct AnyContainer (const gct AnyContainer & co_init);
Der Kopierkonstruktor Gbernimmt alle Elemente eines vorhandenen Containers mit Hilfe des
Kopierkonstruktors der enthaltenen Objekte.

~gct_AnyContainer ();
Im Destruktor eines Containers wird die Methode DelAl1 aufgerufen. Vor der Speicherfreigabe werden
alle enthaltenen Objekte mit ihrem Destruktor zerstort.

gct_AnyContainer & operator = (const gct_AnyContainer & co_asgn);
Der Gleichoperator Gbernimmt &hnlich wie der Kopierkonstruktor alle Elemente eines vorhandenen
Containers mit Hilfe des Kopierkonstruktors der enthaltenen Objekte.

void Swap (gct_AnyContainer & co_swap);

Tauscht den Inhalt der beiden Objekte aus.

Anzahl der Objekte

bool IsEmpty () const;

Liefert true, wenn der Container keine Objekte enthalt.

t_Length GetlLen () const;
Liefert die Anzahl der enthaltenen Objekte.

Iterieren des Containers
t_Position First () const;

Liefert die Position des ersten Objekts oder Null bei einem leeren Container.

t_Position Last () const;

Liefert die Position des letzten Objekts oder Null bei einem leeren Container.

t Position Next (t Position o _pos) const;

Liefert die Position des nachsten Objekts oder Null, wenn o _pos die Position des letzten Elements war.
0_pos muld eine gultige Position sein.

t Position Prev (t Position o _pos) const;

Liefert die Position des vorigen Objekts oder Null, wenn o _pos die Position des ersten Elements war. o _pos

muf eine glltige Position sein.

t Position Nth (t_Length u_idx) const;

Liefert die Position des Objekts mit der fortlaufenden Nummer u_idx. Der Index muf3 zwischen Eins und
Getlen liegen.

Spirick Tuning Referenzhandbuch Seite 48

Zugriff auf Objekte
t Object * GetObj (t Position o _pos) const;

Liefert einen typisierten Zeiger auf das durch o _pos identifizierte Objekt. o_pos muf} eine gliltige Position
sein.

Einfiigen von Objekten
t Position AddObj (const t Object * po obj = 0);

Flgt ein neues Objekt in den Container ein und liefert dessen Position. Die Stelle des Einfligens ist
abhéngig von der Implementierung. Ist der Zeiger po_obj gleich Null, wird das Objekt mit seinem
normalen Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor mit dem Parameter * po_obj
aufgerufen.

t Position AddObjBefore (t Position o_pos. const t _Object * po obj = 0);

Flgt ein neues Objekt vor einem anderen ein und liefert dessen Position. Ist o_pos gleich Null, wird das
neue Objekt nach dem letzten plaziert, d. h. es ist das neue letzte Element. Ist der Zeiger po _obj gleich
Null, wird das Objekt mit seinem normalen Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor
mit dem Parameter * po_obj aufgerufen.

t_Position AddObjAfter (t Position o_pos, const t Object * po obj = 0);

Flgt ein neues Objekt nach einem anderen ein und liefert dessen Position. Ist o0 pos gleich Null, wird das
neue Objekt vor dem ersten plaziert, d. h. es ist das neue erste Element. Ist der Zeiger po_obj gleich Null,
wird das Objekt mit seinem normalen Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor mit
dem Parameter * po_obj aufgerufen.

Anfiigen und Léschen mehrerer Objekte
void AppendObj (const t Object * po obj = 0, t Length o count = 1);

Figt am Ende des Containers o_count Objekte an. Ist der Zeiger po_obj gleich Null, werden die Objekte
mit ihrem normalen Konstruktor erzeugt. Andernfalls werden ihre Kopierkonstruktoren mit dem
Parameter * po_obj aufgerufen.

void TruncateObj (t Length o count = 1);

Léscht am Ende des Containers o_count Objekte. Es werden die Destruktoren der Objekte aufgerufen und
der zugehorige Verwaltungsspeicher freigegeben.

Riickgabewert von Loschmethoden

Loschmethoden liefern stets die Position des Nachfolgers des geldéschten Eintrags. Diese Technik
ermoglicht das gleichzeitige Iterieren und Verandern eines Containers. Der Riickgabewert wird mit der
Methode Next vor dem Ldschen berechnet. Wurde der der Reihenfolge nach letzte Eintrag geléscht
(Methode Last), ist der Rickgabewert gleich Null.

Léschen von Objekten
t_Position DelObj (t_Position o_pos);

Ruft den Destruktor eines Objekts auf und gibt den zugehdrigen Speicher frei. 0_pos mul3 eine giltige
Position sein. Die Methode liefert Next (o_pos), also die Position des nachsten Objekts oder Null, wenn
das letzte Objekt geléscht wurde.

void DelAll ()

Ruft die Destruktoren aller Objekte auf und gibt deren Speicher frei. DelA11 ist i. a. schneller als das
mehrfache Léschen mit Del0bj.

Spirick Tuning Referenzhandbuch Seite 49

t Position FreeObj (t Position o_pos);

Gibt den Speicher eines Objekts frei, ohne dessen Destruktor aufzurufen. FreeObj ist fir primitive
Datentypen wie int oder float geeignet und schneller als DelObj. o_pos muf} eine glltige Position sein. Die
Methode liefert Next (o _pos), also die Position des nachsten Objekts oder Null, wenn das letzte Objekt
geléscht wurde.

void FreeAll ():

Gibt den gesamten von Objekten belegten Speicher frei, ohne deren Destruktoren aufzurufen.

Exception Handling

Bei der Arbeit mit Containern kénnen in Konstruktoren und Destruktoren enthaltener Objekte Exceptions
auftreten. Container enthalten minimale eigene Exceptionhandler. Diese versetzen nach dem Erkennen
einer Exception das Containerobjekt in einen konsistenten Zustand und reichen die Exception
unverandert an den Ubergeordneten Exceptionhandler, der sich im Programmcode des
Containeranwenders befindet, weiter. Im einzelnen gelten folgende Regeln:

Tritt beim Einfligen eines einzelnen Objektes (AddObj) in dessen Konstruktor eine Exception auf, verbleibt
der Container in seinem vorigen Zustand (Objekt wird nicht eingefiigt).

Tritt beim Léschen eines einzelnen Objektes (De10bj) in dessen Destruktor eine Exception auf, wird das
Objekt trotzdem aus dem Container entfernt.

Tritt beim Einflgen mehrerer Objekte mit der Methode AppendObj im Konstruktor eines Objektes eine
Exception auf, wird das Einfigen abgebrochen. Die korrekt eingefligten Objekte verbleiben im Container.
Tritt beim Léoschen mehrerer Objekte mit der Methode TruncateObj in einem Destruktor eine Exception
auf, wird das Loschen abgebrochen. Die korrekt geléschten Objekte bleiben geléscht. Die noch nicht
geléschten Objekte verbleiben im Container. Das Objekt, das die Exception ausgeldst hat, gilt als
geléscht.

Tritt beim Léschen mehrerer Objekte mit der Methode DelAl1 in einem Destruktor eine Exception auf,
wird das Léschen fortgesetzt. AnschlieRend befindet sich der Container im leeren Zustand. Dieses
Verhalten ist fir die folgenden vier Methoden relevant:

Tritt in einer der Methoden Konstruktor, Kopierkonstruktor, Destruktor oder Gleichoperator im
Konstruktor oder Destruktor eines Objektes eine Exception auf, wird der Container in den leeren Zustand
versetzt. Dabei werden die Destruktoren aller enthaltenen Objekte aufgerufen und séamtlicher
Verwaltungsspeicher freigegeben.

2.1.2 Operationen mit Containern

Objekte einfiigen, kopieren und l6schen

Das folgende Programmbeispiel demonstriert das Einfiigen, Kopieren und Léschen von Objekten in einem
Container. Die Klasse ct_Int wird im Abschnitt ‘Beispielprogramme’ beschrieben.

ct_Int co_int = 1;

ct_Int * pco_int;

gct_AnyContainer <ct_Int> co_container;
gct_AnyContainer <ct_Int>::t Position o_pos;

// Neues Objekt im Container mit Defaultkonstruktor erzeugen
0_pos = co_container. AddObj ();

// Auf das Objekt zugreifen und es und initialisieren
pco_int = co_container. GetObj (o_pos);
(* pco_int) = 2;

// Vorhandenes Objekt in den Container kopieren
0_pos = co_container. AddObj (& co_int);

// Objekt aus dem Container nehmen und 18schen

Spirick Tuning Referenzhandbuch Seite 50

co_container. DelObj (o _pos);

Vorwarts iterieren

Zum lterieren eines Containers in aufsteigender Reihenfolge der Eintrage wird eine for-Schleife nach
folgendem Muster empfohlen:

gct_AnyContainer <float> co_container;
gct_AnyContainer <float>::t _Position o _pos;

for (o_pos = co_container. First ();
0. pos !=0;
0_pos = co_container. Next (o_pos))

float * pf = co_container. GetObj (o _pos);
/]

}

Riickwarts iterieren

Zum lterieren eines Containers in absteigender Reihenfolge der Eintrdge wird eine for-Schleife nach
folgendem Muster empfohlen:

gct_AnyContainer <float> co_container;
gct AnyContainer <float>::t Position o_pos;

for (0_pos = co_container. Last ();
0 pos !=0;
0_pos = co_container. Prev (o_pos))

float * pf = co_container. GetObj (o _pos);
/.

}

Iterieren und verandern

Zum lterieren und Verandern eines Containers wird eine for-Schleife nach folgendem Muster empfohlen:

gct_AnyContainer <float> co_container;
gct_AnyContainer <float>::t Position o_pos;

for (o _pos = co_container. First ();

0. pos !=0;

0 pos = /* delete entry ? */ 7
co_container. DelObj (o _pos) :
co_container. Next (o _pos))

{
float * pf = co_container. GetObj (o _pos);
/.

}

Statt der for-Schleife kann auch eine while-Schleife nach folgendem Muster verwendet werden:

gct_AnyContainer <float> co_container;
gct AnyContainer <float>::t Position o_pos;

0 pos = co_container. First ();
while (o_pos != 0)
float * pf = co_container. GetObj (o0 _pos);

/]
if (/* delete entry ? */)

Spirick Tuning Referenzhandbuch Seite 51

0_pos = co_container. DelObj (o _pos);
else
0_pos = co_container. Next (o _pos);

2.1.3 Erweiterter Container (tuning/extcont.h)

Das Klassentemplate gct ExtContainer vereinfacht den Umgang mit der Containerschnittstelle. Z. B.
missen zum Ermitteln des finften Objekts normalerweise zwei Methoden aufgerufen werden.

gct_AnyContainer <float> co_floats;
/.
float f = co_floats. GetObj (co_floats. Nth (5));

Das Klassentemplate gct ExtContainer besitzt fir diesen Fall die Methode GetNthObj. Die Containerklasse,
die als Templateparameter lbergeben wird, dient dem erweiterten Container als Basisklasse. Zur
lllustration der Implementierung des erweiterten Containers wird die Definition einer Methode angefligt.

Basisklasse

gct_AnyContainer (siehe Abschnitt ‘Containerschnittstelle’)

Templatedeklaration

template <class t_container>

class gct ExtContainer: public t _container
{

public:
inline t Object
inTine t Object
inline t Object
inTine t _Object
inline t Object

GetFirstObj () const;

GetlLastObj () const;

GetNextObj (t _Position o _pos) const;
GetPrevObj (t_Position o _pos) const;
GetNthObj (t_Length u_idx) const;

X % 3k X X

inTine t _Position AddObjBeforeFirst (const t Object * po_obj = 0);

inTine t_Position AddObjAfterLast (const t Object * po_obj = 0);

inTine t_Position AddObjBeforeNth (t_Length u_idx, const t Object * po obj = 0);
inTine t_Position AddObjAfterNth (t_Length u_idx, const t Object * po obj = 0);

t Object * GetNewObj (const t_Object * po_obj = 0);

t Object * GetNewFirstObj (const t Object * po_obj = 0);

t Object * GetNewLastObj (const t Object * po obj = 0);

t Object * GetNewObjBefore (t_Position o _pos, const t Object * po_obj = 0)

t Object * GetNewObjAfter (t_Position o _pos, const t Object * po_obj = 0);

t Object * GetNewObjBeforeNth (t_Length u_idx, const t Object * po_obj = 0);
t Object * GetNewObjAfterNth (t Length u_idx, const t Object * po_obj = 0)

inline t_Position DelFirstObj ():

inline t_Position DellLastObj ();

inline t _Position DelNextObj (t_Position o_pos);
inline t _Position DelPrevObj (t_Position o_pos);
inline t Position DeINthObj (t_Length u_idx);

inline t _Position FreeFirstObj ():

inline t_Position FreeLastObj ()

inTine t_Position FreeNextObj (t_Position o_pos);
inline t Position FreePrevObj (t_Position 0 pos);
inTine t_Position FreeNthObj (t _Length u_idx);

b

template <class t_container>

Spirick Tuning Referenzhandbuch Seite 52

inline gct ExtContainer <t container>:: t Object *
gct _ExtContainer <t container>:: GetNthObj (t _Length u_idx) const

return GetObj (Nth (u_idx));
1

Zugriff auf Objekte

t Object * GetFirstObj () const;
Liefert einen typisierten Zeiger auf das erste Objekt. Der Container mufd mindestens ein Objekt
enthalten.

t Object * GetLastObj () const;
Liefert einen typisierten Zeiger auf das letzte Objekt. Der Container muf3 mindestens ein Objekt
enthalten.

t Object * GetNextObj (t Position o_pos) const;
Liefert einen typisierten Zeiger auf das folgende Objekt. o _pos und Next (o _pos) missen glltige Positionen
sein.

t_Object * GetPrevObj (t_Position o_pos) const;
Liefert einen typisierten Zeiger auf das vorhergehende Objekt. o pos und Prev (o_pos) muissen gultige
Positionen sein.

t_Object * GetNthObj (t_Length u_idx) const;

Liefert einen typisierten Zeiger auf das n-te Objekt. Der Index u_idx mulR zwischen Eins und GetlLen liegen.

Einfiigen von Objekten
t Position AddObjBeforeFirst (const t Object * po obj = 0);

Flgt ein neues Objekt in den Container ein und liefert dessen Position. Das Objekt wird vor dem ersten
plaziert, d. h. es ist das neue erste Element. Ist der Zeiger po_obj gleich Null, wird das Objekt mit seinem
normalen Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor mit dem Parameter * po_ob]
aufgerufen.

t Position AddObjAfterLast (const t Object * po obj = 0);

Flgt ein neues Objekt in den Container ein und liefert dessen Position. Das Objekt wird nach dem letzten
plaziert, d. h. es ist das neue letzte Element. Ist der Zeiger po_obj gleich Null, wird das Objekt mit seinem
normalen Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor mit dem Parameter * po_ob]
aufgerufen.

t Position AddObjBeforeNth (t Length u_idx, const t Object * po_obj = 0);

Flgt ein neues Objekt vor einem anderen ein und liefert dessen Position. Der Index u_idx muf3 zwischen
Eins und GetlLen liegen. Ist der Zeiger po_obj gleich Null, wird das Objekt mit seinem normalen Konstruktor
erzeugt. Andernfalls wird sein Kopierkonstruktor mit dem Parameter * po_obj aufgerufen.

t Position AddObjAfterNth (t Length u_idx, const t Object * po obj = 0);

Flgt ein neues Objekt nach einem anderen ein und liefert dessen Position. Der Index u_idx mul3 zwischen
Eins und GetlLen liegen. Ist der Zeiger po_obj gleich Null, wird das Objekt mit seinem normalen Konstruktor
erzeugt. Andernfalls wird sein Kopierkonstruktor mit dem Parameter * po_obj aufgerufen.

Spirick Tuning Referenzhandbuch Seite 53

Zugriff auf neue Objekte
t Object * GetNewObj (const t Object * po obj = 0);

Flgt ein neues Objekt in den Container ein und liefert einen Zeiger darauf. Die Stelle des Einfligens ist
abhangig von der Implementierung. Ist der Zeiger po_obj gleich Null, wird das Objekt mit seinem
normalen Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor mit dem Parameter * po_obj
aufgerufen.

t Object * GetNewFirstObj (const t Object * po obj = 0);

Flgt ein neues Objekt in den Container ein und liefert einen Zeiger darauf. Das Objekt wird vor dem
ersten plaziert, d. h. es ist das neue erste Element. Ist der Zeiger po_obj gleich Null, wird das Objekt mit
seinem normalen Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor mit dem Parameter *
po_obj aufgerufen.

t Object * GetNewLastObj (const t Object * po obj = 0);

Flgt ein neues Objekt in den Container ein und liefert einen Zeiger darauf. Das Objekt wird nach dem
letzten plaziert, d. h. es ist das neue letzte Element. Ist der Zeiger po _obj gleich Null, wird das Objekt mit
seinem normalen Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor mit dem Parameter *
po_obj aufgerufen.

t Object * GetNewObjBefore (t Position o pos. const t Object * po obj = 0);

Flgt ein neues Objekt vor einem anderen ein und liefert einen Zeiger darauf. Ist o_pos gleich Null, wird
das neue Objekt nach dem letzten plaziert, d. h. es ist das neue letzte Element. Ist der Zeiger po_obj
gleich Null, wird das Objekt mit seinem normalen Konstruktor erzeugt. Andernfalls wird sein
Kopierkonstruktor mit dem Parameter * po_obj aufgerufen.

t Object * GetNewObjAfter (t Position o_pos, const t Object * po obj = 0);

Figt ein neues Objekt nach einem anderen ein und liefert einen Zeiger darauf. Ist o_pos gleich Null, wird
das neue Objekt vor dem ersten plaziert, d. h. es ist das neue erste Element. Ist der Zeiger po_obj gleich
Null, wird das Objekt mit seinem normalen Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor
mit dem Parameter * po_obj aufgerufen.

t Object * GetNewObjBeforeNth (t Length u_idx, const t Object * po obj = 0);

Figt ein neues Objekt vor einem anderen ein und liefert einen Zeiger darauf. Der Index u_idx muRR
zwischen Eins und Getlen liegen. Ist der Zeiger po_obj gleich Null, wird das Objekt mit seinem normalen
Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor mit dem Parameter * po_obj aufgerufen.

t_Object * GetNewObjAfterNth (t Length u_idx, const t Object * po_obj = 0);

Figt ein neues Objekt nach einem anderen ein und liefert einen Zeiger darauf. Der Index u_idx muRR
zwischen Eins und Getlen liegen. Ist der Zeiger po obj gleich Null, wird das Objekt mit seinem normalen
Konstruktor erzeugt. Andernfalls wird sein Kopierkonstruktor mit dem Parameter * po_obj aufgerufen.

Riuckgabewert von Léschmethoden

Loéschmethoden liefern stets die Position des Nachfolgers des geléschten Eintrags. Diese Technik
ermoglicht das gleichzeitige Iterieren und Verandern eines Containers. Der Riickgabewert wird mit der
Methode Next vor dem Ldschen berechnet. Wurde der der Reihenfolge nach letzte Eintrag geléscht
(Methode Last), ist der Rickgabewert gleich Null.

Loschen von Objekten
t Position DelFirstObj ();

Entfernt das erste Objekt aus dem Container und ruft dessen Destruktor auf. Der Container muf3
mindestens ein Objekt enthalten. Die Methode liefert die Position des neuen ersten Eintrags oder Null,
wenn kein Eintrag mehr vorhanden ist.

Spirick Tuning Referenzhandbuch Seite 54

t Position DellLastObj ();
Entfernt das letzte Objekt aus dem Container und ruft dessen Destruktor auf. Der Container mufl}
mindestens ein Objekt enthalten. Die Methode liefert Null, da der letzte Eintrag geléscht wurde.
t_Position DelNextObj (t_Position o_pos);

Entfernt das Objekt Next (o _pos) aus dem Container und ruft dessen Destruktor auf. o_pos und Next
(0_pos) mussen gultige Positionen sein. Die Methode liefert die Position des Nachfolgers des gel6schten
Eintrags oder Null, wenn der letzte Eintrag geléscht wurde.

t_Position DelPrevObj (t_Position o_pos);

Entfernt das Objekt Prev (0 _pos) aus dem Container und ruft dessen Destruktor auf. o pos und Prev
(o_pos) mussen gultige Positionen sein. Die Methode liefert o _pos zurtick, denn o _pos ist der Nachfolger
des geldschten Eintrags.

t Position DelNthObj (t Length u_idx);

Entfernt das Objekt Nth (u_idx) aus dem Container und ruft dessen Destruktor auf. Der Index u_idx muRR
zwischen Eins und GetlLen liegen. Die Methode liefert die Position des Nachfolgers des geléschten
Eintrags oder Null, wenn der letzte Eintrag geléscht wurde.

t Position FreeFirstObj ();

Entfernt das erste Objekt aus dem Container, ohne dessen Destruktor aufzurufen. Der Container muf3
mindestens ein Objekt enthalten. Die Methode liefert die Position des neuen ersten Eintrags oder Null,
wenn kein Eintrag mehr vorhanden ist.

t Position FreeLastObj ();
Entfernt das letzte Objekt aus dem Container, ohne dessen Destruktor aufzurufen. Der Container mufl3
mindestens ein Objekt enthalten. Die Methode liefert Null, da der letzte Eintrag geléscht wurde.

t_Position FreeNextObj (t_Position o_pos);

Entfernt das Objekt Next (o _pos) aus dem Container, ohne dessen Destruktor aufzurufen. o_pos und Next
(0_pos) mussen gultige Positionen sein. Die Methode liefert die Position des Nachfolgers des gel6schten
Eintrags oder Null, wenn der letzte Eintrag geléscht wurde.

t _Position FreePrevObj (t Position o_pos);

Entfernt das Objekt Prev (0 _pos) aus dem Container, ohne dessen Destruktor aufzurufen. o pos und Prev
(o_pos) mussen gultige Positionen sein. Die Methode liefert o _pos zurtick, denn o _pos ist der Nachfolger
des geldschten Eintrags.

t Position FreeNthObj (t Length u_idx);

Entfernt das Objekt Nth (u_idx) aus dem Container, ohne dessen Destruktor aufzurufen. Der Index u_idx
mufd zwischen Eins und GetlLen liegen. Die Methode liefert die Position des Nachfolgers des geléschten
Eintrags oder Null, wenn der letzte Eintrag geléscht wurde.

2.2 Arrays und Listen

2.2.1 Array (tuning/array.h)

Der Arraycontainer ist auf eine bestmdgliche Speicherauslastung optimiert. Er bringt seine Objekte ohne
Zwischenraum in einem Block unter. Beim Einfligen oder L6schen von Objekten werden alle
dahinterliegenden im Speicher verschoben, und es andern sich deren Positionszeiger. In einem
Arraycontainer ist der direkte Zugriff auf das n-te Element mdéglich. Die Methode AddObj fligt das neue
Objekt am Ende des Containers an.

Spirick Tuning Referenzhandbuch Seite 55

Das Klassentemplate gct Array besitzt zwei Parameter. t obj ist der Objekttyp. t block ist eine
Blockklasse mit Elementblock-Schnittstelle, und dient dem Arraycontainer als Basisklasse. Bei einem
Arraycontainer |48t sich die ElementgroRe relativ einfach zur Ubersetzungszeit ermitteln. Das
Klassentemplate gct_FixItemArray vereinfacht die Handhabung, indem es die passenden Parameter fir
das Template gct_FixItemBlock bereitstellt

Basisklassen

gct _...ItemBlock (siehe Abschnitt ‘Elementblock’)

Templatedeklaration

template <class t_obj, class t _block>
class gct _Array: public t _block
{
public:
typedef t block::t Size t _Length;
typedef t block::t Size t Position;

typedef t_obj t Object;

inline gct Array (O);

inline gct_Array (const gct Array & co_init);
inline ~gct_Array ();

inline gct Array & operator = (const gct Array & co_asgn);
inline bool Iskmpty () const;

inline t_Length GetMaxLen () const;

inline t_Length GetLen () const;

inline t_Position First () const;

inline t_Position Last () const;

inTine t_Position Next (t_Position o _pos) const;
inTine t _Position Prev (t_Position o _pos) const;
inTine t_Position Nth (t_Length u_idx) const;

inline t _Object * GetObj (t_Position o_pos) const;
inTine t_Position AddObj (const t Object * po obj = 0);
inline t_Position AddObjBefore (t_Position o _pos. const t Object * po obj = 0):

t Position AddObjAfter (t_Position o_pos, const t Object * po obj = 0);
void AppendObj (const t _Object * po_obj = 0, t_Length o_count = 1);
void TruncateObj (t_Length o_count = 1);

t Position Del0Obj (t_Position o_pos):

void DelATT ();

inline t _Position FreeObj (t Position o_pos);

inline void FreeAll ();

inline void SetPageSize (t Size o size);

b

Zusatzliche Methoden
t_Length GetMaxLen () const;

Liefert die maximale Anzahl der Objekte im Container.

void SetPageSize (t Size o size);

Setzt die GroRe der Pages, wenn als Parameter t block die Klasse ct _PageBlock angegeben wurde.

Spirick Tuning Referenzhandbuch Seite 56

Templatedeklaration

template <class t obj, class t block>
class gct FixItemArray:
public gct Array <t obj, gct FixItemBlock <t block, sizeof (gct ArrayNode <t obj>)> >
{
b

2.2.2 Array-Instanzen (tuning/xxx/array.h)

Zur Erleichterung des Umgangs mit Arraycontainern werden in der Bibliothek Spirick Tuning einige
Standardinstanzen des Klassentemplates gct Array vordefiniert. Das Makro ARRAY DCLS(0bj) generiert
ahnlich wie BLOCK _DCLS(0bj) fur jede der vier Wrapperklassen eines globalen Storeobjekts je ein
Arraytemplate, das nur noch den Parameter t obj besitzt. Die Makroverwendung

ARRAY_DCLS (Any)
expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t _obj> class gct _Any Array:

public gct ExtContainer <gct FixItemArray <t obj, ct Any Block> > { };
template <class t obj> class gct Any8Array:

public gct ExtContainer <gct FixItemArray <t obj, ct Any8Block> > { };
template <class t obj> class gct Anyl6Array:

public gct ExtContainer <gct FixItemArray <t obj, ct Anyl6Block> > { };
template <class t obj> class gct Any32Array:

public gct ExtContainer <gct FixItemArray <t obj, ct Any32Block> > { };

Jedes Verzeichnis eines dynamischen Stores enthalt eine Datei 'array.h’. Darin werden mit Hilfe des
Makros ARRAY DCLS nach obigem Muster vier Arraytemplates deklariert.

In der Datei 'tuning/std/array.h’ werden deklariert:

template <class t obj> class gct Std Array;
template <class t obj> class gct Std8Array;
template <class t obj> class gct Stdl6Array;
template <class t obj> class gct Std32Array;

In der Datei 'tuning/rnd/array.h’ werden deklariert:

template <class t_obj> class gct Rnd Array;
template <class t_obj> class gct Rnd8Array;
template <class t _obj> class gct Rndl6Array;
template <class t obj> class gct Rnd32Array;

In der Datei 'tuning/chn/array.h’ werden deklariert:

template <class t obj> class gct Chn Array;
template <class t obj> class gct Chn8Array;
template <class t obj> class gct Chnl6Array;
template <class t obj> class gct Chn32Array;

2.2.3 Liste (tuning/dlist.h)

Der Listencontainer verwaltet seine Objekte in Knoten (Nodes). Der Speicher fiir jedes einzelne Node
wird von einem Store angefordert. Nodes und die darin enthaltenen Objekte werden mit Hilfe der
Positionszeiger des Stores identifiziert. Deshalb behalten die Positionszeiger nach Anderungen des

Spirick Tuning Referenzhandbuch Seite 57

Containers ihre Giltigkeit. Ob zuséatzlich auch die Speicheradressen ihre Giltigkeit behalten, hangt vom
verwendeten Store ab.

Der Listencontainer ist als eine doppelt verkettete Liste (double linked list) implementiert. Jedes Node
enthélt neben dem Objekt je einen Positionszeiger auf Vorganger und Nachfolger. Die doppelte
Verkettung ermdglicht das Durchlaufen des Containers in beiden Richtungen und beschleunigt das
Einfliigen und Léschen von Elementen. Zum Ermitteln des n-ten Elements missen jedoch die Nodes
einzeln abgezéahlt werden.

Das Klassentemplate gct DList besitzt zwei Parameter. t obj ist der Objekttyp. t store ist eine
Storeklasse. Der Listencontainer enthalt ein Attribut dieses Typs und fordert von ihm den Speicher fir
seine Nodes an. Die zusatzliche Methode GetStore ermdglicht den Zugriff auf das Storeobjekt. Die
Methode AddObj fligt das neue Objekt am Ende des Containers an.

Templatedeklaration

template <class t _obj. class t_store>
class gct DList
{
public:
typedef t store::t Size t Length;
typedef t store::t Position t _Position;

typedef t_obj t Object;

inTine gct DList ();

inline gct DList (const gct DList & co_init);
inTine ~gct DList ();

inTine gct DList & operator = (const gct DList & co_asgn);
void Swap (gct DList & co_swap);

inline bool Iskmpty () const;

inline t_Length GetLen () const;

inline t Position First () const;

inline t_Position Last () const;

inline t_Position Next (t_Position o_pos) const;
inTine t_Position Prev (t_Position o _pos) const;
t Position Nth (t_Length u_idx) const;

inTine t Object * GetObj (t_Position o _pos) const;
inTine t_Position AddObj (const t _Object * po_obj = 0);
inline t_Position AddObjBefore (t_Position o _pos, const t Object * po obj = 0);

t Position AddObjAfter (t_Position o _pos, const t Object * po obj = 0);
void AppendObj (const t Object * po_obj = 0, t _Length o _count = 1);
void TruncateObj (t_Length o _count = 1);

t Position Del0bj (t_Position 0 _pos);

void DelATT ();

t Position FreeObj (t_Position o pos);

void FreeAll ();

inline t_store * GetStore ():

b

2.2.4 Listen-Instanzen (tuning/xxx/dlist.h)

Zur Erleichterung des Umgangs mit Listencontainern werden in der Bibliothek Spirick Tuning einige
Standardinstanzen des Klassentemplates gct DList vordefiniert. Das Makro DLIST DCLS(0bj) generiert
ahnlich wie BLOCK _DCLS(0bj) fur jede der vier Wrapperklassen eines globalen Storeobjekts je ein
Listentemplate, das nur noch den Parameter t obj besitzt. Diese Listen fordern den Speicher jedes Nodes

Spirick Tuning Referenzhandbuch Seite 58

einzeln von einem globalen Storeobjekt an. Die Speicheradressen der enthaltenen Objekte behalten nach
Anderungen des Containers ihre Gultigkeit. Die Makroverwendung

DLIST DCLS (Any)
expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t _obj> class gct Any DList:

public gct ExtContainer <gct DList <t obj, ct Any Store> > { };
template <class t_obj> class gct Any8DList:

public gct ExtContainer <gct DList <t obj, ct Any8Store> > { };
template <class t_obj> class gct AnyléDList:

public gct ExtContainer <gct DList <t obj. ct AnyléStore> > { };
template <class t_obj> class gct Any32DList:

public gct ExtContainer <gct DList <t obj, ct Any32Store> > { };

Jedes Verzeichnis eines dynamischen Stores enthalt eine Datei 'dlist.h'. Darin werden mit Hilfe des
Makros DLIST DCLS nach obigem Muster vier Listentemplates deklariert.

In der Datei "tuning/std/dlist.h’ werden deklariert:

template <class t _obj> class gct Std DList;
template <class t _obj> class gct Std8DList;
template <class t obj> class gct StdléDList;
template <class t obj> class gct Std32DList;

In der Datei 'tuning/rnd/dlist.h’ werden deklariert:

template <class t obj> class gct Rnd DList;
template <class t obj> class gct Rnd8DList;
template <class t obj> class gct RndléDList;
template <class t obj> class gct Rnd32DList;

In der Datei 'tuning/chn/dlist.h’ werden deklariert:

template <class t obj> class gct Chn DList;
template <class t obj> class gct Chn8DList;
template <class t obj> class gct ChnléDList;
template <class t _obj> class gct Chn32DList;

2.3 Sortierte Container

2.3.1 Sortiertes Array (tuning/sortarr.h)

Der sortierte Arraycontainer ist analog zum einfachen Arraycontainer implementiert. Auch er bringt seine
Objekte ohne Zwischenraum in einem Block unter. Beim Einfligen oder Loschen von Objekten werden
alle dahinterliegenden im Speicher verschoben, und es d&ndern sich deren Positionszeiger. Der direkte
Zugriff auf das n-te Element ist moglich.

Das Klassentemplate gct _SortedArray besitzt wie gct Array zwei Parameter. t obj ist der Objekttyp.

t _block ist eine Blockklasse mit Elementblock-Schnittstelle, und dient dem Arraycontainer als
Basisklasse. Bei einem Arraycontainer 148t sich die ElementgroRe relativ einfach zur Ubersetzungszeit
ermitteln. Das Klassentemplate gct _FixItemSortedArray vereinfacht die Handhabung, indem es die
passenden Parameter fir das Template gct _FixItemBlock bereitstellt.

Im Gegensatz zum einfachen Arraycontainer ordnet gct SortedArray die Elemente in aufsteigender
Reihenfolge an. Dazu mul’ der Objekttyp t obj den Vergleichsoperator 'operator <' bereitstellen.
Positioniertes Einfligen mit den Methoden AddObjBefore und AddObjAfter ist nur méglich, wenn das Objekt

Spirick Tuning Referenzhandbuch Seite 59

an dieser Stelle einzuordnen ist. Beim sortierten Arraycontainer werden neue Objekte normalerweise mit
der Methode AddObj eingefligt. Diese sortiert das Objekt automatisch an der richtigen Stelle ein. Mehrere
gleiche Objekte werden hintereinander angeordnet. lhre Reihenfolge entspricht der des Einfligens. Das
zuletzt eingefligte Objekt steht in der Folge der gleichen Objekte an letzter Stelle.

Besitzt der Objekttyp t obj zuséatzlich den Gleichheitsoperator 'operator ==', kann der Container um die
Vergleichscontainerschnittstelle erweitert werden. Im sortierten Arraycontainer wird zum Suchen der
Objekte eine bindre Suche verwendet, die wesentlich effizienter als die lineare Suche im einfachen
Arraycontainer ist.

Basisklassen

gct _...ItemBlock (siehe Abschnitt ‘Elementblock’)

Templatedeklaration

template <class t obj, class t block >
class gct_SortedArray: public t block
{
public:
typedef t block::t Size t Length;
typedef t block::t Size t Position;

typedef t obj t Object;

inline gct_SortedArray ();

inline gct _SortedArray (const gct SortedArray & co_init);
inline ~gct_SortedArray ();

inline gct SortedArray & operator = (const gct SortedArray & co_asgn);
inline bool Iskmpty () const;

inline t_Length GetMaxLen () const:

inline t_Length GetLen () const:

inline t_Position First () const;

inline t_Position Last () const;

inTine t_Position Next (t_Position o_pos) const;
inline t_Position Prev (t_Position o _pos) const;
inTine t_Position Nth (t_Length u_idx) const;

inTine t _Object * GetObj (t_Position o _pos) const;

t Position AddObj (const t _Object * po obj);

inline t_Position AddObjBefore (t_Position o _pos, const t Object * po obj);
t Position AddObjAfter (t_Position o _pos. const t Object * po_obj):
void AppendObj (const t Object * po obj = 0, t_Length o count = 1);
void TruncateObj (t_Length o _count = 1);

t Position Del0bj (t_Position 0 _pos);

void DelATT ();

inline t _Position FreeObj (t Position o_pos);

inline void FreeAll ()

inTine void SetPageSize (t_Size o_size);

t Position Before (const t Object * po_obj) const;

b

Zusatzliche Methoden
t_Length GetMaxLen () const:

Liefert die maximale Anzahl der Objekte im Container.

Spirick Tuning Referenzhandbuch Seite 60

void SetPageSize (t Size o size);

Setzt die GroRe der Pages, wenn als Parameter t block die Klasse ct _PageBlock angegeben wurde.

t Position Before (const t Object * po_obj) const;

Liefert die Position des letzten Objektes, das kleiner oder gleich * po obj ist. Liefert Null, wenn das
Objekt kleiner als das erste Objekt im Container ist. Liefert Last (), wenn das Objekt nicht kleiner als das
letzte Objekt im Container ist.

Templatedeklaration

template <class t _obj. class t_block>
class gct FixItemSortedArray:
public gct SortedArray <t obj, gct FixItemBlock <t block, sizeof (gct SortedArrayNode <t obj>)> >
{
b

2.3.2 Sortierte Array-Instanzen (tuning/xxx/sortedarray.h)

Zur Erleichterung des Umgangs mit sortierten Arraycontainern werden in der Bibliothek Spirick Tuning
einige Standardinstanzen des Klassentemplates gct_SortedArray vordefiniert. Das Makro

SORTEDARRAY DCLS(0bj) generiert ahnlich wie BLOCK _DCLS(0bj) fir jede der vier Wrapperklassen eines
globalen Storeobjekts je ein Arraytemplate, das nur noch den Parameter t obj besitzt. Die
Makroverwendung

SORTEDARRAY _DCLS (Any)
expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t obj> class gct Any SortedArray:

public gct ExtContainer <gct FixItemSortedArray <t obj, ct Any Block> > { };
template <class t obj> class gct Any8SortedArray:

public gct ExtContainer <gct FixItemSortedArray <t obj, ct Any8Block> > { };
template <class t obj> class gct Anyl6SortedArray:

public gct ExtContainer <gct FixItemSortedArray <t obj, ct Anyl6Block> > { };
template <class t_obj> class gct_Any32SortedArray:

public gct ExtContainer <gct FixItemSortedArray <t obj, ct Any32Block> > { };

Jedes Verzeichnis eines dynamischen Stores enthalt eine Datei 'sortedarray.h’. Darin werden mit Hilfe
des Makros SORTEDARRAY DCLS nach obigem Muster vier Arraytemplates deklariert.

In der Datei 'tuning/std/sortedarray.h’ werden deklariert:

template <class t _obj> class gct Std SortedArray;
template <class t obj> class gct Std8SortedArray;
template <class t_obj> class gct Stdl6SortedArray;
template <class t obj> class gct Std32SortedArray;

In der Datei 'tuning/rnd/sortedarray.h’ werden deklariert:

template <class t _obj> class gct Rnd SortedArray;
template <class t _obj> class gct Rnd8SortedArray;
template <class t obj> class gct Rndl6SortedArray;
template <class t _obj> class gct Rnd32SortedArray;

In der Datei "tuning/chn/sortedarray.h’ werden deklariert:

template <class t_obj> class gct Chn SortedArray;
template <class t_obj> class gct Chn8SortedArray;

Spirick Tuning Referenzhandbuch Seite 61

template <class t obj> class gct ChnléSortedArray;
template <class t obj> class gct Chn32SortedArray;

2.3.3 Hashtabelle (tuning/hashtable.h)

Hashtabellen sind spezialisierte Container mit einer Zugriffsbeschleunigung. Sie kénnen sehr
unterschiedlich implementiert werden. Das Grundprinzip besteht darin, Objekte gleichen Hashwertes
(modulo der HashtabellengréRe) in einer lokalen Liste anzuordnen. Gelingt es, die Hashwerte breit zu
streuen, und verwendet man eine Primzahl fir die HashtabellengréRe, werden die lokalen Listen im
Durchschnitt sehr klein. Bei der Suche nach einem Objekt kann mit seinem Hashwert direkt auf die
lokale Liste zugegriffen werden, wo es sehr schnell zu finden ist.

Hashtabellen sind sortierte Container, da die enthaltenen Objekte in der Reihenfolge ihrer Hashwerte
angeordnet werden. Ein positioniertes Einflgen mit AddObjBefore oder AddObjAfter ist nicht mdglich. Neue
Objekte kénnen nur mit der Methode AddObj eingefliigt werden.

Das Klassentemplate gct HashTable ist als geschachtelter Arraycontainer implementiert. Es besitzt zwei
Parameter. t obj ist der Objekttyp. Er mul3 eine Methode GetHash bereitstellen, die einen ganzzahligen
numerischen Wert liefert. t block ist eine Blockklasse mit einfacher Schnittstelle, z. B. ct_Chnl6Block. Sie
dient der Implementierung des umfassenden und der lokalen Arraycontainer.

Solange der Container noch keine Elemente enthélt, kann mit der Methode SetHashSize die GréRRe der
Hashtabelle eingestellt werden. Die zusammen mit dem Klassentemplate definierten Konstanten
u_HashPrimel bis u_HashPrimel6 sind Primzahlen, die den umfassenden Arraycontainer auf eine GréRRe knapp
unterhalb einer Zweierpotenz bringen. Als Standardeinstellung dient die Konstante u_HashPrime4.

Besitzt der Objekttyp t obj zuséatzlich den Gleichheitsoperator 'operator ==', kann der Container um die
Vergleichscontainerschnittstelle erweitert werden. In der Hashtabelle werden Objekte mit Hilfe ihres
Hashwertes gesucht. Die Suche ist wesentlich effizienter als im einfachen Arraycontainer oder im
Listencontainer.

Templatedeklaration
const unsigned u HashPrimel = 1013;
const unsigned u_HashPrime2 = 2039;
const unsigned u_HashPrimed = 4079;
const unsigned u_HashPrime8 = 8179;

const unsigned u_HashPrimelé = 16369;

template <class t_obj. class t_block>
class gct HashTable

{
public:

typedef t block::t Size t Length;

typedef gct HashTablePosition <t block> t Position;

typedef t_obj t Object;
gct HashTable ()

void Swap (gct HashTable & co_swap);

inline bool Iskmpty () const;

inline t_Length GetLen () const;

t Position First () const;

t Position Last () const;

t Position Next (t_Position o _pos) const;

t_Position Prev (t_Position o _pos) const;

t Position Nth (t_Length u_idx) const;

inTine t Object * GetObj (t_Position o _pos) const;

Spirick Tuning Referenzhandbuch Seite 62

AddObjBefore (t_Position o _pos, const t _Object * po obj);

AppendObj (const t Object * po_obj = 0, t _Length o _count = 1);

t Position AddObj (const t Object * po obj);
t Position
t Position AddObjAfter (t_Position o _pos, const t Object * po_obj);
void
void TruncateObj (t_Length o _count = 1);
t Position DelObj (t_Position o _pos);
void DelAlT ();
t Position FreeObj (t_Position o_pos);
void FreeAll ();
void SetHashSize (t Length o size);
inline t_Length GetHashSize () const;
1%
Konstanten
const unsigned cu HashPrimel = 1013;
const unsigned cu HashPrime2 = 2039;
const unsigned cu HashPrime4 = 4079;
const unsigned cu HashPrime8 = 8179;

const unsigned cu_HashPrimel6

16369

Diese Konstanten sind empfohlene Vorgabewerte fiir die GréRe der Hashtabelle. Es sind Primzahlen, die
den umfassenden Arraycontainer auf eine Grél3e knapp unterhalb einer Zweierpotenz bringen.

Zuséatzliche Methoden
void SetHashSize (t Length o_size);

Setzt bei einem leeren Container die GroRe der Hashtabelle. Alle Objekte werden mit ihrem Hashwert
modulo der GroRe der Hashtabelle einsortiert.

t _Length GetHashSize () const;

Liefert die GroRRe der Hashtabelle.

2.3.4

Hashtabellen-Instanzen (tuning/xxx/hashtable.h)

Zur Erleichterung des Umgangs mit Hashtabellencontainern werden in der Bibliothek Spirick Tuning einige
Standardinstanzen des Klassentemplates gct HashTable vordefiniert. Das Makro HASHTABLE DCLS(0bj)
generiert ahnlich wie BLOCK DCLS(0bj) fur jede der vier Wrapperklassen eines globalen Storeobjekts je ein
Hashtabellentemplate, das nur noch den Parameter t _obj besitzt. Die Makroverwendung

HASHTABLE_DCLS (Any)

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template
public
template
public
template
public
template
public

<class t_obj> class gct_Any HashTable:

gct_ExtContainer <gct_HashT5b1e <t_obj.

<class t_obj> class gct_Any8HashTable:

gct _ExtContainer <gct HashTable <t obj,
<class t_obj> class gct Anyl6HashTable:
gct_ExtContainer <gct HashTable <t obj,
<class t_obj> class gct Any32HashTable:
gct_ExtContainer <gct HashTable <t obj,

ct_Any Block> > { };
ct_Any8Block> > { };
ct_AnyléBlock> > { }:

ct_Any32Block> > { }:

Jedes Verzeichnis eines dynamischen Stores enthalt eine Datei 'hashtable.h’. Darin werden mit Hilfe des
Makros HASHTABLE DCLS nach obigem Muster vier Hashtabellentemplates deklariert.

Spirick Tuning Referenzhandbuch Seite 63

In der Datei 'tuning/std/hashtable.h’ werden deklariert:

template <class t _obj> class gct Std HashTable;
template <class t _obj> class gct Std8HashTable;
template <class t obj> class gct Stdl6HashTable;
template <class t obj> class gct Std32HashTable;

In der Datei "tuning/rnd/hashtable.h’ werden deklariert:

template <class t _obj> class gct Rnd HashTable;
template <class t _obj> class gct Rnd8HashTable;
template <class t obj> class gct Rndl6HashTable;
template <class t obj> class gct Rnd32HashTable;

In der Datei 'tuning/chn/hashtable.h’ werden deklariert:

template <class t obj> class gct Chn HashTable;
template <class t obj> class gct Chn8HashTable;
template <class t obj> class gct Chnl6HashTable;
template <class t obj> class gct Chn32HashTable;

2.4 Block- und Reflisten

2.4.1 Blockliste

Ubergibt man dem Containertemplate gct DList als Parameter t_store eine Blockstoreklasse, erhalt man
eine Blockliste. Sie verbindet die Bedieneigenschaften einer doppelt verketteten Liste mit der
Speichereffizienz eines Blockstores. Dieser bringt die Nodes kompakt in einem zusammenhéangenden
Speicherblock unter. Bei der Verwendung von Blocklisten ist zu beachten, dal3 sich die Speicheradressen
der Objekte andern kénnen.

In Blocklisten ist der Langentyp gleich dem Positionstyp. Durch Auswahl eines geeigneten Positionstyps
kann der Speicherbedarf reduziert werden. Ist z. B. von Instanzen eines bestimmten Listentyps bekannt,
dal3 die enthaltenen Objekte zusammengenommen nicht mehr als 64 KB Speicher benétigen, kann ein
16-Bit-Blockstore genutzt werden. Gegenliber einem 32-Bit-Blockstore verringert sich der Speicherbedarf
jedes Nodes um vier Bytes, denn Nodes enthalten je zwei Positionszeiger.

2.4.2 Blocklisten-Instanzen (tuning/xxx/blockdlist.h)

Zur Erleichterung des Umgangs mit Blocklisten werden in der Bibliothek Spirick Tuning einige
Standardinstanzen vordefiniert. Das Makro BLOCK DLIST DCLS(Obj) generiert &hnlich wie BLOCK_DCLS(Obj) far
jede der vier Wrapperklassen eines globalen Storeobjekts je ein Blocklistentemplate, das nur noch den
Parameter t obj besitzt. Die Makroverwendung

BLOCK_DLIST DCLS (Any)
expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t obj> class gct_Any BlockDList:

public gct ExtContainer <gct DList <t obj, ct_Any BlockStore> > { };
template <class t_obj> class gct_Any8BTockDList:

public gct ExtContainer <gct DList <t obj, ct Any8BlockStore> > { };
template <class t obj> class gct Anyl6BlockDList:

public gct ExtContainer <gct DList <t obj, ct_Anyl6BlockStore> > { };
template <class t _obj> class gct Any32BTockDList:

Spirick Tuning Referenzhandbuch Seite 64

public gct ExtContainer <gct DList <t obj, ct Any32BlockStore> > { };

Jedes Verzeichnis eines dynamischen Stores enthalt eine Datei 'blockdlist.h’. Darin werden mit Hilfe des
Makros BLOCK DLIST DCLS nach obigem Muster vier Listentemplates deklariert.

In der Datei 'tuning/std/blockdlist.h’ werden deklariert:

template <class t obj> class gct Std BlockDList;
template <class t obj> class gct Std8BlockDList;
template <class t obj> class gct Stdl6BlockDList;
template <class t _obj> class gct Std32BlockDList;

In der Datei "tuning/rnd/blockdlist.h’ werden deklariert:

template <class t_obj> class gct Rnd BlockDList;
template <class t _obj> class gct Rnd8BTockDList;
template <class t_obj> class gct Rnd16BlockDList;
template <class t_obj> class gct Rnd32BTockDList;

In der Datei "tuning/chn/blockdlist.h’ werden deklariert:

template <class t _obj> class gct Chn BlockDList;
template <class t obj> class gct Chn8BlockDList;
template <class t _obj> class gct Chnl6BlockDList;
template <class t obj> class gct Chn32BlockDList;

2.4.3 Refliste (tuning/refdlist.h)

Das Containertemplate gct DList nutzt nur die normale Storeschnittstelle des Parameters t_store.
Verwendet man einen Refstore, mif3te der Anwender der Liste mit Hilfe der Methode GetStore auf die
erweiterten Storemethoden (z. B. IncRef) zugreifen. Das Template gct RefDList vereinfacht diesen Zugriff.
Es Gbernimmt die Ref-Methoden des Storeobjekts in die Listenschnittstelle und besitzt dieselben
Templateparameter wie gct DList. Die Definition der Methode IncRef demonstriert die Implementierung
des Reflistentemplates.

Basisklassen

gct DList (siehe Abschnitt ‘Liste’)
gct_ExtContainer (siehe Abschnitt ‘Erweiterter Container’)

Templatedeklaration

template <class t obj, class t store>
class gct RefDList:
public gct ExtContainer <gct DList <t obj, t store> >

{
public:

inTine void IncRef (t_Position o _pos);

inline void DecRef (t_Position 0 pos);

inline t RefCount GetRef (t_Position o _pos) const;
inTine bool IsAlloc (t_Position o _pos) const;
inTine bool IsFree (t_Position o _pos) const;
b

template <class t_obj, class t_store>
inTine void gct RefDList <t obj, t store>::IncRef (t Position o_pos)
{

o_Store. IncRef (o_pos);

}

Spirick Tuning Referenzhandbuch Seite 65

In einer Refliste wird jedem einzelnen Node ein Referenzzahler zugeordnet. Dieser ermdglicht die
Implementierung von sicheren Zeigern auf Listeneintrage. Ein sicherer Zeiger erhoht den Referenzzahler
des Eintrags, auf den er verweist.

Ein Positionszeiger einer Refliste behélt seine Gliltigkeit, solange der Eintrag nicht (z. B. mit De10bj)
geloscht wurde oder der Referenzzahler ungleich Null ist. Wurde das Element mit DelObj aus der Liste
entfernt, liefert IsAlloc den Wert false, und es kann nicht mehr mit GetObj auf das Objekt zugegriffen
werden. Erreicht der Referenzzahler mit DecRef den Wert Null, wird auch der zugehérige Speicher
freigegeben, und der Positionszeiger verliert seine Gultigkeit.

Methoden

void IncRef (t_Position o _pos);

Erhoht den zum Listeneintrag o pos gehdérenden Referenzzéhler. o pos mul} eine gulltige Position sein.

void DecRef (t Position o pos);

Verkleinert den zum Listeneintrag o pos gehdérenden Referenzzahler. o_pos mul3 eine gultige Position sein.

t_RefCount GetRef (t_Position o_pos) const;

Liefert den Wert des zum Listeneintrag o_pos gehérenden Referenzzahlers. o _pos mul} eine giltige
Position sein.

bool IsAlToc (t Position o _pos) const;

Liefert true, wenn der zum Positionszeiger o_pos gehérende Listeneintrag nicht (z. B. mit De10bj) geldscht
wurde und mit GetObj darauf zugegriffen werden kann. o_pos mul} eine giltige Position sein.

bool IsFree (t Position o _pos) const;

Diese Methode ist die logische Negation von IsAlToc. o_pos mul3 eine gultige Position sein.

2.4.4 Reflisten-Instanzen (tuning/xxx/refdlist.h)

Zur Erleichterung des Umgangs mit Reflisten werden in der Bibliothek Spirick Tuning einige
Standardinstanzen des Klassentemplates gct RefDList vordefiniert. Das Makro REF _DLIST DCLS(Obj)
generiert ahnlich wie BLOCK DCLS(Obj) firr jede der vier Wrapperklassen eines globalen Storeobjekts je ein
Listentemplate, das nur noch den Parameter t obj besitzt. Diese Reflisten fordern den Speicher jedes
Nodes einzeln von einem globalen Storeobjekt an. Die Speicheradressen der enthaltenen Objekte
behalten nach Anderungen des Containers ihre Giiltigkeit. Die Makroverwendung

REF _DLIST DCLS (Any)
expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t obj> class gct Any RefDList:
public gct RefDList <t obj. ct Any RefStore> { };
template <class t obj> class gct Any8RefDList:
public gct RefDList <t obj, ct Any8RefStore> { };
template <class t obj> class gct Anyl6RefDList:
public gct RefDList <t obj, ct Anyl6RefStore> { };
template <class t obj> class gct Any32RefDList:
public gct RefDList <t obj, ct Any32RefStore> { };

Jedes Verzeichnis eines dynamischen Stores enthalt eine Datei 'refdlist.h’. Darin werden mit Hilfe des
Makros REF DLIST DCLS nach obigem Muster vier Reflistentemplates deklariert.

In der Datei 'tuning/std/refdlist.h’ werden deklariert:

Spirick Tuning Referenzhandbuch Seite 66

template
template
template
template

<class t_obj>
<class t_obj>
<class t_obj>
<class t_obj>

class gct Std RefDList;
class gct Std8RefDList;
class gct Stdl6RefDList;
class gct Std32RefDList;

In der Datei 'tuning/rnd/refdlist.h’ werden deklariert:

template
template
template
template

<class t_obj>
<class t_obj>
<class t_obj>
<class t_obj>

class gct Rnd RefDList;
class gct Rnd8RefDList;
class gct Rndl6RefDList;
class gct Rnd32RefDList;

In der Datei "tuning/chn/refdlist.h’ werden deklariert:

template
template
template
template

2.4.5

Ubergibt man dem Containertemplate gct RefDList als Parameter t store eine Blockrefstoreklasse, erhalt
man eine Blockrefliste. Zur Erleichterung des Umgangs mit Blockreflisten werden in der Bibliothek Spirick
Tuning einige Standardinstanzen vordefiniert. Das Makro BLOCKREF DLIST DCLS(Obj) generiert dhnlich wie
BLOCK_DCLS(0bj) fur jede der vier Wrapperklassen eines globalen Storeobjekts je ein
Blockreflistentemplate, das nur noch den Parameter t obj besitzt. Die Makroverwendung

BLOCKREF _DLIST DCLS (Any)

<class t_obj>
<class t_obj>
<class t_obj>
<class t_obj>

Blockreflisten-Instanzen (tuning/xxx/blockrefdlist.h)

class gct Chn RefDList;
class gct Chn8RefDList;
class gct ChnléRefDList;
class gct Chn32RefDList;

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template
public
template
public
template
public
template
public

Jedes Verzeichnis eines dynamischen Stores enthalt eine Datei 'blockrefdlist.h’. Darin werden mit Hilfe
des Makros BLOCKREF DLIST DCLS nach obigem Muster vier Listentemplates deklariert.

<class t_obj> class gct_Any BlockRefDList:

gct RefDList <t _obj,

ct_Any BlockRefStore> { };

<class t_obj> class gct Any8BlockRefDList:

gct RefDList <t obj,

ct_Any8BlockRefStore> { };

<class t_obj> class gct AnyléBlockRefDList:

gct RefDList <t obj,

ct_Anyl6BlockRefStore> { }:

<class t_obj> class gct Any32BlockRefDList:

gct RefDList <t obj,

ct_Any32BlockRefStore> { }:

In der Datei "tuning/std/blockrefdlist.h’ werden deklariert:

template
template
template
template

<class t_obj>
<class t_obj>
<class t_obj>
<class t_obj>

class gct Std BlockRefDList;
class gct Std8BlockRefDList;
class gct Stdl6BlockRefDList;
class gct _Std32BlockRefDList;

In der Datei 'tuning/rnd/blockrefdlist.h’ werden deklariert:

template
template
template
template

<class t_obj>
<class t_obj>
<class t_obj>
<class t_obj>

class gct Rnd BlockRefDList;
class gct Rnd8BlockRefDList;
class gct Rndl6BlockRefDList;
class gct Rnd32BlockRefDList;

In der Datei "tuning/chn/blockrefdlist.h’ werden deklariert:

template <class t _obj> class gct Chn BlockRefDList;
template <class t_obj> class gct Chn8BlockRefDList;

Spirick Tuning

Referenzhandbuch

Seite 67

template <class t _obj> class gct Chnl6BlockRefDList;
template <class t obj> class gct Chn32BlockRefDList;

2.5 Vergleichs-, Zeiger- und Mapcontainer

2.5.1 Vergleichscontainer (tuning/compcontainer.h)

Die normale Containerschnittstelle ist auf universelle Anwendbarkeit ausgelegt und stellt nur geringe
Anforderungen an die enthaltenen Objekte. Diese miissen nur einen normalen und einen
Kopierkonstruktor zur Verfligung stellen. Einige Objektklassen besitzen jedoch einen Gleichheitsoperator
(operator ==). Dieser ist implizit auch fir alle primitiven Datentypen, z. B. int oder void *, definiert. Der
Gleichheitsoperator erméglicht zahlreiche weitere Containermethoden, z. B. das bedingte Einfiigen und
das Suchen eines Elements.

Das Klassentemplate gct CompContainer erwartet als Parameter eine Containerklasse, deren Objekttyp
einen Gleichheitsoperator enthalt, z. B. gct_Std32Array <float>. Sie dient dem Vergleichscontainer als
Basisklasse.

Basisklassen

gct_AnyContainer (siehe Abschnitt ‘Containerschnittstelle’)
[gct_ExtContainer (optional, siehe Abschnitt ‘Erweiterter Container’)]

Templatedeklaration

template <class t_container>
class gct _CompContainer: public t _container

{
public:
inTine bool ContainsObj (const t _Object * po_obj) const;
t _Length CountObjs (const t Object * po_obj) const;
t Position SearchFirstObj (const t Object * po_obj) const;
t Position SearchLastObj (const t Object * po_obj) const;
t Position SearchNextObj (t _Position o _pos, const t Object * po_obj) const;
t Position SearchPrevObj (t Position o _pos, const t Object * po_obj) const;

inTine t _Object * GetFirstEqualObj (const t Object * po_obj) const;
inTine t Object * GetlLastEqualObj (const t Object * po_obj) const;

inline t_Position AddObjCond (const t Object * po_obj);
inline t_Position AddObjBeforeFirstCond (const t Object * po_obj);
inTine t_Position AddObjAfterLastCond (const t Object * po_obj);

inline t_Position DelFirstEqualObj (const t Object * po_obj);
inTine t_Position DellastEqualObj (const t _Object * po_obj);
inTine t_Position DelFirstEqualObjCond (const t Object * po obj);
inTine t_Position DellastEqualObjCond (const t Object * po obj);

b

Suche nach Objekten
bool ContainsObj (const t Object * po_obj) const;

Liefert true, wenn der Container ein Objekt enthélt, das gleich * po_obj ist.

t_Length CountObjs (const t Object * po obj) const;
Liefert die Anzahl der Objekte, die gleich * po_obj sind.

Spirick Tuning Referenzhandbuch Seite 68

t Position SearchFirstObj (const t Object * po obj) const;
Liefert die Position des ersten Objekts, das gleich * po obj ist, oder Null, wenn kein Objekt gefunden
wurde.

t_Position SearchLastObj (const t Object * po obj) const;
Liefert die Position des letzten Objekts, das gleich * po _obj ist, oder Null, wenn kein Objekt gefunden
wurde.

t _Position SearchNextObj (t Position o_pos, const t Object * po_obj) const;
Liefert die Position des nachsten Objekts, das gleich * po_obj ist, oder Null, wenn kein Objekt gefunden
wurde. o_pos muld eine glltige Position sein. Die Suche beginnt bei Next (o _pos).

t Position SearchPrevObj (t Position o _pos, const t Object * po_obj) const;

Liefert die Position des vorhergehenden Objekts, das gleich * po _obj ist, oder Null, wenn kein Objekt
gefunden wurde. o_pos mul eine gliltige Position sein. Die Suche beginnt bei Prev (o _pos).

Zugriff auf gefundene Objekte

t Object * GetFirstEqualObj (const t Object * po_obj) const;
Liefert einen typisierten Zeiger des ersten Objekts, das gleich * po obj ist. Es muf3 mindestens ein
gleiches Objekt enthalten sein.

t Object * GetLastEqualObj (const t Object * po obj) const;

Liefert einen typisierten Zeiger des letzten Objekts, das gleich * po_obj ist. Es muf3 mindestens ein
gleiches Objekt enthalten sein.

Bedingtes Einfligen
t Position AddObjCond (const t Object * po obj):

Liefert die Position des ersten Objekts, das gleich * po obj ist, oder die Position eines neu eingefligten
Objekts, wenn kein Objekt gefunden wurde. Zum Einfligen des neuen Objekts wird die Methode AddObj
aufgerufen.

t Position AddObjBeforeFirstCond (const t Object * po_obj);

Liefert die Position des ersten Objekts, das gleich * po obj ist, oder die Position eines neu eingefligten
Objekts, wenn kein Objekt gefunden wurde. Zum Einfligen des neuen Objekts wird die Methode
AddObjBeforeFirst aufgerufen.

t Position AddObjAfterLastCond (const t Object * po obj);

Liefert die Position des ersten Objekts, das gleich * po_obj ist, oder die Position eines neu eingefligten
Objekts, wenn kein Objekt gefunden wurde. Zum Einfligen des neuen Objekts wird die Methode
AddObjAfterLast aufgerufen.

Ruckgabewert von Léschmethoden

Léschmethoden liefern stets die Position des Nachfolgers des geléschten Eintrags. Diese Technik
ermoglicht das gleichzeitige Iterieren und Verandern eines Containers. Der Riickgabewert wird mit der
Methode Next vor dem Ldschen berechnet. Wurde der der Reihenfolge nach letzte Eintrag geléscht
(Methode Last), ist der Riickgabewert gleich Null.

Spirick Tuning Referenzhandbuch Seite 69

Loschen gefundener Objekte
t Position DelFirstEqualObj (const t Object * po obj);

Léscht das erste Objekt, das gleich * po _obj ist. Es muRR mindestens ein gleiches Objekt enthalten sein.
Die Methode liefert die Position des Nachfolgers des geléschten Objekts oder Null, wenn das letzte
Objekt geléscht wurde.

t Position DellLastEqualObj (const t Object * po obj);

Léscht das letzte Objekt, das gleich * po_obj ist. Es muf3 mindestens ein gleiches Objekt enthalten sein.
Die Methode liefert die Position des Nachfolgers des geléschten Objekts oder Null, wenn das letzte
Objekt geléscht wurde.

Bedingtes Loschen gefundener Objekte
t Position DelFirstEqualObjCond (const t Object * po_obj):

Léscht das erste Objekt, das gleich * po _obj ist, sofern ein gleiches Objekt gefunden wurde. Die Methode
liefert die Position des Nachfolgers des geléschten Objekts oder Null, wenn kein Objekt gefunden wurde
oder das geldschte Objekt das letzte war.

t Position DellLastEqualObjCond (const t Object * po_obj);

Léscht das letzte Objekt, das gleich * po_obj ist, sofern ein gleiches Objekt gefunden wurde. Die
Methode liefert die Position des Nachfolgers des geldschten Objekts oder Null, wenn kein Objekt
gefunden wurde oder das geléschte Objekt das letzte war.

2.5.2 Zeigercontainer (tuning/ptrcontainer.h)

Container kénnen nicht nur Objekte (z. B. ct_String) und primitive Datentypen (z. B. int, float) enthalten,
sondern auch C++-Zeiger (z. B. ct_String *). Viele Methoden der normalen und erweiterten
Containerschnittstelle sind in diesem Fall unhandlich. Z. B. liefert die Methode GetObj einen Zeiger auf ein
Objekt. Ist das Objekt selbst ein Zeiger, liefert sie einen Zeiger auf einen Zeiger. Analog erwartet die
Methode AddObj einen Zeiger auf einen Zeiger.

gct Rndl6Array <ct String *> co_array;

gct Rndl6Array <ct String *>::t Position o _pos;
ct_String * pco_str = new ct_String;

0_pos = co_array. AddObj (& pco_str);

pco_str = * co_array. GetObj (o_pos);

Das Klassentemplate gct PtrContainer stellt eine komfortable Schnittstelle flir Zeigercontainer bereit. Es
mappt viele Methoden der normalen, erweiterten und Vergleichscontainer-Schnittstelle und enthalt einige
zusatzliche Methoden. Zur besseren Unterscheidung von den Objektmethoden (z. B. GetObj) enthalten die
zugehorigen Zeigermethoden die Abklirzung Ptr (z. B. GetPtr). Die Methode DelPtr wird auf FreeObj
zurtickgefihrt und 16scht einen Zeiger aus dem Container. Die Methode DelPtrAndObj I16scht zusatzlich
das referenzierte Objekt.

Beim Instantiieren von gleichartigen Containern, die Zeiger enthalten (z. B. gct Chnl6DList <int *> und
gct_ChnleDList <ct String *>), entsteht stets derselbe bindre Programmcode. Diese Templateinstanzen
unterscheiden sich nur im Typ der Parameter und Rickgabewerte. Um das unnétige Duplizieren von
Programmcode zu vermeiden, erwartet das Template gct PtrContainer die Objektklasse und eine
Containerklasse mit dem Objekttyp void *. Z. B. ist gct_PtrContainer <int, gct_Chnl6DList <void *> > ein
Container, der Objekte des Typs int * verwaltet. Der Zeigercontainer selbst enthalt nur Inline-Methoden,
die im binaren Programmcode nicht separat instantiiert werden.

Fir C++-Zeiger ist der Gleichheitsoperator definiert. Deshalb wird die Gbergebene Containerklasse
zunachst um die Vergleichscontainer-Schnittstelle erweitert. Der Vergleichscontainer dient dem
Zeigercontainer als Basisklasse. Alle dort deklarierten Methoden stehen dem Anwender des

Spirick Tuning Referenzhandbuch Seite 70

Zeigercontainers auch zur Verfligung. Zur lllustration der Implementierung des Zeigercontainers werden
die Definitionen der Methoden GetPtr und DelPtrAndObj angefligt.

Basisklassen

gct_AnyContainer (siehe Abschnitt ‘Containerschnittstelle’)
gct_ExtContainer (siehe Abschnitt ‘Erweiterter Container’)
gct_CompContainer (siehe Abschnitt ‘Vergleichscontainer’)

Templatedeklaration

template <class t_obj, class t_container>
class gct PtrContainer: public gct CompContainer <t _container>

{
public:
typedef t_obj t RefObject;
inTine ~gct_PtrContainer ()

inline t _obj
inline t _obj
inline t _obj
inline t _obj
inline t _obj
inline t _obj

GetPtr (t_Position o _pos) const;
GetFirstPtr () const;

GetLastPtr () const;

GetNextPtr (t _Position o pos) const;
GetPrevPtr (t_Position o _pos) const;
GetNthPtr (t_Length u_idx) const;

* ok k% Kk oF

inline t_Position AddPtr (const t _obj * po_obj);

inline t_Position AddPtrBefore (t_Position o _pos, const t obj * po obj);
inTine t _Position AddPtrAfter (t _Position o_pos, const t obj * po_obj);
inline t_Position AddPtrBeforeFirst (const t obj * po_obj);

inline t_Position AddPtrAfterLast (const t obj * po_obj);

inline t Position AddPtrBeforeNth (t_Length u_idx, const t obj * po_obj);
inTine t_Position AddPtrAfterNth (t_Length u_idx, const t obj * po obj);

inTine t_Position DelPtr (t_Position o _pos);
inTine t_Position DelFirstPtr ()

inTine t Position DellLastPtr O);

inTine t_Position DelNextPtr (t_Position o _pos);
inTine t Position DelPrevPtr (t_Position o0_pos):
inTine t_Position DelINthPtr (t_Length u_idx);
inline void DelAlTPtr ()

inline t_Position DelPtrAndObj (t _Position o_pos);
inline t_Position DelFirstPtrAndObj ();

inline t_Position DelLastPtrAndObj ():

inTine t_Position DelNextPtrAndObj (t_Position o _pos);
inline t Position DelPrevPtrAndObj (t Position o_pos);
inline t_Position DeINthPtrAndObj (t_Length u_idx);

inline void DelA11PtrAndObj ();
inline bool ContainsPtr (const t obj * po_obj) const;
inline t_Length CountPtrs (const t obj * po_obj) const;

inline t _Position SearchFirstPtr (const t_obj * po obj) const;
inTine t_Position SearchLastPtr (const t obj * po_obj) const;
inline t Position SearchNextPtr (t _Position o_pos, const t obj * po obj) const;
inTine t_Position SearchPrevPtr (t_Position o _pos, const t obj * po_obj) const;

inTine t_Position AddPtrCond (const t _obj * po obj);
inTine t_Position AddPtrBeforeFirstCond (const t_obj * po_obj):
inTine t_Position AddPtrAfterLastCond (const t obj * po_obj);

inTine t_Position DelFirstEqualPtr (const t_obj * po_obj):
inTine t_Position DellLastEqualPtr (const t obj * po_obj);

Spirick Tuning Referenzhandbuch Seite 71

inline t_Position DelFirstEqualPtrCond (const t_obj * po obj);
inline t_Position DellLastEqualPtrCond (const t_obj * po obj);

inline t _Position DelFirstEqualPtrAndObj (const t obj * po_obj);
inTine t_Position DellLastEqualPtrAndObj (const t_obj * po_obj):
inline t _Position DelFirstEqualPtrAndObjCond (const t obj * po _obj);
inTine t_Position DellastEqualPtrAndObjCond (const t obj * po obj);

b

template <class t_obj, class t_container>
inline t obj * gct_PtrContainer <t _obj, t _container>::
GetPtr (t_Position o_pos) const

{
return (t_obj *) * GetObj (o_pos);

}

template <class t obj, class t _container>
inline gct _PtrContainer <t obj, t_container>::t Position
gct PtrContainer <t obj, t_container>::
DelPtrAndObj (t Position o_pos)

delete GetPtr (o_pos);
return FreeObj (o_pos);

}

Datentypen
typedef t obj t RefObject;

Der geschachtelte Typ t RefObject beschreibt den Typ der referenzierten Objekte und ist fur die
Verwendung in abgeleiteten Klassen bestimmt.

Destruktor
~gct_PtrContainer ():

Da C++-Zeiger keinen Destruktor besitzen, ruft der Destruktor des Zeigercontainers die Methode FreeAll
auf. Der vom Container belegte Speicher wird effizient freigegeben. Es werden jedoch keine
Destruktoren referenzierter Objekte aufgerufen.

Zugriff auf referenzierte Objekte

t obj * GetPtr (t_Position o _pos) const;
Liefert einen typisierten Zeiger auf das durch o pos identifizierte Objekt. 0 pos muld eine gultige Position
sein.

t obj * GetFirstPtr () const;
Liefert einen typisierten Zeiger auf das erste Objekt. Der Container mufd mindestens ein Objekt
enthalten.

t_obj * GetLastPtr () const:
Liefert einen typisierten Zeiger auf das letzte Objekt. Der Container mul® mindestens ein Objekt
enthalten.

t obj * GetNextPtr (t Position o _pos) const;

Liefert einen typisierten Zeiger auf das folgende Objekt. o pos und Next (o _pos) muissen glltige Positionen
sein.

Spirick Tuning Referenzhandbuch Seite 72

t obj * GetPrevPtr (t Position o _pos) const;
Liefert einen typisierten Zeiger auf das vorhergehende Objekt. o pos und Prev (o0_pos) muissen gultige
Positionen sein.

t obj * GetNthPtr (t_Length u_idx) const;

Liefert einen typisierten Zeiger auf das n-te Objekt. Der Index u_idx mulR zwischen Eins und GetlLen liegen.

Einfligen von Zeigern

t Position AddPtr (const t obj * po_obj);
Flgt den Zeiger po_obj in den Container ein und liefert dessen Position. Die Stelle des Einfligens ist
abhangig von der Implementierung.

t Position AddPtrBefore (t Position o_pos. const t obj * po_obj);
Flgt den Zeiger po_obj vor einem anderen ein und liefert dessen Position. Ist o_pos gleich Null, wird der
Zeiger nach dem letzten plaziert, d. h. er ist das neue letzte Element.

t Position AddPtrAfter (t Position o_pos. const t obj * po_obj):
Flagt den Zeiger po_obj nach einem anderen ein und liefert dessen Position. Ist o_pos gleich Null, wird der
Zeiger vor dem ersten plaziert, d. h. er ist das neue erste Element.

t_Position AddPtrBeforeFirst (const t_obj * po_obj);

Flgt den Zeiger po_obj vor dem ersten ein und liefert dessen Position. po obj ist das neue erste Element.

t Position AddPtrAfterLast (const t obj * po obj):
Flgt den Zeiger po_obj nach dem letzten ein und liefert dessen Position. po_obj ist das neue letzte
Element.

t_Position AddPtrBeforeNth (t_Length u_idx, const t_obj * po_obj);
Flgt den Zeiger po_obj vor einem anderen ein und liefert dessen Position. Der Index u_idx muf} zwischen
Eins und GetlLen liegen.

t Position AddPtrAfterNth (t Length u_idx, const t obj * po_obj);

Flgt den Zeiger po_obj nach einem anderen ein und liefert dessen Position. Der Index u_idx muf}
zwischen Eins und GetlLen liegen.

Ruckgabewert von Léschmethoden

Loschmethoden liefern stets die Position des Nachfolgers des geléschten Eintrags. Diese Technik
ermoglicht das gleichzeitige Iterieren und Verandern eines Containers. Der Riickgabewert wird mit der
Methode Next vor dem Ldschen berechnet. Wurde der der Reihenfolge nach letzte Eintrag geléscht
(Methode Last), ist der Rickgabewert gleich Null.

Léschen von Zeigern
t_Position DelPtr (t_Position o_pos);

Die Methode ist identisch mit FreeObj. Sie entfernt einen Zeiger aus dem Container und beeinfluf3t nicht
das referenzierte Objekt. 0o _pos muR eine gliltige Position sein. Die Methode liefert Next (o_pos), also die
Position des nachsten Eintrags oder Null, wenn der letzte Eintrag geléscht wurde.

t Position DelFirstPtr ();

Die Methode ist identisch mit FreeFirstObj. Sie entfernt den ersten Zeiger aus dem Container und
beeinflut nicht das referenzierte Objekt. Der Container muf3 mindestens ein Objekt enthalten. Die
Methode liefert die Position des neuen ersten Eintrags oder Null, wenn kein Eintrag mehr vorhanden ist.

Spirick Tuning Referenzhandbuch Seite 73

t Position DellLastPtr ();

Die Methode ist identisch mit FreelLastObj. Sie entfernt den letzten Zeiger aus dem Container und
beeinflut nicht das referenzierte Objekt. Der Container muf3 mindestens ein Objekt enthalten. Die
Methode liefert Null, da der letzte Eintrag geléscht wurde.

t Position DelNextPtr (t Position o_pos);

Die Methode ist identisch mit FreeNextObj. Sie entfernt den Zeiger Next (o _pos) aus dem Container und
beeinfluRt nicht das referenzierte Objekt. o_pos und Next (o_pos) missen glltige Positionen sein. Die
Methode liefert die Position des Nachfolgers des geldschten Eintrags oder Null, wenn der letzte Eintrag
geléscht wurde.

t_Position DelPrevPtr (t_Position o_pos);

Die Methode ist identisch mit FreePrevObj. Sie entfernt den Zeiger Prev (0 _pos) aus dem Container und
beeinfluRt nicht das referenzierte Objekt. 0 _pos und Prev (o _pos) missen gultige Positionen sein. Die
Methode liefert o pos zurlick, denn o_pos ist der Nachfolger des geldschten Eintrags.

t_Position DelNthPtr (t_Length u_idx);

Die Methode ist identisch mit FreeNthObj. Sie entfernt den Zeiger Nth (u_idx) aus dem Container und
beeinfluRt nicht das referenzierte Objekt. Der Index u_idx muf3 zwischen Eins und Getlen liegen. Die
Methode liefert die Position des Nachfolgers des geldschten Eintrags oder Null, wenn der letzte Eintrag
geléscht wurde.

void DelA11Ptr ();

Die Methode ist identisch mit FreeAl1. Der vom Container belegte Speicher wird effizient freigegeben. Es
werden jedoch keine Destruktoren referenzierter Objekte aufgerufen.

Loschen von Zeigern und referenzierten Objekten
t Position DelPtrAndObj (t Position o_pos);

Wirkt wie DelPtr und I6scht zusatzlich das referenzierte Objekt.

t_Position DelFirstPtrAndObj ():

Wirkt wie DelFirstPtr und loscht zusatzlich das referenzierte Objekt.

t_Position DellLastPtrAndObj ();

Wirkt wie DellastPtr und l6scht zusatzlich das referenzierte Objekt.

t Position DelNextPtrAndObj (t Position o _pos);

Wirkt wie DelNextPtr und l6scht zusatzlich das referenzierte Objekt.

t Position DelPrevPtrAndObj (t Position o pos);

Wirkt wie DelPrevPtr und l6scht zusatzlich das referenzierte Objekt.

t Position DeINthPtrAndObj (t Length u_idx):
Wirkt wie DeINthPtr und I6scht zusatzlich das referenzierte Objekt.

void DelA11PtrAndObj ();:

Wirkt wie DelA11Ptr und I6scht zusatzlich die referenzierten Objekte.

Vergleich im Zeigercontainer

Ein Zeigercontainer basiert auf einem Container des Typs gct_AnyContainer <void *>. Die enthaltenen
Objekte sind untypisierte C++-Zeiger. Methoden des Vergleichscontainers, z. B. SearchFirstObj,

Spirick Tuning Referenzhandbuch Seite 74

vergleichen Objekte des Typs void * miteinander. Die folgenden Methoden des Zeigercontainers, z. B.
SearchFirstPtr, werden auf die Methoden des Vergleichscontainers zurlickgefiihrt und vergleichen die im
Container enthaltenen C++-Zeiger miteinander, nicht die referenzierten Objekte.

Suche nach Zeigern
bool ContainsPtr (const t obj * po obj) const;

Liefert true, wenn der Container einen Zeiger enthalt, der gleich po obj ist.

t_Length CountPtrs (const t obj * po_obj) const;
Liefert die Anzahl der Zeiger, die gleich po_obj sind.

t Position SearchFirstPtr (const t obj * po_obj) const;

Liefert die Position des ersten Zeigers, der gleich po obj ist, oder Null, wenn kein Zeiger gefunden wurde.

t Position SearchLastPtr (const t obj * po obj) const;
Liefert die Position des letzten Zeigers, der gleich po obj ist, oder Null, wenn kein Zeiger gefunden
wurde.

t_Position SearchNextPtr (t_Position o_pos, const t_obj * po_obj) const;
Liefert die Position des nachsten Zeigers, der gleich po_obj ist, oder Null, wenn kein Zeiger gefunden
wurde. o_pos mufd eine gultige Position sein. Die Suche beginnt bei Next (o _pos).

t Position SearchPrevPtr (t Position o _pos, const t obj * po obj) const;

Liefert die Position des vorhergehenden Zeigers, der gleich po obj ist, oder Null, wenn kein Zeiger
gefunden wurde. o_pos mufd eine glltige Position sein. Die Suche beginnt bei Prev (o _pos).

Bedingtes Einfligen von Zeigern
t Position AddPtrCond (const t obj * po_obj);

Liefert die Position des ersten Zeigers, der gleich po obj ist, oder die Position eines neu eingefiigten
Zeigers, wenn kein Zeiger gefunden wurde. Zum Einfligen des neuen Zeigers wird die Methode AddPtr
aufgerufen.

t Position AddPtrBeforeFirstCond (const t obj * po obj);

Liefert die Position des ersten Zeigers, der gleich po_obj ist, oder die Position eines neu eingefiigten
Zeigers, wenn kein Zeiger gefunden wurde. Zum Einfligen des neuen Zeigers wird die Methode
AddPtrBeforeFirst aufgerufen.

t Position AddPtrAfterLastCond (const t obj * po obj);

Liefert die Position des ersten Zeigers, der gleich po obj ist, oder die Position eines neu eingefligten
Zeigers, wenn kein Zeiger gefunden wurde. Zum Einfligen des neuen Zeigers wird die Methode
AddPtrAfterLast aufgerufen.

Loschen gefundener Zeiger
t Position DelFirstEqualPtr (const t obj * po obj);

Léscht den ersten Zeiger, der gleich po _obj ist. Es mulR mindestens ein gleicher Zeiger enthalten sein. Die
Methode liefert die Position des Nachfolgers des geléschten Zeigers oder Null, wenn der letzte Zeiger
geléscht wurde.

Spirick Tuning Referenzhandbuch Seite 75

t Position DellLastEqualPtr (const t obj * po obj);

Léscht den letzten Zeiger, der gleich po_obj ist. Es mul3 mindestens ein gleicher Zeiger enthalten sein.
Die Methode liefert die Position des Nachfolgers des geldschten Zeigers oder Null, wenn der letzte
Zeiger geldscht wurde

Bedingtes Loschen gefundener Zeiger
t Position DelFirstEqualPtrCond (const t obj * po obj);

Léscht den ersten Zeiger, der gleich po_obj ist, sofern ein gleicher Zeiger gefunden wurde. Die Methode
liefert die Position des Nachfolgers des geléschten Zeigers oder Null, wenn kein Zeiger gefunden wurde
oder der letzte Zeiger geloscht wurde.

t Position DellLastEqualPtrCond (const t obj * po obj);

Léscht den letzten Zeiger, der gleich po_obj ist, sofern ein gleicher Zeiger gefunden wurde. Die Methode
liefert die Position des Nachfolgers des geléschten Zeigers oder Null, wenn kein Zeiger gefunden wurde
oder der letzte Zeiger geléscht wurde.

Loschen gefundener Zeiger und referenzierter Objekte
t Position DelFirstEqualPtrAndObj (const t obj * po_obj);

Wirkt wie DelFirstEqualPtr und I6scht zuséatzlich das referenzierte Objekt.

t Position DellLastEqualPtrAndObj (const t obj * po_obj);

Wirkt wie DellastEqualPtr und I6scht zusatzlich das referenzierte Objekt.

Bedingtes Loschen gefundener Zeiger und referenzierter Objekte
t Position DelFirstEqualPtrAndObjCond (const t obj * po_obj);

Wirkt wie DelFirstEqualPtrCond und I&scht zuséatzlich das referenzierte Objekt.

t Position DellLastEqualPtrAndObjCond (const t obj * po_obj);

Wirkt wie DellLastEqualPtrCond und I6scht zuséatzlich das referenzierte Objekt.

2.5.3 Operationen mit Zeigercontainern

Objekte einfiigen, kopieren und léschen

Das folgende Programmbeispiel demonstriert das Einfligen, Kopieren und Léschen von Objekten in einem
Zeigercontainer. Die Klasse ct_Int wird im Abschnitt ‘Beispielprogramme’ beschrieben.

ct_Int co_int = 1;

ct_Int * pco_int;

gct_AnyPtrContainer <ct_Int> co_ptrContainer;
gct_AnyPtrContainer <ct_Int>::t Position o_pos;

// Neues Objekt im Zeigercontainer mit Defaultkonstruktor erzeugen
0_pos = co_ptrContainer. AddPtr (new ct _Int);

// Auf das Objekt zugreifen und es und initialisieren
pco_int = co_ptrContainer. GetPtr (o _pos);
(* pco_int) = 2;

// Vorhandenes Objekt in den Zeigercontainer kopieren
0 _pos = co_ptrContainer. AddPtr (new ct_Int (co_int));

Spirick Tuning Referenzhandbuch Seite 76

// Objekt aus dem Zeigercontainer nehmen und 16schen
co_ptrContainer. DelPtrAndObj (o_pos);

Vorwarts iterieren

Zum lterieren eines Zeigercontainers in aufsteigender Reihenfolge der Eintrdge wird eine for-Schleife
nach folgendem Muster empfohlen:

gct_AnyPtrContainer <float> co_ptrContainer;
gct_AnyPtrContainer <float>::t Position o _pos;

for (o_pos = co_ptrContainer. First ();
0 pos !=0;
0_pos = co_ptrContainer. Next (o_pos))

{
float * pf = co_ptrContainer. GetPtr (o_pos);

..
}

Riickwarts iterieren

Zum lterieren eines Zeigercontainers in absteigender Reihenfolge der Eintrage wird eine for-Schleife nach
folgendem Muster empfohlen:

gct_AnyPtrContainer <float> co_ptrContainer;
gct_AnyPtrContainer <float>::t Position o_pos;

for (o_pos = co _ptrContainer. Last ();
0 pos !=0;
0_pos = co_ptrContainer. Prev (0_pos))

{
float * pf = co _ptrContainer. GetPtr (o_pos);

/..
}

Iterieren und verandern

Zum lterieren und Verandern eines Zeigercontainers wird eine for-Schleife nach folgendem Muster
empfohlen:

gct_AnyPtrContainer <float> co_ptrContainer;
gct_AnyPtrContainer <float>::t Position o_pos;

for (o_pos = co _ptrContainer. First ();
0 pos !=0;
0 pos = /* delete entry ? */ 7
co_ptrContainer. DelPtrAndObj (o_pos) :
co_ptrContainer. Next (o_pos))
{
float * pf = co_ptrContainer. GetPtr (o_pos):
/o

}

Statt der for-Schleife kann auch eine while-Schleife nach folgendem Muster verwendet werden:

gct_AnyPtrContainer <float> co_ptrContainer;
gct_AnyPtrContainer <float>::t Position o_pos;

0_pos = co_ptrContainer. First ();
while (o_pos != 0)

{
float * pf = co _ptrContainer. GetPtr (o _pos);

Spirick Tuning Referenzhandbuch Seite 77

/o
if (/* delete entry ? */)

0 _pos = co_ptrContainer. DelPtrAndObj (o _pos);
else

0_pos = co_ptrContainer. Next (o_pos);

}

2.5.4 Zeigervergleichscontainer (tuning/ptrcompcontainer.h)

Die normale Zeigercontainerschnittstelle ist auf universelle Anwendbarkeit ausgelegt und stellt nur
geringe Anforderungen an die referenzierten Objekte. Diese miissen nur einen Destruktor (fir die
Methode DelPtrAndObj) zur Verfligung stellen. Einige Objektklassen besitzen jedoch einen
Gleichheitsoperator (operator ==). Dieser ist implizit auch fir alle primitiven Datentypen, z. B. int oder
void *, definiert. Der Gleichheitsoperator ermdglicht zahlreiche weitere Containermethoden, z. B. das
bedingte Einfligen und das Suchen eines Elements.

Das Klassentemplate gct _PtrCompContainer erwartet als Parameter eine Zeigercontainerklasse, deren
Objekttyp einen Gleichheitsoperator enthalt, z. B. gct _Std32PtrArray <float>. Sie dient dem
Zeigervergleichscontainer als Basisklasse.

Basisklassen
gct_AnyContainer (siehe Abschnitt ‘Containerschnittstelle’)
gct_ExtContainer (siehe Abschnitt ‘Erweiterter Container’)

gct_CompContainer (siehe Abschnitt ‘Vergleichscontainer’)
gct_PtrContainer (siehe Abschnitt ‘Zeigercontainer’)

Templatedeklaration

template <class t _container>
class gct PtrCompContainer: public t_container

{
public:
inTine bool ContainsRef (const t RefObject * po_obj) const;
t Length CountRefs (const t RefObject * po_obj) const;
t Position SearchFirstRef (const t RefObject * po_obj) const;
t Position SearchLastRef (const t RefObject * po_obj) const;
t Position SearchNextRef (t_Position o _pos, const t RefObject * po obj) const;
t Position SearchPrevRef (t_Position o_pos. const t RefObject * po_obj) const;

inline t RefObject * GetFirstEqualRef (const t RefObject * po_obj) const:
inTine t RefObject * GetlLastEqualRef (const t RefObject * po_obj) const;

inTine t_Position AddRefCond (const t RefObject * po_obj):
inline t_Position AddRefBeforeFirstCond (const t RefObject * po obj);
inTine t_Position AddRefAfterLastCond (const t RefObject * po_obj);

inline t_Position DelFirstEqualRef (const t RefObject * po_obj);
inline t_Position DellLastEqualRef (const t RefObject * po obj);
inTine t_Position DelFirstEqualRefCond (const t RefObject * po _obj);
inline t_Position DellLastEqualRefCond (const t RefObject * po obj);

inline t Position DelFirstEqualRefAndObj (const t RefObject * po obj);
inline t_Position DellLastEqualRefAndObj (const t RefObject * po obj);
inline t_Position DelFirstEqualRefAndObjCond (const t RefObject * po obj);
inline t Position DellastEqualRefAndObjCond (const t RefObject * po obj);

b

Spirick Tuning Referenzhandbuch Seite 78

Suche nach referenzierten Objekten
bool ContainsRef (const t RefObject * po obj) const;

Liefert true, wenn der Container ein Objekt enthélt, das gleich * po_obj ist.

t_Length CountRefs (const t RefObject * po obj) const;
Liefert die Anzahl der Objekte, die gleich * po obj sind.

t Position SearchFirstRef (const t RefObject * po _obj) const;
Liefert die Position des ersten Objekts, das gleich * po obj ist, oder Null, wenn kein Objekt gefunden
wurde.

t Position SearchLastRef (const t RefObject * po obj) const;
Liefert die Position des letzten Objekts, das gleich * po_obj ist, oder Null, wenn kein Objekt gefunden
wurde.

t_Position SearchNextRef (t Position o_pos, const t RefObject * po_obj) const;
Liefert die Position des nachsten Objekts, das gleich * po_obj ist, oder Null, wenn kein Objekt gefunden
wurde. 0_pos muf} eine gultige Position sein. Die Suche beginnt bei Next (o _pos).

t Position SearchPrevRef (t Position o_pos. const t RefObject * po obj) const:

Liefert die Position des vorhergehenden Objekts, das gleich * po_obj ist, oder Null, wenn kein Objekt
gefunden wurde. o_pos mul} eine giiltige Position sein. Die Suche beginnt bei Prev (0 pos).

Zugriff auf gefundene Objekte

t RefObject * GetFirstEqualRef (const t RefObject * po _obj) const;
Liefert einen typisierten Zeiger auf das erste Objekt, das gleich * po _obj ist. Es mul3 mindestens ein
gleiches Objekt enthalten sein.

t RefObject * GetLastEqualRef (const t RefObject * po_obj) const;

Liefert einen typisierten Zeiger auf das letzte Objekt, das gleich * po_obj ist. Es muf® mindestens ein
gleiches Objekt enthalten sein.

Bedingtes Einfiigen von Zeigern
t_Position AddRefCond (const t_RefObject * po_obj):

Liefert die Position des ersten Objekts, das gleich * po obj ist, oder die Position eines neu eingefligten
Zeigers, wenn kein Objekt gefunden wurde. Zum Einfligen des neuen Zeigers wird die Methode AddPtr
aufgerufen.

t Position AddRefBeforeFirstCond (const t RefObject * po obj);

Liefert die Position des ersten Objekts, das gleich * po obj ist, oder die Position eines neu eingefligten
Zeigers, wenn kein Objekt gefunden wurde. Zum Einfligen des neuen Zeigers wird die Methode
AddPtrBeforeFirst aufgerufen.

t Position AddRefAfterLastCond (const t RefObject * po_obj);

Liefert die Position des ersten Objekts, das gleich * po_obj ist, oder die Position eines neu eingefligten
Zeigers, wenn kein Objekt gefunden wurde. Zum Einfligen des neuen Zeigers wird die Methode
AddPtrAfterLast aufgerufen.

Rickgabewert von Léschmethoden

Léschmethoden liefern stets die Position des Nachfolgers des geléschten Eintrags. Diese Technik
ermoglicht das gleichzeitige Iterieren und Verandern eines Containers. Der Riickgabewert wird mit der

Spirick Tuning Referenzhandbuch Seite 79

Methode Next vor dem Ldschen berechnet. Wurde der der Reihenfolge nach letzte Eintrag geléscht
(Methode Last), ist der Riickgabewert gleich Null.

Loschen von Zeigern gefundener Objekte

t Position DelFirstEqualRef (const t RefObject * po_obj);
Léscht den Zeiger auf das erste Objekt, das gleich * po_obj ist. Es muRR mindestens ein gleiches Objekt
enthalten sein. Die Methode liefert die Position des Nachfolgers des gel6schten Zeigers oder Null, wenn
der letzte Zeiger geloscht wurde.

t Position DellLastEqualRef (const t RefObject * po_obj);

Léscht den Zeiger auf das letzte Objekt, das gleich * po obj ist. Es mu3 mindestens ein gleiches Objekt
enthalten sein. Die Methode liefert die Position des Nachfolgers des gel6schten Zeigers oder Null, wenn
der letzte Zeiger geléscht wurde.

Bedingtes Léschen von Zeigern gefundener Objekte
t Position DelFirstEqualRefCond (const t RefObject * po_obj):

Léscht den Zeiger auf das erste Objekt, das gleich * po_obj ist, sofern ein gleiches Objekt gefunden
wurde. Die Methode liefert die Position des Nachfolgers des geléschten Zeigers oder Null, wenn kein
Objekt gefunden wurde oder der geldéschte Zeiger der letzte war.

t Position DellLastEqualRefCond (const t RefObject * po obj);

Léscht den Zeiger auf das letzte Objekt, das gleich * po obj ist, sofern ein gleiches Objekt gefunden
wurde. Die Methode liefert die Position des Nachfolgers des geléschten Zeigers oder Null, wenn kein
Objekt gefunden wurde oder der geléschte Zeiger der letzte war.

Loschen gefundener Zeiger und referenzierter Objekte
t Position DelFirstEqualRefAndObj (const t RefObject * po obj);

Wirkt wie DelFirstEqualRef und I6scht zuséatzlich das referenzierte Objekt.

t Position DellLastEqualRefAndObj (const t RefObject * po obj):

Wirkt wie DellastEqualRef und I6scht zusatzlich das referenzierte Objekt.

Bedingtes Loschen gefundener Zeiger und referenzierter Objekte
t Position DelFirstEqualRefAndObjCond (const t RefObject * po _obj);

Wirkt wie DelFirstEqualRefCond und I6scht zuséatzlich das referenzierte Objekt.

t _Position DellLastEqualRefAndObjCond (const t RefObject * po obj);

Wirkt wie DellastEqualRefCond und I6scht zuséatzlich das referenzierte Objekt.

2.5.5 Mapcontainer (tuning/map.h)

Der Mapcontainer ist ahnlich wie der Vergleichscontainer eine Erweiterung der normalen
Containerschnittstelle. Er verwaltet jedoch keine einzelnen Objekte, sondern Schlissel-Wert-Paare. An
die Wertobjekte werden nur geringe Anforderungen gestellt. Sie miissen nur einen normalen und einen
Kopierkonstruktor zur Verfligung stellen. Die Schliisselobjekte miissen zusatzlich einen
Gleichheitsoperator (operator ==) besitzen. Er ermdéglicht das Suchen nach einem Wert mit einem
gegebenen Schllssel.

Spirick Tuning Referenzhandbuch Seite 80

Das Klassentemplate gct Map erwartet als Parameter eine Containerklasse, deren Objekttyp ein Schllssel-
Wert-Paar ist, z. B. gct_Std32Array <gct MapEntry <ct String, ct_Int> >. Sie dient dem Mapcontainer als
Basisklasse. Mit dem Hilfstemplate gct MapEntry kénnen Schliissel-Wert-Paare gebildet werden. Wird als
Basiscontainer ein sortiertes Array verwendet, miissen die Schllisselobjekte zusatzlich den
Vergleichsoperator 'operator <' besitzen. Wird als Basiscontainer eine Hashtabelle verwendet, miissen die

Schllsselobjekte zusatzlich die Methode GetHash besitzen.

Das Schlisselobjekt dient dem Hilfstemplate gct MapEntry als Basisklasse. Primitive Datentypen, z. B. int
oder char, kénnen nicht direkt als Schllissel verwendet werden. Das Hilfstemplate gct Key wandelt einen
ganzzahligen Zahlentyp in einen Schlisseltyp um, z. B. gct MapEntry <gct Key <int>, ct_String>.

Basisklassen

gct_AnyContainer (siehe Abschnitt ‘Containerschnittstelle’)

[gct_ExtContainer (optional, siehe Abschnitt ‘Erweiterter Container’)]

Templatedeklaration

template <class t _container>
class gct Map: public t _container

{
public:
typedef t Object::t Key t_Key:
typedef t Object::t Value t Value;
inTine bool ContainsKey (t Key o key) const;
t_Length CountKeys (t_Key o _key) const;
t Position SearchFirstKey (t Key o _key) const;
t Position SearchLastKey (t Key o key) const;
t Position SearchNextKey (t Position o _pos, t Key o key) const;
t Position SearchPrevKey (t Position o pos, t Key o key) const;
inline t Key GetKey (t_Position o_pos) const;
inTine t Value * GetValue (t_Position o _pos) const;
inline t Value * GetFirstValue (t Key o key) const;

inline t Value * GetLastValue (t_Key o key) const;

t Position AddKeyAndValue (t_Key o key, const t Value * po_value = 0);
t Position AddKeyAndValueCond (t _Key o key, const t Value * po_value = 0);

inTine t_Position DelKeyAndValue (t_Position o_pos);
inTine t _Position DelFirstKeyAndValue (t _Key o key);
inTine t_Position DellLastKeyAndValue (t Key o key);
inTine t_Position DelFirstKeyAndValueCond (t _Key o key);
inline t_Position DellastKeyAndValueCond (t_Key o key);
inline void DelAT1KeyAndValue ();

b

Datentypen
typedef t Object::t Key t Key;

Der geschachtelte Typ t Key ist der Datentyp der Schliisselobjekte und wird vom Hilfstemplate

gct MapEntry Gbernommen.

typedef t Object::t Value t Value;

Der geschachtelte Typ t Value ist der Datentyp der Wertobjekte und wird vom Hilfstemplate gct MapEntry

Ubernommen.

Spirick Tuning Referenzhandbuch

Seite 81

Suche nach Paaren
bool ContainsKey (t Key o key) const;

Liefert true, wenn der Container einen Schlissel enthélt, der gleich o _key ist.

t_Length CountKeys (t_Key o key) const;
Liefert die Anzahl der Schlissel, die gleich o _key sind.

t Position SearchFirstKey (t Key o key) const;
Liefert die Position des ersten Schllissel-Wert-Paares, dessen Schliissel gleich o key ist, oder Null, wenn
kein Schlissel gefunden wurde.

t Position SearchLastKey (t Key o key) const;
Liefert die Position des letzten Schlissel-Wert-Paares, dessen Schliissel gleich o _key ist, oder Null, wenn
kein Schlissel gefunden wurde.

t_Position SearchNextKey (t Position o_pos, t Key o key) const;

Liefert die Position des nachsten Schllissel-Wert-Paares, dessen Schlissel gleich o _key ist, oder Null,
wenn kein Schlissel gefunden wurde. o pos muld eine gliltige Position sein. Die Suche beginnt bei Next
(0_pos).

t Position SearchPrevKey (t Position o pos, t Key o key) const;

Liefert die Position des vorhergehenden Schliissel-Wert-Paares, dessen Schliissel gleich o key ist, oder
Null, wenn kein Schlissel gefunden wurde. o_pos muld eine gultige Position sein. Die Suche beginnt bei
Prev (o0 _pos).

Zugriff auf Schliissel und Wert

t Key GetKey (t Position o _pos) const;
Liefert den Schlissel des durch o _pos identifizierten Schlissel-Wert-Paares. o_pos muf3 eine gultige
Position sein.

t Value * GetValue (t_Position o_pos) const;

Liefert einen typisierten Zeiger auf den Wert des durch o _pos identifizierten Schliissel-Wert-Paares. o_pos
mufd eine gultige Position sein.

Zugriff auf gefundene Objekte

t Value * GetFirstValue (t Key o key) const;
Liefert einen typisierten Zeiger auf den Wert des ersten Schlissel-Wert-Paares, dessen Schliissel gleich
0_key ist. Es mul3 mindestens ein gleicher Schliissel enthalten sein.

t Value * GetLastValue (t _Key o key) const;

Liefert einen typisierten Zeiger auf den Wert des letzen Schlissel-Wert-Paares, dessen Schlissel gleich
0_key ist. Es mul3 mindestens ein gleicher Schliissel enthalten sein.

Einfligen von Paaren
t Position AddKeyAndValue (t Key o key, const t Value * po value = 0);

Flgt ein neues Schliissel-Wert-Paar in den Container ein und liefert dessen Position. Ist der Zeiger
po_value gleich Null, wird das Wertobjekt mit seinem normalen Konstruktor erzeugt. Andernfalls wird sein
Kopierkonstruktor mit dem Parameter * po_value aufgerufen.

Spirick Tuning Referenzhandbuch Seite 82

t Position AddKeyAndValueCond (t Key o key, const t Value * po_value = 0);

Liefert die Position des ersten Schliissel-Wert-Paares, dessen Schliissel gleich o key ist, oder die Position
eines neu eingefligten Paares, wenn kein Paar gefunden wurde. Zum Einfligen des neuen Paares wird die
Methode AddKeyAndValue aufgerufen.

Riickgabewert von Loschmethoden

Loschmethoden liefern stets die Position des Nachfolgers des geldéschten Eintrags. Diese Technik
ermdoglicht das gleichzeitige Iterieren und Verandern eines Containers. Der Riickgabewert wird mit der
Methode Next vor dem Ldschen berechnet. Wurde der der Reihenfolge nach letzte Eintrag geléscht
(Methode Last), ist der Riickgabewert gleich Null.

Léschen von Paaren
t_Position DelKeyAndValue (t Position o_pos);

Ruft den Destruktor des Schliissel-Wert-Paares auf und gibt den zugehorigen Speicher frei. o_pos muf3
eine glltige Position sein. Die Methode liefert Next (o _pos), also die Position des nachsten Paares oder
Null, wenn das letzte Paar geléscht wurde.

void DelAl11KeyAndValue ():

Ruft die Destruktoren aller Schliissel-Wert-Paare auf und gibt deren Speicher frei. De1Al1KeyAndValue ist i.
a. schneller als das mehrfache Loéschen mit DelKeyAndValue.

Léschen gefundener Paare
t Position DelFirstKeyAndValue (t Key o key):

Léscht das erste Schlissel-Wert-Paar, dessen Schliissel gleich o key ist. Es mulR mindestens ein gleicher
Schllssel enthalten sein. Die Methode liefert die Position des Nachfolgers des geléschten Paares oder
Null, wenn das letzte Paar geléscht wurde.

t Position DellLastKeyAndValue (t Key o key);

Léscht das letzte Schlissel-Wert-Paar, dessen SchlUssel gleich o _key ist. Es mu3 mindestens ein gleicher
Schllssel enthalten sein. Die Methode liefert die Position des Nachfolgers des geléschten Paares oder
Null, wenn das letzte Paar gel6scht wurde.

Bedingtes Loschen gefundener Paare
t Position DelFirstKeyAndValueCond (t Key o key);

Léscht das erste Schllissel-Wert-Paar, dessen Schliissel gleich o _key ist, sofern ein gleicher Schlissel
gefunden wurde. Die Methode liefert die Position des Nachfolgers des geléschten Paares oder Null,
wenn kein Schlissel gefunden wurde oder das geldschte Paar das letzte war.

t Position DellLastKeyAndValueCond (t Key o key);

Léscht das letzte Schlissel-Wert-Paar, dessen Schlissel gleich o _key ist, sofern ein gleicher Schllssel
gefunden wurde. Die Methode liefert die Position des Nachfolgers des geléschten Paares oder Null,
wenn kein Schlissel gefunden wurde oder das geldschte Paar das letzte war.

2.5.6 Zeigermapcontainer (tuning/ptrmap.h)

Der Zeigermapcontainer ist ahnlich wie der Mapcontainer eine Erweiterung der normalen
Containerschnittstelle. Er verwaltet jedoch keine Schlissel-Wert-Paare, sondern Schliissel-Zeiger-Paare.
Die Schlisselobjekte missen einen Gleichheitsoperator (operator ==) besitzen. Er ermdglicht das Suchen
nach einem Zeiger mit einem gegebenen Schlissel.

Spirick Tuning Referenzhandbuch Seite 83

Das Klassentemplate gct PtrMap erwartet als Parameter eine Containerklasse, deren Objekttyp ein
SchlUssel-Zeiger-Paar ist, z. B. gct_Std32Array <gct PtrMapEntry <ct String> >, und den Datentyp des
Zeigers. Die Containerklasse dient dem Zeigermapcontainer als Basisklasse. Mit dem Hilfstemplate
gct_PtrMapEntry wird ein SchlUssel-Zeiger-Paar gebildet. Der Zeiger ist untypisiert (void *) und wird erst in
den Zugriffsmethoden in einen typisierten Zeiger umgewandelt. Wird als Basiscontainer ein sortiertes
Array verwendet, missen die Schliisselobjekte zusatzlich den Vergleichsoperator 'operator <' besitzen.
Wird als Basiscontainer eine Hashtabelle verwendet, miissen die Schlliisselobjekte zusatzlich die
Methode GetHash besitzen.

Das Schlisselobjekt dient dem Hilfstemplate gct PtrMapEntry als Basisklasse. Primitive Datentypen, z. B.
int oder char, kénnen nicht direkt als Schliissel verwendet werden. Das Hilfstemplate gct Key wandelt
einen ganzzahligen Zahlentyp in einen Schlisseltyp um, z. B. gct PtrMapEntry <gct Key <int> >.

Basisklassen

gct_AnyContainer (siehe Abschnitt ‘Containerschnittstelle’)
[gct_ExtContainer (optional, siehe Abschnitt ‘Erweiterter Container’)]

Templatedeklaration

template <class t_container, class t_value>
class gct PtrMap: public t _container

{
public:
typedef t Object::t Key t Key;
typedef t value t Value;
inTline bool ContainsKey (t Key o key) const;
t _Length CountKeys (t_Key o _key) const;
t Position SearchFirstKey (t Key o key) const;
t Position SearchLastKey (t Key o key) const;
t Position SearchNextKey (t Position o_pos,
t Key o _key) const;
t Position SearchPrevKey (t Position o_pos,
t Key o key) const;
inTine t Key GetKey (t_Position o _pos) const;
inline t Value * GetValPtr (t _Position o_pos) const;

inTine t Value * GetFirstValPtr (t_Key o_key) const;
inline t Value * GetLastValPtr (t Key o key) const;

t Position AddKeyAndValPtr (t Key o key,
const t Value * po_value);
t Position AddKeyAndValPtrCond (t_Key o key,

const t Value * po_value);

inTine t_Position DelKey (t_Position o _pos);
inline t_Position DelFirstKey (t Key o key);
inline t_Position DellastKey (t _Key o key);
inline t_Position DelFirstKeyCond (t _Key o key);
inline t_Position DellLastKeyCond (t _Key o key);
inline void DelAllKey ();

inTine t_Position DelKeyAndValue (t_Position o_pos);
inline t Position DelFirstKeyAndValue (t Key o key);
inline t_Position DellastKeyAndValue (t Key o key);
inline t _Position DelFirstKeyAndValueCond (t_Key o key);
inline t_Position DellastKeyAndValueCond (t Key o key);
void DelA1TKeyAndValue ():

b

Spirick Tuning Referenzhandbuch Seite 84

Datentypen

typedef t Object::t Key t Key:
Der geschachtelte Typ t Key ist der Datentyp der Schllisselobjekte und wird vom Hilfstemplate
gct_PtrMapEntry Gbernommen.

typedef t value t Value;

Der geschachtelte Typ t Value ist der Datentyp der Wertobjekte und wird als Templateparameter
Ubergeben.

Suche nach Paaren
bool ContainskKey (t Key o key) const;

Liefert true, wenn der Container einen Schlissel enthélt, der gleich o _key ist.

t _Length CountKeys (t Key o _key) const;
Liefert die Anzahl der Schlissel, die gleich o_key sind.

t Position SearchFirstKey (t Key o key) const;
Liefert die Position des ersten Schliissel-Zeiger-Paares, dessen Schliissel gleich o key ist, oder Null, wenn
kein Schlissel gefunden wurde.

t Position SearchLastKey (t Key o key) const;
Liefert die Position des letzten Schlissel-Zeiger-Paares, dessen Schlissel gleich o key ist, oder Null,
wenn kein Schlissel gefunden wurde.

t Position SearchNextKey (t Position o _pos, t Key o key) const;

Liefert die Position des nachsten Schlissel-Zeiger-Paares, dessen Schlissel gleich o key ist, oder Null,
wenn kein Schlissel gefunden wurde. o _pos mul} eine gliltige Position sein. Die Suche beginnt bei Next
(0_pos).

t Position SearchPrevKey (t Position o _pos, t Key o key) const;

Liefert die Position des vorhergehenden Schllissel-Zeiger-Paares, dessen Schllissel gleich o key ist, oder
Null, wenn kein Schllissel gefunden wurde. o_pos mul3 eine gulltige Position sein. Die Suche beginnt bei
Prev (0 _pos).

Zugriff auf Schliissel und Wert

t Key GetKey (t Position o _pos) const;
Liefert den Schlissel des durch o pos identifizierten Schlissel-Zeiger-Paares. o pos mul3 eine glltige
Position sein.

t Value * GetValPtr (t_Position o_pos) const:

Liefert einen typisierten Zeiger auf den Wert des durch o _pos identifizierten Schllissel-Zeiger-Paares. 0 _pos
mufd eine glltige Position sein.

Zugriff auf gefundene Objekte
t Value * GetFirstValPtr (t Key o key) const;

Liefert einen typisierten Zeiger auf den Wert des ersten Schlissel-Zeiger-Paares, dessen Schllssel gleich
0_key ist. Es mulR mindestens ein gleicher Schlissel enthalten sein.

Spirick Tuning Referenzhandbuch Seite 85

t Value * GetLastValPtr (t Key o key) const;

Liefert einen typisierten Zeiger auf den Wert des letzen Schllissel-Zeiger-Paares, dessen Schliissel gleich
0_key ist. Es mulR mindestens ein gleicher Schliissel enthalten sein.

Einfligen von Paaren
t Position AddKeyAndValPtr (t Key o key, const t Value * po value);

Flgt ein neues Schllissel-Zeiger-Paar in den Container ein und liefert dessen Position.

t Position AddKeyAndValPtrCond (t Key o key, const t Value * po value);

Liefert die Position des ersten Schllissel-Zeiger-Paares, dessen Schllissel gleich o _key ist, oder die
Position eines neu eingefiigten Paares, wenn kein Paar gefunden wurde. Zum Einfiigen des neuen Paares
wird die Methode AddKeyAndValPtr aufgerufen.

Ruckgabewert von Léschmethoden

Loschmethoden liefern stets die Position des Nachfolgers des geléschten Eintrags. Diese Technik
ermoglicht das gleichzeitige Iterieren und Verandern eines Containers. Der Riickgabewert wird mit der
Methode Next vor dem Ldschen berechnet. Wurde der der Reihenfolge nach letzte Eintrag geléscht
(Methode Last), ist der Rickgabewert gleich Null.

Léschen von Paaren
t Position DelKey (t Position o _pos);

Ruft den Destruktor des Schliissel-Zeiger-Paares auf und gibt den zugehérigen Speicher frei. 0 pos mul3
eine gulltige Position sein. Die Methode liefert Next (o _pos), also die Position des nédchsten Paares oder
Null, wenn das letzte Paar geléscht wurde.

void DelAl1Key ();

Ruft die Destruktoren aller Schliissel-Zeiger-Paare auf und gibt deren Speicher frei. DelA11Key ist i. a.
schneller als das mehrfache Léschen mit DelKey.

Léschen gefundener Paare
t Position DelFirstKey (t Key o key);

Léscht das erste Schllissel-Zeiger-Paar, dessen SchlUssel gleich o _key ist. Es mu3 mindestens ein
gleicher Schllssel enthalten sein. Die Methode liefert die Position des Nachfolgers des geléschten Paares
oder Null, wenn das letzte Paar geldéscht wurde.

t Position DellLastKey (t Key o key);

Léscht das letzte Schliissel-Zeiger-Paar, dessen Schlissel gleich o _key ist. Es muld mindestens ein
gleicher Schllssel enthalten sein. Die Methode liefert die Position des Nachfolgers des geléschten Paares
oder Null, wenn das letzte Paar geléscht wurde.

Bedingtes Loschen gefundener Paare
t Position DelFirstKeyCond (t Key o key);

Léscht das erste Schlissel-Zeiger-Paar, dessen SchllUssel gleich o key ist, sofern ein gleicher Schlussel
gefunden wurde. Die Methode liefert die Position des Nachfolgers des geléschten Paares oder Null,
wenn kein Schllissel gefunden wurde oder das geléschte Paar das letzte war.

Spirick Tuning Referenzhandbuch Seite 86

t Position DellLastKeyCond (t Key o key);

Léscht das letzte Schlissel-Zeiger-Paar, dessen Schliissel gleich o _key ist, sofern ein gleicher Schlissel
gefunden wurde. Die Methode liefert die Position des Nachfolgers des geldschten Paares oder Null,
wenn kein Schllissel gefunden wurde oder das geléschte Paar das letzte war.

Léschen von Paaren und referenzierten Objekten
t Position DelKeyAndValue (t Position o_pos);

Wirkt wie DelKey und I6scht zuséatzlich das referenzierte Objekt.

void DelAl11KeyAndValue ():

Wirkt wie DelAl1Key und léscht zusatzlich die referenzierten Objekte.

Léschen gefundener Paare und referenzierter Objekte
t Position DelFirstKeyAndValue (t Key o key):

Wirkt wie DelFirstKey und l6scht zusatzlich das referenzierte Objekt.

t Position DellLastKeyAndValue (t Key o key);

Wirkt wie DellLastKey und l6scht zusatzlich das referenzierte Objekt.

Bedingtes Loschen gefundener Paare und referenzierter Objekte
t Position DelFirstKeyAndValueCond (t Key o key);

Wirkt wie DelFirstKeyCond und l6scht zuséatzlich das referenzierte Objekt.

t Position DellLastKeyAndValueCond (t Key o key);

Wirkt wie DellLastKeyCond und l6scht zusétzlich das referenzierte Objekt.

2.6 Zeigercontainer-Instanzen

2.6.1 Zeigerarray-Instanzen (tuning/xxx/ptrarray.h)

Zur Erleichterung des Umgangs mit Zeigerarraycontainern werden in der Bibliothek Spirick Tuning einige
Standardinstanzen vordefiniert. Das Makro PTR_ARRAY DCLS(0bj) generiert ahnlich wie BLOCK DCLS(0bj) far
jede der vier Wrapperklassen eines globalen Storeobjekts je ein Zeigerarraytemplate, das nur noch den
Parameter t obj besitzt. Die Makroverwendung

PTR_ARRAY DCLS (Any)
expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t _obj> class gct Any PtrArray:

public gct PtrContainer <t obj, gct Any Array <void *> > { };
template <class t obj> class gct Any8PtrArray:

public gct PtrContainer <t obj, gct Any8Array <void *> > { };
template <class t obj> class gct AnyléPtrArray:

public gct PtrContainer <t obj, gct Anyl6Array <void *> > { };
template <class t obj> class gct Any32PtrArray:

public gct PtrContainer <t obj, gct Any32Array <void *> > { };

Jedes Verzeichnis eines dynamischen Stores enthalt eine Datei 'ptrarray.h’. Darin werden mit Hilfe des
Makros PTR_ARRAY DCLS nach obigem Muster vier Zeigerarraytemplates deklariert.

Spirick Tuning Referenzhandbuch Seite 87

In der Datei 'tuning/std/ptrarray.h’ werden deklariert:

template <class t _obj> class gct Std PtrArray;
template <class t obj> class gct Std8PtrArray;
template <class t obj> class gct Stdl6PtrArray;
template <class t _obj> class gct Std32PtrArray;

In der Datei "tuning/rnd/ptrarray.h’ werden deklariert:

template <class t obj> class gct Rnd PtrArray;
template <class t obj> class gct Rnd8PtrArray:;
template <class t obj> class gct Rnd16PtrArray;
template <class t obj> class gct Rnd32PtrArray;

In der Datei 'tuning/chn/ptrarray.h’ werden deklariert:

template <class t obj> class gct Chn PtrArray;
template <class t obj> class gct Chn8PtrArray;
template <class t _obj> class gct Chnl6PtrArray;
template <class t obj> class gct Chn32PtrArray;

2.6.2 Zeigerlisten-Instanzen (tuning/xxx/ptrdlist.h)

Zur Erleichterung des Umgangs mit Zeigerlistencontainern werden in der Bibliothek Spirick Tuning einige
Standardinstanzen vordefiniert. Das Makro PTR DLIST DCLS(0bj) generiert &hnlich wie BLOCK DCLS(0bj) far
jede der vier Wrapperklassen eines globalen Storeobjekts je ein Zeigerlistentemplate, das nur noch den
Parameter t obj besitzt. Die Makroverwendung

PTR DLIST DCLS (Any)
expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t obj> class gct_Any PtrDList:

public gct PtrContainer <t obj. gct Any DList <void *> > { };
template <class t obj> class gct_Any8PtrDList:

public gct PtrContainer <t obj, gct Any8DList <void *> > { };
template <class t obj> class gct Anyl6PtrDList:

public gct PtrContainer <t obj, gct AnyléDList <void *> > { };
template <class t _obj> class gct Any32PtrDList:

public gct PtrContainer <t obj, gct Any32DList <void *> > { };

Jedes Verzeichnis eines dynamischen Stores enthalt eine Datei 'ptrdlist.h’. Darin werden mit Hilfe des
Makros PTR DLIST DCLS nach obigem Muster vier Zeigerlistentemplates deklariert.

In der Datei "tuning/std/ptrdlist.h’ werden deklariert:

template <class t _obj> class gct Std PtrDList;
template <class t obj> class gct Std8PtrDList;
template <class t _obj> class gct Stdl6PtrDList;
template <class t _obj> class gct Std32PtrDList;

In der Datei "tuning/rnd/ptrdlist.h’ werden deklariert:

template <class t obj> class gct Rnd PtrDList;
template <class t obj> class gct Rnd8PtrDList;
template <class t _obj> class gct Rnd16PtrDList;
template <class t obj> class gct Rnd32PtrDList;

In der Datei 'tuning/chn/ptrdlist.h' werden deklariert:

Spirick Tuning Referenzhandbuch Seite 88

template <class t obj> class gct Chn PtrDList;
template <class t obj> class gct Chn8PtrDList;
template <class t obj> class gct Chnl6PtrDList;
template <class t obj> class gct Chn32PtrDList;

2.6.3 Sortierte Zeigerarray-Instanzen
(tuning/xxx/ptrsortedarray.h)

Zur Erleichterung des Umgangs mit sortierten Zeigerarraycontainern werden in der Bibliothek Spirick
Tuning einige Standardinstanzen vordefiniert. Das Makro PTR_SORTEDARRAY DCLS(0bj) generiert ahnlich wie
BLOCK DCLS(Obj) fuir jede der vier Wrapperklassen eines globalen Storeobjekts je ein Zeigerarraytemplate,
das nur noch den Parameter t obj besitzt. Die Makroverwendung

PTR_SORTEDARRAY DCLS (Any)
expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t obj> class gct Any PtrSortedArray:

public gct PtrContainer <t obj, gct Any SortedArray <gct SortedArrayRef <t obj> > > { };
template <class t obj> class gct Any8PtrSortedArray:

public gct PtrContainer <t obj, gct Any8SortedArray <gct SortedArrayRef <t obj> > > { };
template <class t obj> class gct AnyléPtrSortedArray:

public gct PtrContainer <t obj, gct Anyl6SortedArray <gct SortedArrayRef <t obj> > > { };
template <class t obj> class gct Any32PtrSortedArray:

public gct PtrContainer <t obj, gct Any32SortedArray <gct SortedArrayRef <t obj> > > { };

Jedes Verzeichnis eines dynamischen Stores enthélt eine Datei 'ptrsortedarray.h’. Darin werden mit Hilfe
des Makros PTR_SORTEDARRAY DCLS nach obigem Muster vier Zeigerarraytemplates deklariert.

In der Datei 'tuning/std/ptrsortedarray.h’ werden deklariert:

template <class t _obj> class gct Std PtrSortedArray;
template <class t obj> class gct Std8PtrSortedArray;
template <class t _obj> class gct Stdl6PtrSortedArray;
template <class t obj> class gct Std32PtrSortedArray;

In der Datei "tuning/rnd/ptrsortedarray.h’ werden deklariert:

template <class t obj> class gct Rnd PtrSortedArray;
template <class t _obj> class gct Rnd8PtrSortedArray;
template <class t_obj> class gct Rndl6PtrSortedArray;
template <class t _obj> class gct Rnd32PtrSortedArray;

In der Datei "tuning/chn/ptrsortedarray.h’ werden deklariert:

template <class t obj> class gct Chn PtrSortedArray;
template <class t _obj> class gct Chn8PtrSortedArray;
template <class t obj> class gct Chnl6PtrSortedArray;
template <class t _obj> class gct Chn32PtrSortedArray;

2.6.4 Zeigerhashtabellen-Instanzen (tuning/xxx/ptrhashtable.h)

Zur Erleichterung des Umgangs mit Zeigerhashtabellencontainern werden in der Bibliothek Spirick Tuning
einige Standardinstanzen vordefiniert. Das Makro PTR_HASHTABLE DCLS(0bj) generiert &hnlich wie

BLOCK DCLS(Obj) fuir jede der vier Wrapperklassen eines globalen Storeobjekts je ein
Zeigerhashtabellentemplate, das nur noch den Parameter t obj besitzt. Die Makroverwendung

PTR_HASHTABLE _DCLS (Any)

Spirick Tuning Referenzhandbuch Seite 89

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t _obj> class gct_Any PtrHashTable:

public gct PtrContainer <t obj, gct Any HashTable <gct HashTableRef <t obj> > > { };
template <class t obj> class gct Any8PtrHashTable:

public gct_PtrContainer <t obj, gct Any8HashTable <gct HashTableRef <t obj> > > { };
template <class t _obj> class gct Anyl6PtrHashTable:

public gct PtrContainer <t obj, gct AnyleHashTable <gct HashTableRef <t obj> > > { };
template <class t_obj> class gct_Any32PtrHashTable:

public gct PtrContainer <t obj, gct Any32HashTable <gct HashTableRef <t obj> > > { };

Jedes Verzeichnis eines dynamischen Stores enthalt eine Datei 'ptrhashtable.h’. Darin werden mit Hilfe
des Makros PTR_HASHTABLE DCLS nach obigem Muster vier Zeigerhashtabellentemplates deklariert.

In der Datei 'tuning/std/ptrhashtable.h’ werden deklariert:

template <class t _obj> class gct Std PtrHashTable;
template <class t obj> class gct Std8PtrHashTable;
template <class t_obj> class gct Stdl6PtrHashTable;
template <class t obj> class gct Std32PtrHashTable;

In der Datei 'tuning/rnd/ptrhashtable.h’ werden deklariert:

template <class t _obj> class gct Rnd _PtrHashTable;
template <class t _obj> class gct Rnd8PtrHashTable;
template <class t_obj> class gct Rndl6PtrHashTable;
template <class t _obj> class gct Rnd32PtrHashTable;

In der Datei 'tuning/chn/ptrhashtable.h’ werden deklariert:

template <class t_obj> class gct Chn PtrHashTable;
template <class t_obj> class gct Chn8PtrHashTable;
template <class t_obj> class gct Chnl6PtrHashTable;
template <class t_obj> class gct Chn32PtrHashTable;

2.6.5 Blockzeigerlisten-Instanzen (tuning/xxx/blockptrdlist.h)

Zur Erleichterung des Umgangs mit Blockzeigerlisten werden in der Bibliothek Spirick Tuning einige
Standardinstanzen vordefiniert. Das Makro BLOCKPTR DLIST DCLS(Obj) generiert &hnlich wie BLOCK DCLS(Obj)
fur jede der vier Wrapperklassen eines globalen Storeobjekts je ein Blockzeigerlistentemplate, das nur
noch den Parameter t _obj besitzt. Die Makroverwendung

BLOCKPTR _DLIST DCLS (Any)
expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t obj> class gct Any BlockPtrDList:

public gct PtrContainer <t obj, gct Any BlockDList <void *> > { };
template <class t obj> class gct Any8BlockPtrDList:

public gct_PtrContainer <t obj, gct Any8BlockDList <void *> > { };
template <class t _obj> class gct Anyl6BlockPtrDList:

public gct_PtrContainer <t obj, gct Anyl6BlockDList <void *> > { };
template <class t_obj> class gct Any32BTockPtrDList:

public gct PtrContainer <t obj, gct Any32BlockDList <void *> > { };

Jedes Verzeichnis eines dynamischen Stores enthalt eine Datei 'blockptrdlist.h’. Darin werden mit Hilfe
des Makros BLOCKPTR DLIST DCLS nach obigem Muster vier Blockzeigerlistentemplates deklariert.

In der Datei 'tuning/std/blockptrdlist.h’ werden deklariert:

Spirick Tuning Referenzhandbuch Seite 90

template
template
template
template

<class t_obj> class gct Std BlockPtrDList;
<class t_obj> class gct Std8BlockPtrDList;
<class t_obj> class gct Stdl6BlockPtrDList;
<class t_obj> class gct Std32BlockPtrDList;

In der Datei 'tuning/rnd/blockptrdlist.h’ werden deklariert:

template
template
template
template

<class t_obj> class gct Rnd BlockPtrDList;
<class t_obj> class gct Rnd8BlockPtrDList;
<class t_obj> class gct Rndl6BlockPtrDList;
<class t_obj> class gct Rnd32BlockPtrDList;

In der Datei "tuning/chn/blockptrdlist.h’ werden deklariert:

template
template
template
template

2.6.6

<class t_obj> class gct Chn BlockPtrDList;
<class t_obj> class gct Chn8BlockPtrDList;
<class t_obj> class gct ChnléBlockPtrDList;
<class t_obj> class gct Chn32BlockPtrDList;

Refzeigerlisten-Instanzen (tuning/xxx/refptrdlist.h)

Zur Erleichterung des Umgangs mit Refzeigerlisten werden in der Bibliothek Spirick Tuning einige
Standardinstanzen vordefiniert. Das Makro REFPTR DLIST DCLS(0bj) generiert ahnlich wie BLOCK DCLS(0bj)
fur jede der vier Wrapperklassen eines globalen Storeobjekts je ein Refzeigerlistentemplate, das nur noch
den Parameter t_obj besitzt. Die Makroverwendung

REFPTR_DLIST DCLS (Any)

expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template
public
template
public
template
public
template
public

<class t_obj> class gct Any RefPtrDList:
gct_PtrContainer <t obj, gct Any RefDList <void *> > { };
<class t_obj> class gct Any8RefPtrDList:
gct PtrContainer <t obj, gct Any8RefDList <void *> > { };
<class t_obj> class gct_Anyl6RefPtrDList:
gct_PtrContainer <t obj, gct Anyl6RefDList <void *> > { };
<class t_obj> class gct_Any32RefPtrDList:
gct_PtrContainer <t obj, gct Any32RefDList <void *> > { };

Jedes Verzeichnis eines dynamischen Stores enthalt eine Datei 'refptrdlist.h’. Darin werden mit Hilfe des
Makros REFPTR DLIST DCLS nach obigem Muster vier Refzeigerlistentemplates deklariert.

In der Datei "tuning/std/refptrdlist.h’ werden deklariert:

template
template
template
template

<class t_obj> class gct Std RefPtrDList;
<class t_obj> class gct Std8RefPtrDList;
<class t_obj> class gct Stdl6RefPtrDList;
<class t_obj> class gct Std32RefPtrDList;

In der Datei 'tuning/rnd/refptrdlist.h' werden deklariert:

template
template
template
template

<class t_obj> class gct Rnd RefPtrDList;
<class t_obj> class gct Rnd8RefPtrDList;
<class t_obj> class gct Rnd16RefPtrDList;
<class t_obj> class gct Rnd32RefPtrDList;

In der Datei 'tuning/chn/refptrdlist.h’ werden deklariert:

template
template
template

<class t_obj> class gct Chn RefPtrDList;
<class t_obj> class gct Chn8RefPtrDList;
<class t_obj> class gct Chnl6RefPtrDList:

Spirick Tuning Referenzhandbuch Seite 91

template <class t obj> class gct Chn32RefPtrDList;

2.6.7 Blockrefzeigerlisten-Instanzen
(tuning/xxx/blockrefptrdlist.h)

Zur Erleichterung des Umgangs mit Blockrefzeigerlisten werden in der Bibliothek Spirick Tuning einige
Standardinstanzen vordefiniert. Das Makro BLOCKREFPTR DLIST DCLS(0bJ) generiert &hnlich wie

BLOCK DCLS(Obj) furr jede der vier Wrapperklassen eines globalen Storeobjekts je ein
Blockrefzeigerlistentemplate, das nur noch den Parameter t obj besitzt. Die Makroverwendung

BLOCKREFPTR _DLIST DCLS (Any)
expandiert zu folgendem Text (der Makroparameter ist fett hervorgehoben):

template <class t _obj> class gct_Any BlockRefPtrDList: public
gct PtrContainer <t obj, gct Any BlockRefDList <void *> > { };
template <class t _obj> class gct Any8BlockRefPtrDList: public
gct_PtrContainer <t _obj, gct Any8BlockRefDList <void *> > { };
template <class t _obj> class gct Anyl6BlockRefPtrDList: public
gct_PtrContainer <t _obj, gct Anyl6BlockRefDList <void *> > { };
template <class t _obj> class gct Any32BlockRefPtrDList: public
gct_PtrContainer <t obj, gct Any32BlockRefDList <void *> > { };

Jedes Verzeichnis eines dynamischen Stores enthélt eine Datei 'blockrefptrdlist.h’. Darin werden mit
Hilfe des Makros BLOCKREFPTR_DLIST DCLS nach obigem Muster vier Blockrefzeigerlistentemplates deklariert.

In der Datei 'tuning/std/blockrefptrdlist.h’ werden deklariert:

template <class t _obj> class gct Std BlockRefPtrDList;
template <class t_obj> class gct Std8BTockRefPtrDList;
template <class t _obj> class gct Stdl6BlockRefPtrDList;
template <class t_obj> class gct Std32BlockRefPtrDList;

In der Datei "tuning/rnd/blockrefptrdlist.h’ werden deklariert:

template <class t_obj> class gct Rnd BlockRefPtrDList;
template <class t obj> class gct Rnd8BlockRefPtrDList;
template <class t_obj> class gct Rnd16BTockRefPtrDList;
template <class t _obj> class gct Rnd32BTockRefPtrDList;

In der Datei 'tuning/chn/blockrefptrdlist.h’ werden deklariert:

template <class t obj> class gct Chn BlockRefPtrDList;
template <class t obj> class gct Chn8BlockRefPtrDList;
template <class t _obj> class gct Chnl6BlockRefPtrDList;
template <class t _obj> class gct Chn32BTlockRefPtrDList;

2.7 Ubersicht Container-Instanzen

2.7.1 Vordefinierte Templateinstanzen

Zur besseren Orientierung in der grol3en Menge vordefinierter Standardinstanzen wurde eine einheitliche
Namensgebung verwendet. Die mit einem DCLS-Makro generierten Namen bestehen aus sieben Teilen.

Spirick Tuning Referenzhandbuch Seite 92

1. Prafix

Jeder vordefinierte Container ist ein Template, besitzt das Préafix gct_ und genau einen
Templateparameter, den Typ der verwalteten Objekte.

2. Globaler Store

Es folgt das Kirzel fiir das globale Storeobjekt, von dem der Container seinen Speicher anfordert.
Vordefiniert sind Std, Rnd und Chn.

3. Langentyp

Es folgt das Kiirzel fir den geschachtelten Langentyp. Dieser beeinfluRt nicht nur die Anzahl
verarbeitbarer Objekte, sondern auch den Speicherbedarf. Bei Arrays und Blocklisten ist der Langentyp
gleich dem Positionstyp. Vordefiniert sind _, 8, 16 und 32.

4. Optional Block

Bei Listencontainern kann an dieser Stelle optional Block angegeben werden. Blocklisten bringen ihre
Nodes kompakt in einem Blockstore unter.

5. Optional Ref

Bei Listencontainern kann an dieser Stelle optional Ref angegeben werden. Reflisten ordnen jedem Node
einen Referenzzahler zu. Damit kdnnen sichere Zeiger auf Listeneintrage implementiert werden.

6. Optional Ptr

An dieser Stelle kann optional Ptr angegeben werden. Zeigercontainer enthalten ihre Objekte nicht
selbst, sondern verwalten nur Zeiger darauf.

7. Containertyp

Am Ende wird der Containertyp Array, DList, SortedArray oder HashTable angegeben.

Die folgende Tabelle faRt die Namensbildung der vordefinierten Container zusammen.

Prafix Glob. Store | t_Length Opt. Block | Opt. Ref | Opt. Ptr | Cont.typ
gct Std _ Block Ref Ptr Array
Rnd 8 - - - DList
Chn 16 SortedArray
32 HashTable

2.7.2 Selbstdefinierte Templateinstanzen

Die vordefinierten Templateinstanzen basieren auf den drei dynamischen Stores Standardstore,
Roundstore und Chainstore sowie dem allgemeinen Blocktemplate gct Block. Neben den vordefinierten
Instanzen kénnen natlrlich auch beliebige andere Instanzen gebildet werden, indem z. B. statt gct Block
gct FixBlock, gct MiniBlock oder gct ResBlock verwendet wird. Weiterhin kdnnen auch selbstdefinierte
Store- und Blockimplementierungen zum Einsatz kommen. Wegen der groRen Zahl méglicher

Spirick Tuning Referenzhandbuch Seite 93

Kombinationen kédnnen weitere Templateinstanzen nicht vordefiniert werden. Man sollte sich bei
selbstdefinierten Templateinstanzen aber an die Struktur und Namensgebung der vordefinierten
Instanzen halten, damit aus dem Namen die Eigenschaften der Instanzen erkennbar sind. Auf diese
Weise kénnen z. B. die folgenden Instanzen definiert werden:

typedef gct EmptyBaseMiniBlock <ct Chn Store> ct Chn MiniBlock;
typedef gct EmptyBaseMiniBlock <ct Chn32Store> ct Chn32MiniBlock;
typedef gct BlockStore <ct PageBlock, gct CharBlock <ct Chn MiniBlock, char> > ct Chn_PageBlockStore;

template <class t obj>
class gct_Chn MiniArray: public gct ExtContainer
<gct _FixItemArray <t obj. ct Chn MiniBlock> > { };

template <class t _obj>
class gct _Chn MiniSortedArray: public gct ExtContainer
<gct_FixItemSortedArray <t obj, ct Chn MiniBlock> > { };

template <class t_obj>
class gct _Chn MiniPtrArray:
public gct_PtrContainer <t obj, gct Chn MiniArray <void *> > { };

template <class t_obj>
class gct_Chn32MiniHashTable:
public gct ExtContainer <gct HashTable <t obj, ct Chn32MiniBlock> > { };

template <class t _obj>
class gct_Chn32MiniPtrHashTable:
public gct PtrContainer <t obj, gct Chn32MiniHashTable
<gct_HashTableRef <t obj> > > { };

2.8 Collections

2.8.1 Abstraktes Objekt (tuning/object.hpp)

Container sind homogen und enthalten stets gleichartige Objekte. Collections sind hingegen polymorph.
Sie kdnnen Objekte unterschiedlichen Typs verwalten. Zum typisierten Zugriff auf diese Objekte wird die
abstrakte Basisklasse ct _Object definiert. Sie enthélt einen virtuellen Destruktor. Dieser stellt sicher, dalR
beim Zerstéren abgeleiteter Objekte der richtige Destruktor aufgerufen wird. Alle von ct _Object
abgeleiteten Klassen kénnen in Collections verwaltet werden.

Klassendeklaration

class ct_Object

{
public:
virtual ~ct_Object ();
virtual bool operator < (const ct Object & co_comp) const;
virtual t_Ulnt GetHash () const;

b

Methoden
~ct Object ();

Die Klasse ct _Object dient als eine abstrakte Basisklasse. Der virtuelle Destruktor sichert das korrekte
Zerstoren abgeleiteter Objekte in einem polymorphen Kontext.

Spirick Tuning Referenzhandbuch Seite 94

bool operator < (const ct _Object & co_comp) const;
Der Vergleichsoperator 'operator <' wird in der Collection ct_SortedArray zum sortierten Einfligen eines
neuen Elements bendtigt.

t UInt GetHash () const;

Die Methode GetHash wird in einem Hashtabellencontainer zum Einfligen eines neuen Elements bendtigt.

2.8.2 Abstrakte Collection (tuning/collection.hpp)

Collections kénnen nicht nur polymorphe Objekte verwalten, sondern bilden auch selber einen
polymorphen Klassenbaum. Sie erben von der abstrakten Basisklasse ct Collection. Die
Collectionschnittstelle gleicht syntaktisch und semantisch der eines Zeigercontainers, z. B.
gct_Chn_PtrArray <ct Object>.

Die Verwendung einer einheitlichen Schnittstelle erleichtert dem Anwender das Austauschen von
Containern und Collections. Sie ermdglicht zudem eine einfache Implementierung von Collections durch
Mappen der Funktionalitdt eines Zeigercontainers. Im Gegensatz zu einem Zeigercontainer sind jedoch
sédmtliche Methoden der Klasse ct_Collection rein virtuell deklariert. Sie miissen in abgeleiteten Klassen
(konkreten Collections) definiert werden.

Basisklasse
ct Object (siehe Abschnitt ‘Abstraktes Objekt’)

Klassendeklaration
class ct Collection: public ct _Object
{
public:
typedef t UInt t Length;
typedef t Ulnt t Position;
virtual bool IsEmpty () const = 0;

virtual t_Length GetLen () const = 0;

virtual t Position First () const = 0;
virtual t Position Last () const = 0;
virtual t_Position Next (t_Position o _pos) const
virtual t_Position Prev (t_Position o_pos) const
virtual t_Position Nth (t_Length u_idx) const = 0;

[
o O

virtual ct_Object
virtual ct_Object
virtual ct_Object
virtual ct_Object
virtual ct_Object
virtual ct_Object

GetPtr (t_Position o_pos) const = 0;
GetFirstPtr () const = 0;
GetLastPtr () const = 0;
GetNextPtr (t_Position o _pos) const
GetPrevPtr (t_Position o _pos) const
GetNthPtr (t_Length u_idx) const = 0;

o
o o

* ok X % X %

virtual t Position AddPtr (const ct Object * po obj) = 0;

virtual t_Position AddPtrBefore (t Position o_pos, const ct _Object * po obj) = 0;
virtual t_Position AddPtrAfter (t Position o_pos, const ct_Object * po obj) = 0;
virtual t Position AddPtrBeforeFirst (const ct _Object * po obj) = 0;

virtual t Position AddPtrAfterLast (const ct Object * po obj) = 0;

virtual t Position AddPtrBeforeNth (t Length u_idx, const ct _Object * po obj) = 0;
virtual t Position AddPtrAfterNth (t Length u idx, const ct Object * po obj) = 0;

virtual t_Position DelPtr (t_Position o_pos) = 0;
virtual t Position DelFirstPtr () = 0;
virtual t_Position DellastPtr () = 0;
virtual t_Position DelNextPtr (t_Position o_pos) = 0:
virtual t_Position DelPrevPtr (t _Position o_pos)

Il
o

Spirick Tuning Referenzhandbuch Seite 95

virtual t Position DelNthPtr (t Length u_idx) = 0;
virtual void DelAl1Ptr () = 0;

virtual t_Position DelPtrAndObj (t Position o _pos) = 0;
virtual t_Position DelFirstPtrAndObj () = 0;

virtual t Position DellastPtrAndObj () = 0;

virtual t_Position DelNextPtrAndObj (t Position o _pos) = 0;

virtual t Position DelPrevPtrAndObj (t Position o _pos) = 0;

virtual t _Position DelNthPtrAndObj (t Length u_idx) = 0;

virtual void DelAT1PtrAndObj () = 0;

virtual bool ContainsPtr (const ct _Object * po_obj) const = 0;

virtual t_Length CountPtrs (const ct Object * po_obj) const = 0;

virtual t Position SearchFirstPtr (const ct_Object * po obj) const = 0:
virtual t_Position SearchLastPtr (const ct_Object * po_obj) const = 0:
virtual t_Position SearchNextPtr (t Position o_pos, const ct Object * po obj) const
virtual t_Position SearchPrevPtr (t Position o_pos., const ct _Object * po obj) const

[
o o

virtual t_Position AddPtrCond (const ct Object * po_obj) = 0;
virtual t Position AddPtrBeforeFirstCond (const ct Object * po_obj) = 0;
virtual t_Position AddPtrAfterLastCond (const ct Object * po_obj) = 0:

virtual t_Position DelFirstEqualPtr (const ct_Object * po obj) = 0;
virtual t Position DellastEqualPtr (const ct Object * po obj) = 0;
virtual t Position DelFirstEqualPtrCond (const ct Object * po_obj) = 0;
virtual t Position DellastEqualPtrCond (const ct Object * po obj) = 0;

virtual t_Position DelFirstEqualPtrAndObj (const ct Object * po_obj) = 0;
virtual t_Position DellLastEqualPtrAndObj (const ct Object * po obj) = 0;
virtual t Position DelFirstEqualPtrAndObjCond (const ct Object * po_obj) = 0;
virtual t Position DellastEqualPtrAndObjCond (const ct Object * po obj) = 0;

b

Methoden

Die Beschreibung der Methoden ist identisch mit der Schnittstelle des Zeigercontainers und wird nicht
wiederholt (siehe Abschnitt 'Zeigercontainer', Template gct PtrContainer).

2.8.3 Operationen mit Collections

Objekte einfiigen, kopieren und l6schen

Das folgende Programmbeispiel demonstriert das Einfiigen, Kopieren und Léschen von Objekten in einer
Collection. Die Klasse ct_Int wird im Abschnitt ‘Beispielprogramme’ beschrieben.

ct_Int co_int = 1;

ct_Int * pco_int;

ct_AnyCollection co_collection;
ct_AnyCollection::t Position o _pos;

// Neues Objekt in der Collection mit Defaultkonstruktor erzeugen
0_pos = co_collection. AddPtr (new ct_Int);

// Auf das Objekt zugreifen und es und initialisieren
pco_int = (ct_Int *) co_collection. GetPtr (o_pos):
(* pco_int) = 2;

// Vorhandenes Objekt in die Collection kopieren
0 _pos = co_collection. AddPtr (new ct_Int (co_int));

// Objekt aus der Collection nehmen und 18schen

Spirick Tuning Referenzhandbuch Seite 96

co_collection. DelPtrAndObj (o_pos);

Vorwarts iterieren

Zum lterieren einer Collection in aufsteigender Reihenfolge der Eintrage wird eine for-Schleife nach
folgendem Muster empfohlen:

ct_AnyCollection co_collection;
ct_AnyCollection::t Position o_pos;

for (o_pos = co_collection. First ();
0. pos !=0;
0_pos = co_collection. Next (o_pos))

ct_Object * pco_object = co_collection. GetPtr (o _pos);
/..

}

Riickwarts iterieren

Zum lterieren einer Collection in absteigender Reihenfolge der Eintrdge wird eine for-Schleife nach
folgendem Muster empfohlen:

ct_AnyCollection co_collection;
ct_AnyCollection::t Position o_pos;

for (o_pos = co_collection. Last ();
0 pos !=0;
0_pos = co_collection. Prev (o_pos))

ct_Object * pco_object = co_collection. GetPtr (o _pos);
/o

}

Iterieren und verandern

Zum lterieren und Verandern einer Collection wird eine for-Schleife nach folgendem Muster empfohlen:

ct_AnyCollection co_collection;
ct_AnyCollection::t Position o_pos;

for (o _pos = co_collection. First ();
0. pos !=0;
0 pos = /* delete entry ? */ 7
co_collection. DelPtrAndObj (o_pos) :
co_collection. Next (o _pos))
{
ct Object * pco_object = co_collection. GetPtr (o _pos);
/.

}

Statt der for-Schleife kann auch eine while-Schleife nach folgendem Muster verwendet werden:

ct_AnyCollection co_collection;
ct_AnyCollection::t Position o_pos;

0 pos = co_collection. First ();
while (o_pos != 0)
ct _Object * pco_object = co_collection. GetPtr (o_pos);

/]
if (/* delete entry ? */)

Spirick Tuning Referenzhandbuch Seite 97

0_pos = co_collection. DelPtrAndObj (o _pos);
else
0_pos = co_collection. Next (o_pos);

2.8.4 Abstrakte Refcollection (tuning/refcollection.hpp)

Die Klasse ct RefCollection erweitert die Collectionschnittstelle um Methoden zum Verarbeiten von
Referenzzéhlern. Eine Refcollection wird mit Hilfe eines Refzeigercontainers, z. B. gct_Chn RefPtrDList
<ct_Object>, implementiert (siehe Abschnitt 'Refliste’, Template gct RefDList). Die erweiterte Schnittstelle
entspricht syntaktisch und semantisch der des zugehérigen Containers.

Basisklassen

ct Object (siehe Abschnitt ‘Abstraktes Objekt’)
ct_Collection (siehe Abschnitt ‘Abstrakte Collection’)

Klassendeklaration

class ct _RefCollection: public ct Collection
{

public:
virtual void IncRef (t_Position o _pos) = 0;
virtual void DecRef (t_Position o _pos) = 0;
virtual t RefCount GetRef (t_Position o _pos) const = 0;
virtual bool IsAlloc (t_Position o _pos) const = 0;
virtual bool IsFree (t_Position o pos) const = 0;
b

In einer Refcollection wird jedem einzelnen Node ein Referenzzéhler zugeordnet. Dieser ermdglicht die
Implementierung von sicheren Zeigern auf Collectioneintrage. Ein sicherer Zeiger erhéht den
Referenzzahler des Eintrags, auf den er verweist.

Ein Positionszeiger einer Refcollection behalt seine Glltigkeit, solange der Eintrag nicht (z. B. mit DelPtr)
geléscht wurde oder der Referenzzahler ungleich Null ist. Wurde das Element mit DelPtr aus der
Collection entfernt, liefert IsAlloc den Wert false, und es kann nicht mehr mit GetPtr auf das Objekt
zugegriffen werden. Erreicht der Referenzzahler mit DecRef den Wert Null, wird auch der zugehdrige
Speicher freigegeben, und der Positionszeiger verliert seine Giltigkeit.

Methoden

void IncRef (t_Position o _pos);

Erhoht den zum Collectioneintrag o pos gehérenden Referenzzahler. o _pos muld eine gultige Position sein.

void DecRef (t Position o pos);
Verkleinert den zum Collectioneintrag o pos gehdérenden Referenzzahler. o _pos mufd eine gultige Position
sein.

t RefCount GetRef (t Position o _pos) const;
Liefert den Wert des zum Collectioneintrag o_pos gehérenden Referenzzahlers. o pos mul3 eine glltige
Position sein.

bool IsAlToc (t Position o_pos) const;

Liefert true, wenn der zum Positionszeiger o_pos gehérende Collectioneintrag nicht (z. B. mit DelPtr)
geldscht wurde und mit GetPtr darauf zugegriffen werden kann. o_pos muf3 eine glltige Position sein.

Spirick Tuning Referenzhandbuch Seite 98

bool IsFree (t Position o _pos) const;

Diese Methode ist die logische Negation von IsAlloc. o_pos mufd eine gulltige Position sein.

2.8.5 Konkrete Collections

Zur Erleichterung des Umgangs mit der Collectionschnittstelle werden in der Bibliothek Spirick Tuning
einige konkrete Collections vordefiniert. Das Makro COLLMAP DCL deklariert eine Collectionklasse. Ihre
Implementierung erfolgt mit Hilfe des Makros COLLMAP_DEF. Beide Makros werden in der Datei
"tuning/collmap.hpp’ definiert.

Die Deklaration einer Collectionklasse wurde so gestaltet, dal3 keine Einbeziehung von Headerdateien mit
Templates notwendig ist. Damit erhéht sich die Ubersetzungsgeschwindigkeit gegeniber der
Verwendung von Containern.

Verwaltungsart Implementierung Ubersetzungszeit Laufzeit

Container Templates, langsam schnell
Inline-Methoden

Collection virtuelle Methoden schnell langsam

Zum Deklarieren einer konkreten Collectionklasse wird in einer Headerdatei das Makro COLLMAP_DCL
plaziert. Z. B. expandiert die Makroverwendung

COLLMAP DCL (Array)
zu folgendem Text (der Makroparameter ist fett hervorgehoben):

class ct_Array: public ct Collection

{
/.

b

Die Implementierung erfolgt in einer anderen Datei. Dabei ist die Einbeziehung des zugehdrigen
Zeigercontainers notwendig. Dieser wird beim Makro COLLMAP DEF als zweiter Parameter angegeben.

#include "tuning/chn/ptrarray.h"
COLLMAP_DEF (Array, gct_Chn_PtrArray)

Zum Deklarieren und Implementieren einer Refcollection dienen die Makros REFCOLLMAP_DCL und
REFCOLLMAP DEF aus der Datei "tuning/refcollmap.hpp’. Die vordefinierten Collection- und
Refcollectionklassen werden auf Zeigercontainer des Typs gct _Chn_... zurtckgefuhrt.

In der Datei 'tuning/array.hpp’ wird deklariert:

class ct Array: public ct Collection { /*...*/ };

In der Datei 'tuning/dlist.hpp' wird deklariert:

class ct DList: public ct _Collection { /*...*/ };

In der Datei 'tuning/sortedarray.hpp’ wird deklariert:

class ct SortedArray: public ct Collection { /*...*/ };

In der Datei 'tuning/blockdlist.hpp’ wird deklariert:

Spirick Tuning Referenzhandbuch Seite 99

class ct BlockDList: public ct Collection { /*...*/ };
In der Datei 'tuning/refdlist.hpp’ wird deklariert:

class ct RefDList: public ct RefCollection { /*...*/ };
In der Datei "tuning/blockrefdlist.hpp’ wird deklariert:

class ct BlockRefDList: public ct RefCollection { /*...*/ };

Spirick Tuning Referenzhandbuch Seite 100

3 ZEICHENKETTEN UND SYSTEMDIENSTE

3.1 Systemschnittstelle

3.1.1 Ressourcenfehler (tuning/sys/creserror.hpp)

Die Datei "tuning/sys/creserror.hpp' enthélt Fehlercodes, die bei der Verwendung systemnaher
Ressourcen auftreten kénnen.

Aufzahlung

enum et ResError
{
ec_ResOK = 0,
ec_ResUnknownError,
ec_ResUninitialized,
ec_ResAlreadyInitialized,
ec_ResInvalidKey,
ec_ResInvalidValue,
ec_ResNoKey,
ec_ResAlreadyExists,
ec_ResAccessDenied,
ec_ResNotFound,
ec_ResLockCountMismatch,
ec_ReslockFailed,
ec_ResUnTockFailed,
ec_ResMemMapFailed,
ec_ResUnmapFailed,
ec ResQuerySizeFailed

}:

ec_ResOK

Es ist kein Fehler aufgetreten.

ec_ResUnknownError

Es ist ein unbekannter Fehler aufgetreten.

ec_ResUninitialized

Es wurde versucht, ein nicht initialisiertes Objekt zu verwenden.

ec_ResAlreadylInitialized

Es wurde versucht, ein bereits initialisiertes Objekt erneut zu initialisieren.

ec_ResInvalidKey

Der Schlissel ist ungliltig.

ec_ResInvalidValue

Ein Funktionsparameter ist ungultig.

Spirick Tuning Referenzhandbuch Seite 101

ec_ResNoKey

Es wurde versucht, ein Objekt ohne Schliissel zu verwenden.

ec_ResAlreadyExists
Beim Erzeugen eines Objektes wurde festgestellt, dafl bereits ein Objekt mit demselben Schlilissel
existiert.

ec_ResAccessDenied

Beim Erzeugen oder Offnen eines Objektes wurde der Zugriff verweigert.

ec_ResNotFound

Beim Offnen eines Objektes wurde keine Ressource mit dem angegebenen Schliissel gefunden.

ec_ResLockCountMismatch

Bei einem Mutexobjekt wurden Sperr-/Freigabe-Aufrufe nicht paarweise verwendet.

ec_ReslockFailed

Das Sperren eines Mutexobjektes ist fehlgeschlagen.

ec_ResUnTockFailed

Das Freigeben eines Mutexobjektes ist fehlgeschlagen.

ec_ResMemMapFailed

Das Zuordnen von Shared Memory in den lokalen Speicher ist fehlgeschlagen.

ec_ResUnmapFailed

Das Freigeben von Shared Memory ist fehlgeschlagen.

ec_ResQuerySizeFailed

Die Abfrage der GroRe von Shared Memory ist fehlgeschlagen.

3.1.2 Zeichen und Zeichenketten (tuning/sys/cstring.hpp)

Die Systemschnittstelle fiir Zeichenketten enthalt Funktionen zum Umwandeln von Zeichenketten sowie
zur Langen- und Hashwertberechnung. Von allen Funktionen existiert jeweils eine Version fiir die
Datentypen char und wchar_t. Alle Ldngenangaben beziehen sich auf die Anzahl der Zeichen und nicht auf
die Anzahl der Bytes.

Die Umwandlung von Klein- in GroRBbuchstaben ist auf eine hohe Rechengeschwindigkeit ausgelegt und
verwendet keine Systemrufe, die vom aktiven Locale abhangen. Sie arbeitet mit einem reinen 8-Bit-
Zeichensatz und ist nicht auf Unicodezeichen anwendbar (UTF-8 oder UTF-16). Es wird je eine Tabelle
nach der Windows-1252 Kodierung verwendet. Das ist eine Obermenge von ISO 8859-1 (Latin-1).

Die zweite Version dieser Umwandlungsfunktionen (t1_ToUpper2/t1 TolLower?2) existiert zunachst nur fur
wchar_t. Die Implementierung verwendet performante, systemnahe Funktionen, die in den meisten Fallen
auch fr Unicodezeichen ein korrektes Resultat liefern (MS Windows: CharUpperW, Linux: towupper). Auf
der Grundlage der Widecharacter-Funktionen wurden auch zwei Umwandlungsfunktionen fir UTF-8-
Strings implementiert. Dabei wird der String intern temporér in einen Widecharacter-String umgewandelt.

Fir die Umwandlungen zwischen Multibytecharacters (UTF-8) und Widecharacters (MS Windows: UTF-
16, Linux: UTF-16 oder UTF-32) existieren zundchst einmal die Richtungen char in wchar_t und wchar_t in
char. Wegen der spateren Verwendung in char- und wchar_t-basierten Templates sind auch die
Richtungen char in char und wchar_t in wchar_t als reine Kopieroperationen implementiert.

Spirick Tuning Referenzhandbuch Seite 102

Funktionen

char t1_ToUpper (char c);
wchar_t t1 _ToUpper (wchar_t c);

Wandelt das Zeichen c in einen GroRbuchstaben um.

char t1_ToLower (char c);

wchar_t t1 ToLower (wchar_t c);
Wandelt das Zeichen c in einen Kleinbuchstaben um.

bool t1 _ToUpper (char * pc_str);

bool t1_ToUpper (wchar_t * pc_str);
Wandelt die nullterminierte Zeichenkette pc_str in GroRBbuchstaben um. Die Umwandlung erfolgt inplace,
also in der Ubergebenen Zeichenkette selbst.

bool t1_TolLower (char * pc_str):

bool t1_ToLower (wchar_t * pc_str);
Wandelt die nullterminierte Zeichenkette pc_str in Kleinbuchstaben um. Die Umwandlung erfolgt inplace,
also in der Ubergebenen Zeichenkette selbst.

wchar_t t1 ToUpper2 (wchar_t c);

Wandelt das Zeichen c in einen GroRbuchstaben um (Unicode-konform, s.o.).

wchar_t t1 ToLower2 (wchar t c);
Wandelt das Zeichen c in einen Kleinbuchstaben um (Unicode-konform, s.o.).

bool t1_ToUpper2 (char * pc_str);

bool t1_ToUpper2 (wchar t * pc_str);
Wandelt die nullterminierte Zeichenkette pc_str in GroRBbuchstaben um. Die Umwandlung erfolgt inplace,
also in der Gibergebenen Zeichenkette selbst (Unicode-konform, s.o.).

bool t1 TolLower2 (char * pc_str);

bool t1_ToLower2 (wchar t * pc_str);
Wandelt die nullterminierte Zeichenkette pc_str in Kleinbuchstaben um. Die Umwandlung erfolgt inplace,
also in der Gibergebenen Zeichenkette selbst (Unicode-konform, s.o.).

t UInt t1_StringLength (const char * pc);

t UInt t1_StringLength (const wchar_t * pc):
Ermittelt die Lange der nullterminierten Zeichenkette pc.

unsigned t1_StringHash (const char * pc, t UInt u_length);

unsigned t1_StringHash (const wchar t * pc, t UInt u_length);

Berechnet einen Hashwert fir die Zeichenkette.

t UInt t1_MbConvertCount (wchar_t *, const char * pc_src):
Berechnet die Anzahl der Widecharacters im Zielspeicher inklusive des abschlieenden Nullzeichens fir
die Umwandlung der nullterminierten Zeichenkette pc_src in Widecharacters.
bool t1_MbConvert (wchar t * pc_dst, const char * pc_src, t UInt u_count);
Wandelt die nullterminierten Multibytecharacters pc_src in die Widecharacters pc_dst inklusive des
abschlieBenden Nullzeichens um. Der Parameter u_count gibt die Anzahl der Widecharacters in pc_dst an.
t UInt t1 _MbConvertCount (char *, const wchar t * pc_src);

Berechnet die Anzahl der Bytes im Zielspeicher inklusive des abschlieRenden Nullzeichens flr die
Umwandlung der nullterminierten Widecharacters pc_src in Multibytecharacters.

Spirick Tuning Referenzhandbuch Seite 103

bool t1 _MbConvert (char * pc_dst, const wchar_t * pc_src, t UInt u_count);

Wandelt die nullterminierten Widecharacters pc_src in die Multibytecharacters pc_dst inklusive des
abschlieRenden Nullzeichens um. Der Parameter u_count gibt die Anzahl der Bytes in pc_dst an.

Zugehorige Klassen

Die globalen Funktionen dieser Schnittstelle dienen als Grundlage der Klassen ct_String und ct_WString.

3.1.3 Unicode (UTF) (tuning/sys/cutf.hpp)

Die Systemschnittstelle fiir Unicode enthalt Funktionen zum Umwandeln von Zeichenketten sowie zur
Langenberechnung und zur GroR-/Kleinschreibung. Bei den meisten Funktionen werden nullterminierte
Zeichenketten anders behandelt als nicht-nullterminierte. Ist der Parameter b null gleich true, dann wird
am Ende der Zeichenkette ein Nullzeichen erwartet, und innerhalb der Zeichenkette dirfen sich keine
Nullzeichen befinden. Andernfalls werden Nullzeichen wie normale Steuerzeichen behandelt.

Die UTF-Funktionen liefern im Fehlerfall einen genauen Fehlercode. In einigen Funktionen wird der Zeiger
auf die Quelldaten als Referenz Gibergeben. Im Fehlerfall verweist dieser Zeiger dann auf die betroffene
Stelle in der Zeichenkette.

Aufzahlung

enum et _UtfError

{

ec UtfOK = 0,

ec_UtfMissingNull, // Missing null character

ec_UtfNulllnside, // Null character inside of string
ec_UtfMoMissingStart, // Multibyte (10xx xxxx) without startbyte (1I1xx xxxx)
ec_UtfMbInvalidStart, // Invalid startbyte (1111 Ixxx)

ec_UtfMbExpected, // Multibyte (10xx xxxx) expected
ec_UtfMbEnd, // String end in multibyte sequence
ec_UtfWideRange, // Wide character out of range
ec_UtfSurrogate, // UTF-16 surrogate in wide character

ec_UtfHighSurrExpected, // High surrogate expected
ec_UtfLowSurrExpected, // Low surrogate expected

ec_UtfSurrEnd, // String end in surrogate
ec_UtfDestTooSmall, // Destination buffer size too small
ec_UtfDestToolarge, // Destination buffer size too large
ec_ULfTEOS, // End of string

ec_UtflLastError

b

Far UTF-8 wird der Datentyp t UInt8 verwendet, fir UTF-16 t UIntl6 und fur UTF-32 t UInt32. Alle
Langenangaben beziehen sich auf den jeweiligen Datentyp und nicht auf die GréRRe in Bytes.

Zum Umwandeln verschiedener UTF-Kodierungen gibt es die Richtungen UTF-8 <-> UTF-32, UTF-16 <->
UTF-32 und UTF-8 <-> UTF-16. Fur jede Richtung gibt es jeweils eine Count- und eine Convert-Funktion.
Die Count-Funktion berechnet die GroRe des Zielpuffers fiir die Umwandlung, in der Convert-Funktion
wird die Umwandlung ausgefiihrt (inkl. Nullzeichen, falls der Parameter b null gleich true ist).

Flr die Count-Funktion wird eigentlich kein Zeiger auf den Zielpuffer benétigt. Zur Unterscheidung der
Uberladenen Funktionen mufd aber der Datentyp dieses Zeigers angegeben werden. Der Zeiger selbst
wird in der Count-Funktion nicht verwendet, es kann z.B. ein Null-Zeiger angegeben werden.

Die Length-Funktionen berechnen die Anzahl der Unicode-Zeichen in einer UTF-kodierten Zeichenkette.
Ist der Parameter b null gleich true, dann wird das abschlieBende Nullzeichen mitgezahlt. Bei UTF-32 ist
diese Anzahl gleich der Lange der Zeichenkette. Die Length-Funktion fir UTF-32 priift jedoch, ob die
Zeichenkette fehlerfrei ist, und liefert nur dann diese Anzahl.

Spirick Tuning Referenzhandbuch Seite 104

Die Upper/Lower-Funktionen wandeln eine UTF-kodierte Zeichenkette in GroR- bzw. Kleinbuchstaben
um. Die Konvertierung erfolgt direkt in der Zeichenkette. Es werden nur Zeichen aus der Basic
Multilingual Plane (< 0x10000) umgewandelt, und die Konvertierung erfolgt auch nur dann, wenn sich
dadurch die Lange der Zeichenkette nicht verandert.

Funktionen

et UtfError t1 _UtfConvertCount (t UIntY *, t UInt & u_dstlen, const t UIntX * & pu_src, t UInt u_srclLen, bool
b null = true);

Liefert im Parameter u_dstlen die GréRRe des Puffers fir die Umwandlung der Zeichenkette pu_src (UTF-X)
mit der Lange u_srcLen in eine Zeichenkette vom Typ UTF-Y.

et UtfError t1_UtfConvert (t UIntY * pu dst, t UInt u dstlLen, const t UIntX * pu_src, t UInt u_srcLen, bool

b null = true);
Konvertiert die Zeichenkette pu_src (UTF-X) mit der Ladnge u_srclLen in den Zielpuffer pu_dst (UTF-Y) mit
der Lange u_dstlLen.

et UtfError t1_UtflLength (t _UInt & u len, const t UIntX * & pu_src, t UInt u_srcLen, bool b _null = true);
Liefert im Parameter u_len die Anzahl der Unicode-Zeichen der Zeichenkette pu_src (UTF-X) mit der Lédnge
u_srclLen.

et UtfError t1 _UtfToUpper (t UIntX * & pu_src, t UInt u_srclLen);
Wandelt die Zeichenkette pu_src (UTF-X) mit der Ladnge u_srcLen in GroRBbuchstaben um.

et Utfkrror t1_UtfToLower (t UIntX * & pu_src, t UInt u_srcLen);

Wandelt die Zeichenkette pu_src (UTF-X) mit der Lange u_srclLen in Kleinbuchstaben um.

3.1.4 Unicode-Const-lterator (tuning/utfcit.h)

Mit dem UTF-Const-lterator kann man konstante UTF-Strings zeichenweise iterieren. Das Template kann
far UTF-8, UTF-16 und UTF-32 verwendet werden und liefert jedes einzelne Zeichen als UTF-32. Fr
UTF-8 wird der Datentyp t_UInt8 verwendet, fir UTF-16 t UInt16 und fir UTF-32 t UInt32. Alle
Langenangaben beziehen sich auf den jeweiligen Datentyp und nicht auf die GréRRe in Bytes. Nullzeichen
werden vom UTF-Const-Iterator wie normale Steuerzeichen behandelt. Das Verédndern der Zeichenkette
ist wahrend des lterierens nicht mdglich.

Templatedeklaration

template <class t_char>
class gct UtfCit

{
public:
typedef t_char t Char;
inline gct UtfCit (O;
inline gct UtfCit (const t Char * pu_src, t UInt u srclLen);
void First (const t Char * pu src, t UInt u_srclLen);
bool Ready () const;
void Next ():
t UInt32 GetChar () const;
t Ulnt GetCharPos () const;
t UInt GetRawPos () const:
t Ulnt GetRawLen () const;
et UtfError GetError () const:
b

Spirick Tuning Referenzhandbuch Seite 105

Methoden
gct UtfCit (O);

Initialisiert ein leeres Objekt.

gct UtfCit (const t UIntX * pu_src, t UInt u_srcLen);
Initialisiert das Objekt und liest aus der Zeichenkette pu_src (UTF-X) mit der Ldnge u_srclLen das erste
UTF-Zeichen.

void First (const t UIntX * pu_src, t UInt u_srclLen);

Liest aus der Zeichenkette pu_src (UTF-X) mit der Ladnge u_srcLen das erste UTF-Zeichen.

bool Ready () const;

Liefert true, wenn aus der Zeichenkette erfolgreich ein UTF-Zeichen gelesen wurde.

void Next ();

Liest aus der Zeichenkette das nachste UTF-Zeichen.

t _UInt32 GetChar () const;
Liefert das aktuelle UTF-Zeichen im Format UTF-32.

t UInt GetCharPos () const;

Liefert die fortlaufende Nummer vom aktuellen UTF-Zeichen.

t_UInt GetRawPos () const;

Liefert die Position vom aktuellen UTF-Zeichen im Format t_UIntX.

t Uint GetRawLen () const;

Liefert die La&nge vom aktuellen UTF-Zeichen im Format t_UIntX.

et UtfError GetError () const;

Liefert den Fehlercode vom aktuellen Lesevorgang. Dabei gibt es die folgenden Méglichkeiten:
ec_UtfOK: Das UTF-Zeichen wurde erfolgreich gelesen.

ec_UtfEOS: Das Ende der Zeichenkette wurde erreicht.

Anderer Fehlercode: In der Zeichenkette befindet sich ein fehlerhaftes UTF-Zeichen. Das Iterieren kann
nicht fortgesetzt werden.

Beispiel

Zum lterieren einer Zeichenkette wird eine for-Schleife nach folgendem Muster empfohlen:
gct UtfCit <t UIntX> co_cit;

for (co_cit. First (pu_src, u_srclLen);
co_cit. Ready ();
co_cit. Next ())
{
t UInt32 u_char = co_cit. GetChar ()
/o

}

if (co_cit. GetError () != ec UtfEQS)
{

// error handling

}

Spirick Tuning Referenzhandbuch Seite 106

3.1.6 Prazisionszeit (tuning/sys/ctimedate.hpp)

Die Systemuhrzeit ist im Millisekundenbereich meisten ungenau. Deshalb unterstlitzen einige
Betriebssysteme zuséatzlich eine Prazisionszeit. Diese leistet bei Zeitmessungen z. B. fir das
Performancetuning gute Dienste.

Datentypen
typedef t _Int64 t MicroTime;

t MicroTime ist ein Datentyp zur Zeitmessung in Mikrosekunden.

Funktionen
t MicroTime t1_QueryPrecisionTime ();

Liefert die Anzahl der seit dem ersten Aufruf dieser Funktion verstrichenen Mikrosekunden.

3.1.6 Uhrzeit und Datum (tuning/sys/ctimedate.hpp)

In dieser Rubrik befinden sich Funktionen zur Abfrage und Umrechnung von Zeitwerten. Die Zeit wird in
Mikrosekunden seit dem 01.01.1970 O Uhr angegeben. Es kann sowohl die koordinierte Weltzeit (UTC)
als auch die lokale Zeit verwendet werden, die der im Betriebssystem eingestellten Zeitzone entspricht.

Datentypen, Konstanten
typedef t _Int64 t MicroTime;

t MicroTime ist ein Datentyp zur Zeitmessung in Mikrosekunden.

const t MicroTime co MicroSecondFactor = 1171,
const t MicroTime co MilliSecondFactor = 100017
const t_MicroTime co SecondFactor = 100000017 ;
const t MicroTime co MinuteFactor = 6000000017 ;
const t MicroTime co HourFactor = 360000000017;
const t_MicroTime co DayFactor = 8640000000017;

Diese Konstanten dienen der Umrechnung von Mikrosekunden in Millisekunden, Sekunden, Minuten,
Stunden und Tage.

Funktionen
t MicroTime t1_QueryUTCTime ();
Liefert die aktuelle UTC Systemzeit.

t MicroTime t1_QuerylLocalTime ();

Liefert die aktuelle lokale Systemzeit.

t MicroTime t1_UTCTolLocalTime (t MicroTime i_time);

Rechnet eine UTC Zeit in lokale Zeit um.

t MicroTime t1_LocalToUTCTime (t MicroTime i_time);

Rechnet eine lokale Zeit in UTC Zeit um.

Zugehorige Klasse

Die globalen Funktionen dieser Schnittstelle dienen als Grundlage der Klasse ct TimeDate.

Spirick Tuning Referenzhandbuch Seite 107

3.1.7 Prozessorzeit (tuning/sys/ctimedate.hpp)

In dieser Rubrik befinden sich zwei Funktionen zur Abfrage der Zeit, die ein Thread oder Prozel3 auf
einem Prozessor aktiv gewesen ist. Die Zeit wird in Mikrosekunden angegeben.

Strukturdeklaration

struct st UserKernelTime

{

t MicroTime 0_UserTime;
t MicroTime 0_KernelTime;

b

Die Struktur st _UserKernelTime enthalt je eine Zeitangabe Uber verstrichene Mikrosekunden im Usermode
und im Kernelmode.

Funktionen

bool t1_QueryProcessTimes (st _UserKernelTime * pso_times);
Ermittelt die Zeit, die der aktuelle Prozel (inklusive aller Threads) auf einem Prozessor aktiv gewesen ist,
und liefert bei Erfolg true.

bool t1_QueryThreadTimes (st UserKernelTime * pso times);

Ermittelt die Zeit, die der aktuelle Thread aktiv gewesen ist, und liefert bei Erfolg true.

3.1.8 Taskumgebung (tuning/sys/cprocess.hpp)

In dieser Rubrik befinden sich Abfrage- und Steuerungsfunktionen fir Threads und Prozesse.

Funktionen

t Int32 t1_InterlockedRead (volatile t_Int32 * pi value);
Liest einen t_Int32 Wert aus dem Speicher und liefert diesen Wert. Es wird eine atomare
Hardwareoperation ausgefliihrt. Dadurch kénnen mehrere Threads und Prozesse ohne Synchronisation
auf denselben Speicher zugreifen.

t Int32 t1_InterlockedWrite (volatile t Int32 * pi value, t _Int32 i _new);
Schreibt einen t_Int32 Wert in den Speicher und liefert den alten Wert. Es wird eine atomare
Hardwareoperation ausgefthrt.

t Int32 t1_InterTockedAdd (volatile t Int32 * pi_value, t Int32 i_add);
Addiert zu einem t_Int32 Wert im Speicher einen anderen und liefert den neuen Wert. Es wird eine
atomare Hardwareoperation ausgefihrt.

t Int32 t1_InterTockedIncrement (volatile t Int32 * pi_value);:

t Int32 t1_InterTockedDecrement (volatile t Int32 * pi_value):

VergroRert bzw. verkleinert einen t_Int32 Wert im Speicher um Eins und liefert den neuen Wert. Es wird
eine atomare Hardwareoperation ausgefihrt.

Spirick Tuning Referenzhandbuch Seite 108

void t1 Delay (int i_milliSec);

Unterbricht die Ausfihrung des aktuellen Threads fir i_milliSec Millisekunden. Andere Threads kénnen
jedoch weiterarbeiten.

void t1_RelinquishTimeSlice ():

Beendet die Zeitscheibe des aktuellen Threads. Das fiihrt zur unmittelbaren Aktivierung eines anderen
Threads.

ct_String t1_GetEnv (const char * pc_name);

Liefert den Wert der Umgebungsvariablen pc_name als ein Stringobjekt.

ct_String t1_GetTempPath ():

Liefert den Pfad fir temporare Dateien als ein Stringobjekt.

3.1.9 Threads (tuning/sys/cthread.hpp)

In dieser Rubrik befinden sich Funktionen fir Threads.

Datentypen
typedef void (* ft ThreadFunc) (void *);

ft_ThreadFunc ist ein Zeiger auf eine Hauptfunktion eines Threads. Die Funktion erwartet einen Parameter
vom Typ void * und besitzt keinen Riickgabewert.

Funktionen
bool t1 BeginThread (ft ThreadFunc fo_func, void * pv_param, t UInt u_stackSize = 8u * 1024u);

Beginnt einen Thread mit der Hauptfunktion fo_func. Der Parameter pv_param wird an die Hauptfunktion
weitergeleitet. Optional kann die StackgréfRe des neuen Threads angegeben werden. Der Thread wird
durch einen Aufruf von t1 EndThread oder das Ende der Hauptfunktion abgeschlossen. Der Rickgabewert
ist false, wenn er nicht gestartet werden konnte.

void t1 _EndThread ();

Beendet die Ausflihrung des aktuellen Threads. Die MS Windows Implementierung ruft keine
Destruktoren von lokalen Objekten auf, die sich auf dem Stack des Threads befinden.

t UInt64 t1_Threadld ():

Liefert die systemabhéangige Id des aktuellen Threads.

3.1.10 Prozesse (tuning/sys/cprocess.hpp)

In dieser Rubrik befinden sich Funktionen fir Prozesse.

Funktionen
void t1_EndProcess (unsigned u_exitCode);

Beendet den aktuellen Prozel3, ohne Destruktoren globaler Objekte aufzurufen. Der Parameter u_exitCode
wird an das Betriebssystem Ubergeben.

int t1_ProcessId ();

Liefert die systemabhéangige Id des aktuellen Prozesses.

Spirick Tuning Referenzhandbuch Seite 109

bool t1_IsProcessRunning (int i _processId);

Liefert true, wenn der Prozel3 mit der Id i_processId gestartet und noch nicht beendet wurde.

int t1_Exec (const char * pc_path, unsigned u params, const char * * ppc_params, bool b wait = false);

Startet einen neuen ProzelR mit der ausfihrbaren Datei pc_path. Optional kdnnen u_params String-
Parameter an den neuen Prozel3 Gbergeben werden, wobei ppc_params auf ein Array mit u_params Zeigern
verweist. Der Zeiger auf einen String-Parameter mul3 gleich Null sein oder auf eine nullterminierte
Zeichenkette verweisen. Ist der Zeiger auf einen String-Parameter gleich Null, wird er durch eine leere
Zeichenkette ersetzt. Ein String-Parameter kann Leerzeichen enthalten und optional mit dem Zeichen '™’
beginnen und enden. Der Riickgabewert ist gleich -1, wenn der Prozel3 nicht gestartet werden konnte.
Ist der Parameter b wait gleich false, kehrt die Funktion unmittelbar zurtick und liefert die
systemabhangige Id des neuen Prozesses. Andernfalls wartet die Funktion auf das Beenden des
Prozesses und liefert dessen Exitcode.

3.1.11 Thread-Mutex (tuning/sys/cthmutex.hpp)

In dieser Rubrik befinden sich eine Klasse und globale Funktionen zum Synchronisieren von Threads.

Klassendeklaration

class ct_ThMutex

{

public:
bool GetInitSuccess () const;
et Reskrror TryLock (bool & b_success);
et ResError Lock ():
et ResError Unlock ();

>

Die Klasse ct_ThMutex implementiert ein Verfahren zum wechselseitigen Ausschlu? (mutual exclusion).
Die Implementierung ist rekursiv, d. h. ein Thread kann ein bereits gesperrtes Mutexobjekt erneut
sperren. Mutexobjekte kdnnen nicht mit Konstruktor oder Gleichoperator kopiert werden und dirfen
auch nicht mit memcpy kopiert werden.

Methoden

bool GetInitSuccess ();

Liefert true, wenn das Mutexobjekt fehlerfrei initialisiert wurde.

et_ResError TrylLock (bool & b_success);:

Versucht, das Mutexobjekt zu sperren, und setzt bei Erfolgt b_success auf true.

et ResError Lock ();
Halt die Ausflihrung des Threads an, bis das Mutexobjekt gesperrt wurde, d. h. dal3 gleichzeitig kein
anderer Thread dieses Mutexobjekt sperrt.

et ResError Unlock ();

Gibt das Mutexobjekt wieder frei, d. h. anschlieBend kénnen andere Threads dieses Mutexobjekt
sperren.

Funktionen

Die folgenden globalen Funktionen implementieren ein Verfahren fir kritische Abschnitte. Sie verwenden
daflir ein globales Mutexobjekt.

Spirick Tuning Referenzhandbuch Seite 110

bool t1 CriticalSectionInitSuccess ();

Liefert true, wenn das globale Mutexobjekt fehlerfrei initialisiert wurde.

void t1_DeleteCriticalSection ();
Zerstort das globale Mutexobjekt. Diese Funktion kann optional am Programmende aufgerufen werden,
wenn sichergestellt ist, daR das Objekt nicht mehr verwendet wird.

et ReskError t1_TryEnterCriticalSection (bool & b success):

Versucht, das globale Mutexobjekt zu sperren, und setzt bei Erfolgt b _success auf true.

et _ReskError t1_EnterCriticalSection ():

Halt die Ausflihrung des Threads an, bis das globale Mutexobjekt gesperrt wurde, d. h. dalR gleichzeitig
kein anderer Thread dieses Mutexobjekt sperrt.

et ReskError t1_LeaveCriticalSection ();

Gibt das globale Mutexobjekt wieder frei, d. h. anschlieBend kénnen andere Threads dieses Mutexobjekt
sperren.

3.1.12 Thread-Semaphor (tuning/sys/cthsemaphore.hpp)

In dieser Rubrik befindet sich eine weitere Klasse fir die Thread-Synchronisation.

Klassendeklaration

class ct_ThSemaphore

{

public:
ct_ThSemaphore (t_Int32 i _initValue = 1);
~ct_ThSemaphore ();
bool GetInitSuccess () const;
et ResError TryAcquire (bool & b success, t UInt32 u milliSec = 0);
et ResError Acquire ();
et _ResError Release ():

b

Die Klasse ct_ThSemaphore wird &hnlich wie ct_ThMutex zum Synchronisieren von Threads verwendet. Es
existieren jedoch zwei wesentliche Unterschiede:

1. Wurde ein Mutex von einem Thread gesperrt, kann es nur vom selben Thread wieder freigegeben
werden. Semaphoren kénnen jedoch von mehreren Threads in beliebiger Reihenfolge angefordert und
freigegeben werden.

2. Ein Semaphor kann mehrmals hintereinander freigegeben werden. Dadurch erhéht sich ein interner
Zahler. Ein Thread wird beim Anfordern des Semaphors nur dann blockiert, wenn dieser interne Zahler
Null erreicht hat.

Steht der interne Zahler anfangs auf Eins und werden Anfordern und Freigeben immer paarweise im

selben Thread aufgerufen, so ist die Wirkung wie bei einem Mutex. Ein Semaphor kann jedoch auch

anders verwendet werden. Z. B. kann damit eine Message-Queue mit mehreren Sender-Threads und

einem Empfanger-Thread implementiert werden. Semaphorobjekte kénnen nicht mit Konstruktor oder
Gleichoperator kopiert werden und dlrfen auch nicht mit memcpy kopiert werden.

Spirick Tuning Referenzhandbuch Seite 111

Methoden
ct_ThSemaphore (t Int32 i initValue = 1);

Konstruiert ein Semaphorobjekt und setzt den internen Zahler auf i_initValue.

bool GetInitSuccess ();

Liefert true, wenn das Semaphorobjekt fehlerfrei initialisiert wurde.

et ResError TryAcquire (bool & b_success, t UInt32 u milliSec = 0);

Versucht, das Semaphorobjekt anzufordern, und setzt bei Erfolgt b_success auf true. Die Methode wartet
maximal u_milliSec Millisekunden.

et ResError Acquire ();

Das Semaphorobjekt wird angefordert. Die Methode wartet, falls der interne Zahler gleich Null ist.
Andernfalls wird vom internen Zahler Eins subtrahiert.

et ResError Release ();

Das Semaphorobjekt wird freigegeben. Dabei wird zum internen Zahler Eins addiert. War der Zahler
vorher gleich Null, dann wird ein eventuell wartender Thread aufgeweckt.

3.1.13 Gemeinsame Ressource (tuning/sys/csharedres.hpp)

Die Klasse ct_SharedResource implementiert die Basisfunktionalitat fir Objekte, die von mehreren
Prozessen gemeinsam verwendet werden kénnen. Die gemeinsame Ressource wird {ber einen String-
Schlissel identifiziert.

Vor der Verwendung muf} ein Schlissel gesetzt und das Objekt initialisiert werden. Die Initialisierung
erfolgt durch Offnen oder Erzeugen (Methoden Open oder Create in den abgeleiteten Klassen). Nach der
Initialisierung kann der Schlissel nicht mehr gedndert werden.

Klassendeklaration
class ct_SharedResource
{
public:
ct_SharedResource ();
ct_SharedResource (const char * pc_key);
ct_SharedResource (const char * pc_key, unsigned u_idx);
virtual ~ct_SharedResource ();
bool GetInitSuccess () const;
const char * GetKey () const;
et ResError SetKey (const char * pc_key);
et ResError SetKey (const char * pc_key, unsigned u_idx);
}
Methoden

ct_SharedResource ();

Konstruiert eine gemeinsame Ressource ohne Schlissel.

ct_SharedResource (const char * pc_key);

Konstruiert eine gemeinsame Ressource mit dem Schlissel pc_key.

Spirick Tuning Referenzhandbuch Seite 112

ct SharedResource (const char * pc_key, unsigned u_idx);

Konstruiert eine gemeinsame Ressource mit dem Schlissel pc_key. Der Index u_idx wird in eine
Zeichenkette umgewandelt und an pc_key angehangt.

virtual ~ct_SharedResource ();

Der virtuelle Destruktor ruft den Destruktor des abgeleiteten Objekts auf.

bool GetInitSuccess ();

Liefert true, wenn die gemeinsame Ressource fehlerfrei initialisiert wurde.

const char * GetKey () const;

Liefert den Schllssel.

et ResError SetKey (const char * pc_key);

Setzt den Schlissel pc_key. Liefert ec_ResOK, wenn der Schlissel giltig und das Objekt noch nicht
initialisiert war.

et ReskError SetKey (const char * pc_key, unsigned u_idx);

Setzt den SchlUssel pc_key. Der Index u_idx wird in eine Zeichenkette umgewandelt und an pc_key
angehéangt. Liefert ec_ ResOK, wenn der Schlissel giltig und das Objekt noch nicht initialisiert war.

3.1.14 ProzeR-Mutex (tuning/sys/cprmutex.hpp)

In dieser Rubrik befinden sich eine Klasse und globale Funktionen zum Synchronisieren von Prozessen.

Basisklasse

ct_SharedResource (siehe Abschnitt ‘Gemeinsame Ressource’)

Klassendeklaration
class ct PrMutex: public ct_SharedResource
{
pubTlic:
ct_PrMutex ()
ct_PrMutex (const char * pc_key);
ct_PrMutex (const char * pc_key, unsigned u_idx);
~ct_PrMutex ();
et _ResError Open O);
et _ResError Create (bool b createNew = false);
et Reskrror Close ();
et ResError TryLock (bool & b_success, t UInt32 u milliSec = 0);
et _ResError Lock ()
et ResError Unlock ();
s

Die Klasse ct_PrMutex implementiert ein Verfahren zum wechselseitigen Ausschlu®3 (mutual exclusion).
Das Mutexobjekt ist vollstandig initialisiert, wenn ein Schllissel gesetzt wurde und die Methoden Open
oder Create den Wert ec_ResOK geliefert haben. Die MS Windows Implementierung ist rekursiv, d. h. ein
Prozeld kann ein bereits gesperrtes Mutexobjekt erneut sperren. Die Linux Implementierung ist nicht
rekursiv, d. h. wenn ein Prozel3 ein bereits gesperrtes Mutexobjekt erneut sperrt, blockiert er sich selbst.
Die Methoden TrylLock, Lock und Unlock sind gegen den konkurrierenden Zugriff mehrerer Threads
geschitzt, d. h. nach dem Initialisieren kann ein PrMutexobjekt auch zum Synchronisieren von Threads
verwendet werden.

Spirick Tuning Referenzhandbuch Seite 113

Methoden
ct_PrMutex ()

Konstruiert ein Mutexobjekt mit einem globalen Schlissel.

ct PrMutex (const char * pc_key);

Konstruiert ein Mutexobjekt mit dem Schliissel pc_key.

ct PrMutex (const char * pc_key, unsigned u_idx);
Konstruiert ein Mutexobjekt mit dem Schliissel pc_key. Der Index u_idx wird in eine Zeichenkette
umgewandelt und an pc_key angehangt.

~ct PrMutex ();

Der Destruktor schlie3t das Mutexobjekt, falls es geéffnet war.

et ResError Open ();
Versucht, sich mit einem bestehenden Mutexobjekt, das denselben Schlissel verwendet, zu verbinden,
und liefert bei Erfolg ec ResOK. Der Vorgang ist vergleichbar mit dem Offnen einer Datei.

et ResError Create (bool b createNew = false);
Versucht, ein neues Mutexobjekt zu erzeugen, und liefert bei Erfolg ec_ResOK. Liefert ec_ResAlreadyExists,
wenn b_createNew gleich true ist und ein Mutexobjekt, das denselben Schlissel verwendet, bereits
existiert. Der Vorgang ist vergleichbar mit dem Erzeugen einer Datei.

et Reskrror Close ();
Versucht, ein gedffnetes Mutexobjekt zu schlie3en, und liefert bei Erfolg ec_ResOK. Der Vorgang ist
vergleichbar mit dem Schliel3en einer Datei.

et _ResError TryLock (bool & b_success, t UInt32 u_milliSec = 0);
Versucht, das Mutexobjekt zu sperren, und setzt bei Erfolgt b_success auf true. Die Methode wartet
maximal u_milliSec Millisekunden.

et ResError Lock ();
Halt die Ausfilhrung des Prozesses an, bis das Mutexobjekt gesperrt wurde, d. h. da® gleichzeitig kein
anderer Prozel3 ein Mutexobjekt mit demselben Schlilissel sperrt.

et ResError Unlock ();

Gibt das Mutexobjekt wieder frei, d. h. anschlieBend kénnen andere Prozesse Mutexobjekte mit
demselben Schlissel sperren.

Funktionen
Die folgenden globalen Funktionen implementieren ein Verfahren fir kritische Abschnitte. Sie verwenden
dafir ein globales PrMutexobjekt.

bool t1 CriticalPrSectionInitSuccess ();

Liefert true, wenn das globale Mutexobjekt fehlerfrei initialisiert wurde.

void t1 DeleteCriticalPrSection ();

Zerstort das globale Mutexobjekt. Diese Funktion kann optional am Programmende aufgerufen werden,
wenn sichergestellt ist, daR das Objekt nicht mehr verwendet wird.

Spirick Tuning Referenzhandbuch Seite 114

et ResError t1 TryEnterCriticalPrSection (bool & b success, t UInt32 u milliSec = 0);
Versucht, das globale Mutexobjekt zu sperren, und setzt bei Erfolgt b_success auf true. Die Methode
wartet maximal u_mil1iSec Millisekunden.

et ResError t1_EnterCriticalPrSection ();
Halt die Ausfihrung des Prozesses an, bis das globale Mutexobjekt gesperrt wurde, d. h. daf
gleichzeitig kein anderer Prozel3 ein Mutexobjekt mit dem globalen Schllissel sperrt.

et ResError t1_LeaveCriticalPrSection ();

Gibt das globale Mutexobjekt wieder frei, d. h. anschlieRend kénnen andere Prozesse Mutexobjekte mit
dem globalen Schllssel sperren.

3.1.15 ProzeR-Semaphor (tuning/sys/cprsemaphore.hpp)

In dieser Rubrik befindet sich eine weitere Klasse fir die ProzeR-Synchronisation.

Klassendeklaration
class ct_PrSemaphore: public ct SharedResource
{
public:
ct_PrSemaphore ();
ct_PrSemaphore (const char * pc_key);
ct_PrSemaphore (const char * pc_key, unsigned u_idx);
~ct_PrSemaphore ();
et ResError Open ()
et ResError Create (t_Int32 i_initValue = 1, bool b createNew = false);
et_ResError Close O):
et ResError TryAcquire (bool & b _success, t UInt32 u milliSec = 0);
et ResError Acquire ();
et ResError Release ():
>

Die Klasse ct_PrSemaphore implementiert ein Semaphor zum Synchronisieren von Prozessen (siehe Klasse
ct_ThSemaphore fur Threads). Das Semaphorobjekt ist vollstéandig initialisiert, wenn ein Schlissel gesetzt
wurde und die Methoden Open oder Create den Wert ec ResOK geliefert haben. Die Methoden TryAcquire,
Acquire und Release sind gegen den konkurrierenden Zugriff mehrerer Threads geschiitzt, d. h. nach dem
Initialisieren kann ein PrSemaphorobjekt auch zum Synchronisieren von Threads verwendet werden.

Methoden

ct_PrSemaphore ();

Konstruiert ein Semaphorobjekt mit einem globalen Schlissel.

ct_PrSemaphore (const char * pc_key):

Konstruiert ein Semaphorobjekt mit dem SchllUssel pc_key.

ct_PrSemaphore (const char * pc_key, unsigned u_idx);
Konstruiert ein Semaphorobjekt mit dem Schlissel pc_key. Der Index u_idx wird in eine Zeichenkette
umgewandelt und an pc_key angehéangt.

~ct_PrSemaphore ();

Der Destruktor schliel3t das Semaphorobjekt, falls es geéffnet war.

Spirick Tuning Referenzhandbuch Seite 115

et ResError Open ();
Versucht, sich mit einem bestehenden Semaphorobjekt, das denselben Schliissel verwendet, zu
verbinden, und liefert bei Erfolg ec ResOK. Der Vorgang ist vergleichbar mit dem Offnen einer Datei.

et ResError Create (t Int32 i_initValue = 1, bool b_createNew = false);
Versucht, ein neues Semaphorobjekt zu erzeugen. Liefert bei Erfolg ec ResOK und setzt den internen
Zahler auf i_initValue. Liefert ec ResAlreadyExists, wenn b _createNew gleich true ist und ein
Semaphorobjekt, das denselben Schlissel verwendet, bereits existiert. Der Vorgang ist vergleichbar mit
dem Erzeugen einer Datei.

et Reskrror Close ();
Versucht, ein gedffnetes Semaphorobjekt zu schlieRen, und liefert bei Erfolg ec_ResOK. Der Vorgang ist
vergleichbar mit dem SchlieRen einer Datei.

et _ResError TryAcquire (bool & b_success, t UInt32 u milliSec = 0);
Versucht, das Semaphorobjekt anzufordern, und setzt bei Erfolgt b_success auf true. Die Methode wartet
maximal u_milTiSec Millisekunden.

et _Reskrror Acquire ();
Das Semaphorobjekt wird angefordert. Die Methode wartet, falls der interne Zahler gleich Null ist.
Andernfalls wird vom internen Zahler Eins subtrahiert.

et_ResError Release ():

Das Semaphorobjekt wird freigegeben. Dabei wird zum internen Zahler Eins addiert. War der Zahler
vorher gleich Null, dann wird ein eventuell wartender Thread/Prozel3 aufgeweckt.

3.1.16 Gemeinsamer Speicher (tuning/sys/csharedmem.hpp)

Die Klasse ct_SharedMemory implementiert die gemeinsame Nutzung von Hauptspeicher durch mehrere
Prozesse. Das Sharedmemoryobjekt ist vollstandig initialisiert, wenn ein Schllssel gesetzt wurde und die
Methoden Open oder Create den Wert ec_ResOK geliefert haben.

Basisklasse

ct_SharedResource (siehe Abschnitt ‘Gemeinsame Ressource’)

Klassendeklaration
class ct_SharedMemory: public ct_SharedResource
{
public:
ct_SharedMemory ();
ct_SharedMemory (const char * pc_key);
ct_SharedMemory (const char * pc_key, unsigned u_idx);
~ct_SharedMemory ();
et ResError Open (bool b _readOnly);
et ResError Create (t_UInt u_size, bool b_createNew = false);
et _Reskrror Close ();
t UInt GetSize () const;
void * GetData () const;
b

Spirick Tuning Referenzhandbuch Seite 116

Methoden

ct_SharedMemory () ;

Konstruiert ein Sharedmemoryobjekt mit einem globalen Schllssel.

ct _SharedMemory (const char * pc_key);

Konstruiert ein Sharedmemoryobjekt mit dem Schliissel pc_key.

ct_SharedMemory (const char * pc_key, unsigned u_idx);

Konstruiert ein Sharedmemoryobjekt mit dem Schllssel pc_key. Der Index u_idx wird in eine Zeichenkette
umgewandelt und an pc_key angehéangt.

~ct_SharedMemory ();

Der Destruktor schliel3t das Sharedmemoryobjekt, falls es geéffnet war.

et_ResError Open (bool b_readOnly):

Versucht, sich mit einem bestehenden Sharedmemoryobjekt, das denselben Schlliissel verwendet, zu
verbinden, und liefert bei Erfolg ec ResOK. Wenn b_readOnly gleich true ist, kann auf den gemeinsamen
Speicher nur lesend zugegriffen werden. Der Vorgang ist vergleichbar mit dem Offnen einer Datei.

et ResError Create (t UInt u_size, bool b createNew = false);

Versucht, ein neues Sharedmemoryobjekt mit der GréRe u_size Bytes zu erzeugen, und liefert bei Erfolg
ec_ResOK. Liefert ec_ResAlreadyExists, wenn b_createNew gleich true ist und ein Sharedmemoryobjekt, das

denselben Schliissel verwendet, bereits existiert. Der Vorgang ist vergleichbar mit dem Erzeugen einer

Datei.

et Reskrror Close ();

Versucht, ein gedffnetes Sharedmemoryobjekt zu schlieBen, und liefert bei Erfolg ec_ResOK. Der Vorgang
ist vergleichbar mit dem Schliel3en einer Datei.

t UInt GetSize () const;

Liefert die Grof3e in Bytes des gemeinsamen Speichers.

void * GetData () const;

Liefert einen Zeiger auf das erste Byte des gemeinsamen Speichers.

3.1.17 Datei (tuning/sys/cfile.hpp)

Innerhalb der Bibliothek Spirick Tuning werden Pfad- und Dateinamen als UTF-8-Strings interpretiert.
Unter Linux werden die Strings unverandert an die Systemfunktionen tbergeben. Unter MS Windows
werden Pfad- und Dateinamen intern in UTF-16 umgewandelt.

Die Systemschnittstelle fir Dateien ist auf das blockweise Verarbeiten groRer Datenmengen
ausgerichtet. Die Funktionen bauen direkt auf der ungepufferten Dateiein- und -ausgabe des
Betriebssystems auf. Flr eine optimale Geschwindigkeit sollte als BlockgréRe ein Vielfaches von vier KB
verwendet werden. Die Funktionen t1 OpenFile und t1 CreateFile sind gegen das gleichzeitige Aufrufen
durch mehrere Prozesse geschiitzt (race conditions).

Samtliche Funktionen liefern bei erfolgreicher Ausfilhrung den Wahrheitswert true. Im Fehlerfall wird
keine C++-Exception ausgeldst, sondern false zurlickgegeben. Die Funktionen kénnen somit auch in
einer Programmierumgebung genutzt werden, in der keine Exceptions zur Verfligung stehen oder diese
mit einer Compileroption deaktiviert sind.

Spirick Tuning Referenzhandbuch Seite 117

Datentypen, Konstanten

typedef ... t Fileld;
const t_Fileld co_InvalidFileld = ...:
typedef t _Int64 t FileSize;

Eine Fileld enthélt einen systemabhangigen Code fir eine gedffnete Datei. Die Konstante co_InvalidFileld
ist eine garantiert ungultige Fileld. Der Datentyp t FileSize wird fir GréRen- und Positionsangaben
verwendet.

Funktionen
bool t1 OpenFile (const char * pc_name, t Fileld & o_file, bool b readOnly = true, bool b_sequential = true);

Offnet die bestehende Datei pc_name abhangig vom Parameter b readOnly zum Lesen oder Schreiben. Der
optionale Parameter b_sequential beeinfluRt die Arbeitsweise des Cachemanagers. Wird die Datei
sequentiell bearbeitet, sollte er auf true gesetzt werden. Der Parameter o _file mul3 vor dem Aufruf auf
co_InvalidFileld gesetzt werden. Bei Erfolg liefert die Funktion true, und o_file enthélt die Fileld der
gedffneten Datei.

bool t1 CreateFile (const char * pc_name, t Fileld & o_file, bool b createNew = false);

Erzeugt die neue Datei pc_name und 6ffnet sie zum Schreiben. Eine eventuell vorhandene Datei gleichen
Namens wird Uberschrieben. Liefert false, wenn b _createNew gleich true ist und eine Datei mit demselben
Namen bereits existiert. Der Parameter o_file mufd vor dem Aufruf auf co_InvalidFileld gesetzt werden.
Bei Erfolg liefert die Funktion true, und o_file enthélt die Fileld der gedffneten Datei.

pbool t1 _CloseFile (t Fileld o file);

Versucht, die ge6ffnete Datei o file zu schlieRen, und liefert bei Erfolg true.

bool t1_ExistsFile (const char * pc_name);

Liefert true, wenn die Datei pc_name existiert.

bool t1 MoveFile (const char * pc_old, const char * pc_new);

Verschiebt die Datei pc_old nach pc_new. Befinden sich alter und neuer Name innerhalb desselben
Verzeichnisses, wird nur der Name des Eintrags geandert.

bool t1_CopyFile (const char * pc_old, const char * pc_new, bool b overwrite = true);

Kopiert die Datei pc_old nach pc_new. Ist der optionale Parameter b_overwrite gleich true, wird eine
eventuell vorhandene Datei gleichen Namens Uberschrieben.

bool t1 _DeleteFile (const char * pc_name);

Léscht die Datei pc_name.

pbool t1 _QuerySize (t Fileld o file, t FileSize & o _size);

Ermittelt die aktuelle GroRRe der gedffneten Datei o file.

bool t1 QueryPos (t Fileld o file, t FileSize & o_pos):

Ermittelt die aktuelle Position des Zugriffszeigers der ge6ffneten Datei o _file.

bool t1_SeekAbs (t Fileld o file, t FileSize o pos);

Positioniert den Zugriffszeiger der gedffneten Datei o0 file absolut auf die Position o_pos.

bool t1_SeekRel (t Fileld o file, t FileSize o pos);:

Positioniert den Zugriffszeiger der ge6ffneten Datei o_file relativ auf die Position o_pos.

bool t1 _Truncate (t Fileld o file, t FileSize o size);

Verandert die GroRe der gedffneten Datei o _file auf o_size Bytes.

Spirick Tuning Referenzhandbuch Seite 118

bool t1 Read (t Fileld o file, void * pv_dst, t FileSize o _len);

Liest o_len Bytes aus der ge6ffneten Datei o file nach pv_dst und verschiebt den Zugriffszeiger.

bool t1 Write (t _Fileld o file, const void * pv_src, t FileSize o_len);

Schreibt o0_len Bytes von pv_src in die gedffnete Datei o_file und verschiebt den Zugriffszeiger.

Zugehorige Klasse

Die globalen Funktionen dieser Schnittstelle dienen als Grundlage der Klasse ct _File.

3.1.18 Verzeichnis (tuning/sys/cdir.hpp)

Innerhalb der Bibliothek Spirick Tuning werden Pfad- und Dateinamen als UTF-8-Strings interpretiert.
Unter Linux werden die Strings unverandert an die Systemfunktionen tbergeben. Unter MS Windows
werden Pfad- und Dateinamen intern in UTF-16 umgewandelt.

Die Systemschnittstelle fiir Verzeichnisse enthélt einige elementare Funktionen, die haufig bendtigt
werden, die jedoch in der C-Standardbibliothek noch nicht compiler- und systemunabhéangig definiert
sind.

Samtliche Funktionen liefern bei erfolgreicher Ausfiihrung den Wahrheitswert true. Im Fehlerfall wird
keine C+ +-Exception ausgeldst, sondern false zurlickgegeben. Die Funktionen kénnen somit auch in
einer Programmierumgebung genutzt werden, in der keine Exceptions zur Verfligung stehen oder diese
mit einer Compileroption deaktiviert sind.

Funktionen
bool t1_QueryCurrentDirectory (const char * pc_drive, t UInt u_driveLen, ct String & co_currentDirectory);

Ermittelt das aktuelle Verzeichnis des Laufwerks pc_drive und schreibt das Resultat nach
co_currentDirectory. Die Laufwerksangabe muf3 nicht nullterminiert sein. Statt des Nullzeichens wird die
Lange u_driveLen angegeben. Ist u_drivelen gleich Null, wird das aktuelle Laufwerk verwendet. Die Linux
Implementierung ignoriert die Parameter pc_drive und u_drivelen.

bool t1 CreateDirectory (const char * pc_name);

Erzeugt das neue Verzeichnis pc_name.

bool t1_MoveDirectory (const char * pc_old, const char * pc_new);

Verschiebt das Verzeichnis pc_old nach pc_new. Befinden sich alter und neuer Name innerhalb desselben
Ubergeordneten Verzeichnisses, wird nur der Name des Eintrags geandert.

bool t1_DeleteDirectory (const char * pc_name);

Léscht das leere Verzeichnis pc_name.

Zugehorige Klasse

Die globalen Funktionen dieser Schnittstelle dienen als Grundlage der Klasse ct Directory.

3.1.19 Systemnahe Informationen (tuning/sys/cinfo.hpp)

In dieser Rubrik befinden sich mehrere Strukturen und Funktionen zur Abfrage systemnaher
Informationen. Zeichenketten werden in statisch allokiertem Speicher abgelegt.

Spirick Tuning Referenzhandbuch Seite 119

Strukturdeklaration
struct st _FileSystemInfo

t UInte4 u_TotalBytes;
t_UInted u_FreeBytes;
t UInte4 u_AvailableBytes;

>

Die Struktur st _FileSystemInfo stellt wichtige Informationen Uber ein Dateisystem zur Verfliigung.
Enthalten sind die GesamtgroRe (u_TotalBytes), der insgesamt freie Speicher (u_FreeBytes) sowie der fur
den aktuellen Prozel3/Nutzer verfligbare Speicher (u_AvailableBytes).

Strukturdeklaration
struct st HardwareInfo
{
t _UInted u_TotalBytes;
t_Ulnted u_AvailableBytes;
unsigned u_TotalProcessors;
unsigned u_AvailableProcessors;
const char * pc_CPUName;
b

Die Struktur st HardwareInfo stellt wichtige Informationen tber die Computerhardware zur Verfliigung.
Enthalten sind die Gesamtgrof3e (u_TotalBytes) und die verfiigbaren Bytes (u_AvailableBytes) des
Arbeitsspeichers, die Gesamtzahl (u_TotalProcessors) und die fur den aktuellen Proze3/Nutzer verfigbare
Anzahl (u_AvailableProcessors) der Prozessorkerne sowie der Name des Prozessors als Zeichenkette
(pc_CPUName).

In einer 32-Bit-Umgebung kann ein Prozel je nach Architektur nur max. 2-4 GB Arbeitsspeicher
verwenden. Wenn mehr als 4 GB physisch vorhanden sind, kann es sein, dal3 bei GesamtgroRe und
verfligbaren Bytes Werte groRer als 4 GB geliefert werden.

Strukturdeklaration
struct st_ProcessMemoryInfo
{
t Ulnt u_VMBytes;
t Ulnt u_RSSBytes:
i

Die Struktur st ProcessMemoryInfo stellt Informationen Uber den Speicherverbrauch des aktuellen
Prozesses zur Verfiigung. Enthalten sind die gesamten Bytes (u_VMBytes, virtual memory size) und die
residenten Bytes (u_RSSBytes, resident set size). Die GesamtgrofRe umfaldt den Speicher, der sich im
Arbeitsspeicher oder im Pagefile befindet. Die residenten Bytes umfassen nur die Bereiche, die sich
aktuell im Arbeitsspeicher befinden. Die Art und Weise, wie die beiden SpeichergréRen berechnet
werden, unterscheidet sich von Betriebssystem zu Betriebssystem, z. B. ob Speicher, der von mehreren
Prozessen gemeinsam genutzt wird, eingerechnet wird oder nicht.

Strukturdeklaration

enum et Compiler

ec_CompilerMSVC,
ec_CompilerGCC

}:

struct st_CompilerInfo

{

Spirick Tuning Referenzhandbuch Seite 120

et Compiler eo_CompiTer;

const char * pc_CompilerVersion;
const char * pc_RuntimeVersion:
b

Die Struktur st _CompilerInfo stellt wichtige Informationen tber den verwendeten Compiler und das
Laufzeitsystem zur Verfiigung. Enthalten sind der Compilertyp (eo_Compiler) sowie die Versionen von
Compiler (pc_CompilerVersion) und Laufzeitsystem (pc_RuntimeVersion) als Zeichenkette.

Strukturdeklaration

enum et _System

ec_SystemMSWindows,
ec SystemLinux

b
struct st_SystemInfo
{
et System eo_System;
const char * pc_SystemVersion;
const char * pc_ComputerName;
const char * pc_UserName;
b

Die Struktur st _SystemInfo stellt wichtige Informationen Uber das Betriebssystem zur Verfligung.
Enthalten sind der Betriebssystemtyp (eo_System) sowie Zeichenketten fir die Betriebssystemversion
(pc_SystemVersion), den Computernamen (pc_ComputerName) und den Namen des aktuellen Nutzers
(pc_UserName).

Strukturdeklaration
struct st BatteryInfo
{
bool b ACLine;
bool b BatteryFound;
int i _LifePercent;

b

Die Struktur st BatteryInfo stellt wichtige Informationen Uber die Stromversorgung des Computers zur
Verfiigung. Die Membervariable b ACLine ist gleich true, wenn der Computer am Stromnetz
angeschlossen ist. Die Membervariable b BatteryFound ist gleich true, wenn sich im Computer eine
Batterie befindet. Die Membervariable i _LifePercent enthélt den Flllstand der Batterie in Prozent.

Funktionen

bool t1_QueryFileSystemInfo (const char * pc_path, st FileSystemInfo * pso_info);
Speichert in pso_info Informationen Uber das Dateisystem, auf das der Parameter pc_path verweist, und
liefert bei Erfolg den Wert true.

bool t1_QueryHardwareInfo (st HardwareInfo * pso_info);:

Speichert in pso_info Informationen Uber die Computerhardware und liefert bei Erfolg den Wert true.

bool t1_QueryProcessMemoryInfo (st ProcessMemoryInfo * pso_info);

Speichert in pso_info Informationen Uber den Speicherverbrauch und liefert bei Erfolg den Wert true.

bool t1_QueryCompilerInfo (st CompilerInfo * pso_info);

Speichert in pso_info Informationen UGber den verwendeten Compiler und das Laufzeitsystem und liefert
bei Erfolg den Wert true.

Spirick Tuning Referenzhandbuch Seite 121

bool t1_QuerySystemInfo (st SystemInfo * pso_info);

Speichert in pso_info Informationen Uber das Betriebssystem und liefert bei Erfolg den Wert true.

bool t1_QueryBatteryInfo (st BatteryInfo * pso_info);

Speichert in pso_info Informationen Uber die Stromversorgung des Computers und liefert bei Erfolg den
Wert true.

3.2 Zeichenketten und Dateinamen

3.2.1 Stringtemplate (tuning/string.h)

Die Stringklassen in der Bibliothek Spirick Tuning enthalten nullterminierte Zeichenketten und zusétzlich
eine Langenangabe. Das abschlieBende Nullzeichen ist eine verbreitete Konvention und sichert die
Kompatibilitdt mit zahlreichen anderen Bibliotheken. Die zusatzliche Langenangabe dient der
Beschleunigung von Rechenvorgangen. Ohne sie miR3te haufig die Laénge der Zeichenkette durch Suche
nach dem Nullzeichen ermittelt werden. Positionsangaben innerhalb einer Zeichenkette beginnen mit
dem Wert Null. Diese Zahlung entspricht ebenfalls einer verbreiteten Konvention.

Das Klassentemplate gct_String dient als Basisklasse fur alle weiteren Stringklassen. Der Parameter

t block ist eine Blockklasse mit Zeichenblock-Schnittstelle, z. B. gct_CharBlock <ct Chn32Block, char>, und
dient dem String als Basisklasse. Um Speicherplatz bei leeren Strings zu sparen, wird empfohlen, das
Template gct NullDataBlock zu verwenden, z. B. gct _CharBlock <gct NullDataBlock <ct Chn32Block, char>,
char>. Der zweite Templateparameter t staticStore ist eine statische Storeklasse, z. B. ct_Chn32Store. Sie
wird in der Methode ReplaceAll als temporérer Zwischenspeicher verwendet.

Basisklassen

gct _CharBlock (siehe Abschnitt ‘Zeichenblock’)

Templatedeklaration

template <class t block, class t_staticStore>
class gct _String: public t_block
{
public:
typedef t_block t Block;
typedef t_staticStore t_StaticStore;
typedef t block::t Char t Char;
typedef t block::t Size t Size;

inline gct _String (O);

inTine gct_String (t_Char c_init);

inline gct String (t Char c init, t Size o len);

inTine gct _String (const t Char * pc_init);

inline gct String (const t Char * pc_init, t Size o len);
inline gct_String (const gct _String & co_init);

inTine t UInt GetHash () const;

inline bool Iskmpty () const;

inTline t _Size GetMaxLen () const;

inTine t Size GetLen () const:

inline const t Char * GetStr () const;

inline const t Char * operator () () const;

inline const t Char * GetStr (t_Size o _pos) const;
inTine const t _Char * operator () (t_Size o_pos) const;
inline t Char & GetChar (t_Size o _pos) const;

Spirick Tuning Referenzhandbuch Seite 122

inline t Char &
inline t Char &

gct_String
gct _String
gct_String
gct _String

t Int
t Int
t Int

t Int
t Int
t Int

inline
inline
inline
inline

inline
inline
inline
inline

inline
inline
inline
void
inline
void
inline
inline
void
inline
void

inline
inline
inline
inline
inline
inline
inline
inline
void
void
void
void
void
t Size

int
int
int
int

inline
inline
inline
inline

inline
inline
inline
inline

int
int
int
int

int
int
int
int

void
void
void

void

void
void

void

void
void
void
void
void
void
void
void

bool
bool
bool
booT

boo'
boo'
booT
booT

operator [] (t_Size o0 _pos) const;
GetRevChar (t_Size o _pos) const;

SubStr (t_Size

o_len) const;

RevSubStr (t_Size o _len) const;
SubStr (t_Size o _pos, t Size o_len) const;
operator () (t _Size o pos, t Size o len) const;

First (t_Char c_search, t Size o _pos

0) const;

First (const t _Char * pc_search, t Size o _pos = 0) const;
First (const gct String & co_search, t Size o _pos = 0) const;

Last (t_Char c_search, t Size o pos =
Last (const t _Char * pc_search, t Size o _pos = 0) const;
Last (const gct _String & co_search, t Size o _pos = 0) const;

CompSubStr (t_S
CompSubStr (t_S
CompSubStr (t_S
CompSubStr (t_S
CompTo (t_Char

CompTo
CompTo

Clear ():
Assign (t_Char

0) const:

ize o_pos, t _Char c_comp) const;

ize o _pos, const t Char * pc_comp) const;

ize o _pos, const t Char * pc_comp, t Size o_len) const;
ize 0 _pos, const gct String & co_comp) const;

c_comp) const;

€ _asgn);

(

CompTo (const t _Char * pc_comp) const;
(
(

Assign (t _Char c_asgn, t Size o_len);
Assign (const t _Char * pc_asgn);

Assign
Assign
Append (t_Char
Append
Append
Append

Insert (
Insert (
Insert (t_Size
Insert (
Insert (t
Delete (t_Size
Delete (t_Size
DeleteRev (t_Si
Replace (t _Size
Replace (t_Size
Replace (t Size
Replace (t_Size
Replace (t Size

c_app);

const t_Char * pc_app);
const t_Char * pc_app. t_Size o_len):

(
(
(
Append (t_Char c_app, t Size o _len);
(
(
(const gct_String & co_app);

0 _pos, t Char c_ins);
0 pos, t Char c_ins, t Size o_len);

0_pos, const t Char * pc_ins);

0 _pos, const t Char * pc_ins, t Size o_Ten);
0_pos, const gct String & co_ins);

0_pos);

0 _pos, t Size o len);

ze o_len);
0 _pos, t Size
0 _pos, t Size
0 _pos, t Size
0 pos, t Size
0 pos, t Size

o _dellen,
0 _dellen,
o _dellen,
0 _dellen,
o _dellen,

const t_Char * pc_comp, t Size o _len) const;
const gct_String & co_comp) const;

const t_Char * pc_asgn, t Size o len);
const gct_String & co_asgn);

t Char c_ins);

t Char c_ins, t Size o_inslLen);

const t _Char * pc_ins);

const t Char * pc_ins, t Size o _insLen);
const gct String & co ins);

ReplaceAll (const gct String & co_search, const gct String & co_replace);

AssignF (const t_Char * pc_format,
AppendF (const t Char * pc_format,

InsertF (t_Size o_pos, const t Char * pc_format, ...);

ReplaceF (t Size o pos, t Size o dellen, const t Char * pc_format, ...);
ToUpper ();

TolLower ()

ToUpper2 ();
ToLower?2 ():

operator == (const t _Char * pc_comp) const;
operator == (const gct_String & co_comp) const;
operator != (const t _Char * pc_comp) const;
operator != (const gct String & co_comp) const;

Spirick Tuning

Referenzhandbuch

Seite 123

inline bool operator < (const t _Char * pc_comp) const;

inline bool operator < (const gct String & co_comp) const;
inline bool operator <= (const t _Char * pc_comp) const;
inline bool operator <= (const gct _String & co_comp) const;
inline bool operator > (const t _Char * pc_comp) const;
inline bool operator > (const gct String & co_comp) const;
inline bool operator >= (const t _Char * pc_comp) const;
inTine bool operator >= (const gct String & co_comp) const;

inTine gct_String
inline gct _String
inTine gct String
inline gct _String
inTine gct _String
inline gct String

operator = (t_Char c_asgn);

operator = (const t _Char * pc_asgn);
operator = (const gct String & co_asgn);
operator += (t_Char c_app);

operator += (const t Char * pc_app);
operator += (const gct _String & co_app);

o 0o o oo go o

inTine gct String operator + (t_Char c_app) const;
inline gct _String operator + (const t Char * pc_app) const;
inline gct String operator + (const gct String & co_app) const;

friend inline gct String operator + (t Char c_init, const gct String & co_app):
friend inline gct _String operator + (const t Char * pc_init, const gct String & co_app);
template <class t_string>
void Convert (const t string & co_asgn);
template <class t_string>
bool MbConvert (const t string & co_asgn);
template <class t_asgnChar>
bool MbConvert (const t_asgnChar * po_asgn);

¥

Parameterarten

Fir das Zuweisen und Einfligen von Zeichenketten existieren die folgenden Parameterarten:

1. Einzelnes Zeichen (t _Char c): Das Zeichen wird als Zeichenkette der Lénge Eins betrachtet.

2. Zeichen mit Langenangabe (t Char ¢, t Size o _len): Die Parameterliste wird als Zeichenkette der
Lénge o _len betrachtet, die mit dem Zeichen c gefullt ist.

3. Nullterminierte Zeichenkette (const t Char * pc): Die Zeichenkette wird bis zu ihrem Nullzeichen
verarbeitet.

4. Zeichenkette mit Langenangabe (const t Char * pc, t Size o Tlen): Es werden die ersten o_len Zeichen
der Zeichenkette pc verarbeitet. Darin darf kein Nullzeichen vorkommen.

5. Stringobjekt (const gct String & co): Es wird die gesamte Zeichenkette des Stringobjekts co
verarbeitet. Die Ldnge wird vom Stringobjekt abgefragt und mufd nicht berechnet werden.

6. Formatierte Zeichenkette (const t Char * pc_format, ...): Die Parameterliste wird wie eine formatierte
Zeichenkette im printf-Format behandelt. Diese Parameterart kann nicht in Gberladenen Methoden
verwendet werden, da sie sich nicht eindeutig von 3. und 4. unterscheiden laf3t.

Selbstzuweisung

Nicht alle Methoden einer Stringklasse enthalten eine Sonderbehandlung flr Selbstzuweisung.

Eine Selbstzuweisung liegt vor, wenn als Parameter ein Zeiger auf die eigene Zeichenkette (GetStr ()
bzw. this) Gbergeben wird. Sie tritt in der Praxis selten auf, ihre Behandlung kostet jedoch Rechenzeit.
Eine Selbstzuweisung kann z. B. beim lterieren eines Containers auftreten, wenn allen Elementen der
Wert eines Elements desselben Containers zugewiesen wird. Wird die Selbstzuweisung innerhalb einer
Zuweisungsmethode nicht gesondert behandelt, kommt es zu unerwarteten und fehlerhaften Resultaten.

Spirick Tuning Referenzhandbuch Seite 124

Datentypen
typedef t block::t Size t Size;

Der geschachtelte GréRentyp einer Stringklasse bestimmt den Wertebereich der Gréf3en- und
Positionsangaben. Ist z. B. der GréRentyp auf t UInt8 definiert, kann die Zeichenkette maximal 255
Bytes umfassen (einschliellich des Nullzeichens). Der GroRentyp beeinfluRt auch die GroRRe des
Stringobjekts, denn die meisten Stringklassen enthalten ein Attribut des Typs t_Size.

Konstruktoren
gct String ();

Der normale Konstruktor initialisiert ein leeres Stringobjekt. Die Zeichenkette besteht nur aus dem
abschlieRenden Nullzeichen.

gct String (t_Char c_init);
Initialisiert ein Stringobjekt der Lédnge Eins. Das Zeichen c_init wird idbernommen und darf kein
Nullzeichen sein.

gct String (t Char c init, t Size o_len);

Initialisiert ein Stringobjekt der Lange o _len. Die Zeichenkette wird mit dem Zeichen c_init gefullt. Es
darf kein Nullzeichen sein.

gct String (const t Char * pc_init);
Initialisiert ein Stringobjekt durch Kopieren der nullterminierten Zeichenkette pc_init. Es wird eine echte
Kopie (deep copy) angefertigt. Der Inhalt von pc_init wird in einen eigenen Speicherbereich kopiert.

gct String (const t _Char * pc_init, t Size o len);

Initialisiert ein Stringobjekt durch Kopieren der ersten o _len Zeichen der Zeichenkette pc_init. Es wird
eine echte Kopie (deep copy) angefertigt. Der Inhalt von pc_init wird in einen eigenen Speicherbereich
kopiert.

gct String (const gct String & co_init);

Initialisiert ein Stringobjekt durch Kopieren des Inhalts von co_init. Es wird eine echte Kopie (deep copy)
angefertigt. Der Inhalt von co_init wird in einen eigenen Speicherbereich kopiert.

Zugriff auf Lange und Zeichenkette
t UInt GetHash () const;

Liefert einen Hashwert der Zeichenkette.

bool IsEmpty () const;

Liefert true, wenn die Zeichenkette leer ist.

t Size GetMaxLen () const;

Liefert die maximale Léange der Zeichenkette (ohne abschlieRendes Nullzeichen).

t Size GetLen () const;

Liefert die Lange der Zeichenkette (ohne abschlieBendes Nullzeichen).

const t_Char * GetStr () const;
const t _Char * operator () () const;

Liefert einen Zeiger auf das erste Zeichen. Bei einer leeren Zeichenkette zeigt er auf das abschlieRende
Nullzeichen.

Spirick Tuning Referenzhandbuch Seite 125

const t Char * GetStr (t _Size o _pos) const;
const t_Char * operator () (t_Size o_pos) const;

Liefert einen Zeiger auf das Zeichen an der Position o _pos. Bei o_pos == GetlLen () zeigt er auf das
abschlieRende Nullzeichen. Es muf3 o pos <= Getlen () gelten.

t Char & GetChar (t Size o pos) const;

t Char & operator [] (t_Size o_pos) const;
Liefert eine Referenz auf das Zeichen an der Position o_pos. Diesem Zeichen darf kein Nullzeichen
zugewiesen werden. Es muld o _pos < GetLen () gelten.

t Char & GetRevChar (t_Size o _pos) const;

Liefert eine Referenz auf das Zeichen an der Position Getlen () - 1 - 0 pos. Bei 0 _pos == 0 ist es das letzte
Zeichen, bei 0 pos == 1 das vorletzte usw. Diesem Zeichen darf kein Nullzeichen zugewiesen werden. Es
muf o _pos < Getlen () gelten.

gct_String SubStr (t_Size o_len) const:
Liefert ein String-Objekt, das die ersten o_len Zeichen der eigenen Zeichenkette enthalt. Es mufd o _len <=
GetlLen () gelten.

gct_String RevSubStr (t Size o len) const;
Liefert ein String-Objekt, das die letzten o_len Zeichen der eigenen Zeichenkette enthalt. Es mufld o len <=
GetlLen () gelten.

gct String SubStr (t_Size o pos, t Size o _len) const;

gct _String operator () (t _Size o pos, t Size o _len) const;

Liefert ein String-Objekt, das beginnend bei o _pos die nachsten o_len Zeichen der eigenen Zeichenkette
enthélt. Es mul3 o_pos + o_Ten <= GetlLen () gelten.

Suche nach Zeichen und Teilzeichenketten

t_Int First (t _Char c_search, t Size o _pos = 0) const;
Liefert die Position des ersten Auftretens des Zeichens c_search ab der Position o _pos oder einen
negativen Wert, wenn das Zeichen nicht gefunden wurde.

t Int First (const t Char * pc_search, t Size o _pos = 0) const;
Liefert die Position des ersten Auftretens der Zeichenkette pc_search ab der Position o _pos oder einen
negativen Wert, wenn die Zeichenkette nicht gefunden wurde.

t Int First (const gct String & co_search, t Size o pos = 0) const;
Liefert die Position des ersten Auftretens der Zeichenkette co_search ab der Position o _pos oder einen
negativen Wert, wenn die Zeichenkette nicht gefunden wurde.

t Int Last (t_Char c_search, t Size o_pos = 0) const;
Liefert die Position des letzten Auftretens des Zeichens c_search ab der Position o_pos oder einen
negativen Wert, wenn das Zeichen nicht gefunden wurde.

t Int Last (const t Char * pc_search, t Size o pos = 0) const;
Liefert die Position des letzten Auftretens der Zeichenkette pc_search ab der Position o_pos oder einen
negativen Wert, wenn die Zeichenkette nicht gefunden wurde.

t Int Last (const gct String & co_search, t Size o pos = 0) const;

Liefert die Position des letzten Auftretens der Zeichenkette co_search ab der Position o_pos oder einen
negativen Wert, wenn die Zeichenkette nicht gefunden wurde.

Spirick Tuning Referenzhandbuch Seite 126

Teilvergleich

int

int

int

int

Die folgenden Methoden liefern einen Wert kleiner Null, wenn die eigene Zeichenkette kleiner als der
Parameter ist, gleich Null bei Gleichheit mit dem Parameter und einen Wert gréRer Null, wenn die eigene
Zeichenkette groRer als der Parameter ist.

Es wird nur eine Teilzeichenkette verglichen. Der Vergleich beginnt an der Position o_pos. Im Gegensatz
zum vollstandigen (s. u.) endet der Teilvergleich spatestens am Ende des Parameters. Wurde bis dorthin
kein Unterschied festgestellt, gelten die Zeichenketten als gleich. Eventuell folgende Zeichen werden
nicht berutcksichtigt.

CompSubStr (t_Size o _pos, t Char c_comp) const;

Vergleicht die eigene Zeichenkette ab der Position 0 _pos mit dem Zeichen c_comp. Dieses gilt als
Zeichenkette der Lange Eins.

CompSubStr (t_Size o _pos, const t _Char * pc_comp) const;

Vergleicht die eigene Zeichenkette ab der Position o _pos mit der nullterminierten Zeichenkette pc_comp.

CompSubStr (t_Size o _pos, const t _Char * pc_comp, t Size o_len) const;

Vergleicht die eigene Zeichenkette ab der Position 0 _pos mit den ersten o_len Zeichen der Zeichenkette
pc_comp.

CompSubStr (t_Size o _pos, const gct String & co_comp) const;

Vergleicht die eigene Zeichenkette ab der Position o pos mit der Zeichenkette co_comp.

Vollstandiger Vergleich

int

int

int

int

Die folgenden Methoden liefern einen Wert kleiner Null, wenn die eigene Zeichenkette kleiner als der
Parameter ist, gleich Null bei Gleichheit mit dem Parameter und einen Wert groRer Null, wenn die eigene
Zeichenkette groRRer als der Parameter ist.

Die beiden Zeichenketten werden vollstandig miteinander verglichen. Wurde bis zum Ende einer der
beiden Zeichenketten kein Unterschied festgestellt, gilt die langere als groRer.

CompTo (t _Char c_comp) const;

Vergleicht die eigene Zeichenkette vollstdndig mit dem Zeichen c_comp. Dieses gilt als Zeichenkette der
Lange Eins.

CompTo (const t_Char * pc_comp) const;

Vergleicht die eigene Zeichenkette vollstdndig mit der nullterminierten Zeichenkette pc_comp.

CompTo (const t Char * pc_comp, t Size o_Ten) const;

Vergleicht die eigene Zeichenkette vollstdndig mit den ersten o_len Zeichen der Zeichenkette pc_comp.

CompTo (const gct String & co_comp) const;

Vergleicht die eigene Zeichenkette vollstandig mit der Zeichenkette co_comp.

Zuweisen

Die folgenden Methoden weisen der eigenen Zeichenkette einen neuen Wert zu. Eine Priifung auf
Selbstzuweisung (s. 0.) erfolgt nicht bei allen Methoden.

void Clear ();

Setzt die Lange auf Null.

void Assign (t_Char c_asgn);

Setzt die Lange auf Eins und Gbernimmt das Zeichen c_asgn. Es darf kein Nullzeichen sein.

Spirick Tuning Referenzhandbuch Seite 127

void Assign (t _Char c asgn, t Size o len);
Setzt die Lange auf o len und fillt die Zeichenkette mit dem Zeichen c_asgn. Es darf kein Nullzeichen
sein.

void Assign (const t Char * pc_asgn);

Ubernimmt die nullterminierte Zeichenkette pc_asgn vollstandig. Es wird eine echte Kopie (deep copy)
angefertigt. Der Inhalt von pc_asgn wird in den eigenen Speicherbereich kopiert (mit Prifung auf
Selbstzuweisung).

void Assign (const t Char * pc_asgn, t Size o_len);

Ubernimmt die ersten o_len Zeichen der Zeichenkette pc_asgn. Es wird eine echte Kopie (deep copy)
angefertigt. Der Inhalt von pc_asgn wird in den eigenen Speicherbereich kopiert (ohne Prifung auf
Selbstzuweisung).

void Assign (const gct String & co_asgn);

Ubernimmt die Zeichenkette co asgn vollstidndig. Es wird eine echte Kopie (deep copy) angefertigt. Der
Inhalt von co_asgn wird in den eigenen Speicherbereich kopiert (mit Prifung auf Selbstzuweisung).

Anfligen
Die folgenden Methoden fligen an das Ende der eigenen Zeichenkette einen neuen Wert an. Eine Priifung
auf Selbstzuweisung (s. o0.) erfolgt nicht bei allen Methoden.

void Append (t Char c_app);

Figt an das Ende das einzelne Zeichen c_app an. Es darf kein Nullzeichen sein.

void Append (t Char c app, t Size o len);

Figt an das Ende die o_len-fache Wiederholung des Zeichens c_app an. Es darf kein Nullzeichen sein.

void Append (const t Char * pc_app);

Flgt an das Ende die nullterminierte Zeichenkette pc_app an (mit Prifung auf Selbstzuweisung).

void Append (const t Char * pc_app, t Size o_len);
Flgt an das Ende die ersten o_len Zeichen der Zeichenkette pc_app an (ohne Priifung auf
Selbstzuweisung).

void Append (const gct String & co_app);

Figt an das Ende die Zeichenkette co_app an (mit Prifung auf Selbstzuweisung).

Einfiigen
Die folgenden Methoden fligen an der Position o0 pos eine Zeichenkette ein. Eine Prifung auf
Selbstzuweisung (s. o.) erfolgt nicht.

void Insert (t Size o pos, t Char c_ins);
Figt an der Position 0_pos das einzele Zeichen c_ins ein. Es darf kein Nullzeichen sein. Es mul3 o_pos <=
GetlLen () gelten.

void Insert (t Size o pos, t Char c_ ins, t Size o_len);

Figt an der Position o_pos die o_len-fache Wiederholung des Zeichens c_ins ein. Es darf kein Nullzeichen
sein. Es mul o_pos <= Getlen () gelten.

Spirick Tuning Referenzhandbuch Seite 128

void Insert (t Size o _pos, const t Char * pc_ins);

Figt an der Position o_pos die nullterminierte Zeichenkette pc_ins ein. Es mufR o pos <= GetlLen () gelten.

void Insert (t Size o pos, const t Char * pc_ins, t Size o_len);
Flagt an der Position o _pos die ersten o_len Zeichen der Zeichenkette pc_ins ein. Es mufd o_pos <= GetlLen ()
gelten.

void Insert (t Size o _pos, const gct String & co_ins);

Flgt an der Position o_pos die Zeichenkette co_ins ein. Es mulfd o_pos <= GetlLen () gelten.

Léschen
void Delete (t_Size o pos);

Léscht alle Zeichen ab der Position o _pos. Es mufd o pos <= GetLen () gelten.

void Delete (t Size o pos, t Size o len);

Léscht o_len Zeichen ab der Position 0 _pos. Es mufd o0 pos + o _len <= GetLen () gelten.

void DeleteRev (t Size o len);

Léscht die letzten o_len Zeichen. Es mul3 o_len <= GetlLen () gelten.

Ersetzen
Die folgenden Methoden ersetzen o _dellLen Zeichen an der Position o _pos durch eine andere Zeichenkette.
Eine Prifung auf Selbstzuweisung (s. o.) erfolgt nicht.

void Replace (t Size o pos, t Size o dellLen, t Char c_ins);
Ersetzt o dellen Zeichen an der Position o_pos durch das einzele Zeichen c_ins. Es darf kein Nullzeichen
sein. Es muf3 o _pos + o _dellen <= GetLen () gelten.

void Replace (t _Size o pos, t Size o dellen, t Char c_ins, t Size o_insLen);
Ersetzt o dellen Zeichen an der Position o _pos durch die o_insLen-fache Wiederholung des Zeichens c_ins.
Es darf kein Nullzeichen sein. Es mul3 o _pos + o_dellLen <= GetlLen () gelten.

void Replace (t _Size o pos, t Size o dellen, const t Char * pc_ins);
Ersetzt o_dellen Zeichen an der Position 0 _pos durch die nullterminierte Zeichenkette pc_ins. Es mul3 o_pos
+0_dellen <= Getlen () gelten.

void Replace (t _Size o pos, t _Size o dellen, const t Char * pc_ins, t _Size o_inslLen):
Ersetzt o_dellLen Zeichen an der Position 0 pos durch die ersten o_insLen Zeichen der Zeichenkette pc_ins.
Es mufd 0 pos + o _dellen <= GetLen () gelten.

void Replace (t Size o pos, t Size o dellen, const gct String & co_ins);

Ersetzt o dellen Zeichen an der Position 0 pos durch die Zeichenkette co_ins. Es mufd o pos + o _dellen <=
GetlLen () gelten.

Alles ersetzen
t Size ReplaceAll (const gct String & co_search, const gct String & co_replace):

Ersetzt alle Teilstrings, die gleich co_search sind, durch co_replace und liefert die Anzahl der Ersetzungen.
Es wird ein optimierter Algorithmus mit minimalen Reallokationen verwendet.

Spirick Tuning Referenzhandbuch Seite 129

Formatierte Zeichenketten

Die folgenden Methoden verhalten sich wie Assign, Append, Insert bzw. Replace. Sie behandeln jedoch ihre
Parameterliste als eine formatierte Zeichenkette im printf-Format und liefern deren Lange. Ein negativer
Rickgabewert deutet darauf hin, dal3 bei einem Parameter ein Formatierungsfehler auftrat (siehe
Abschnitt 'Zeichenketten formatieren').

int AssignF (const t Char * pc_format, ...);

Ubernimmt die formatierte Zeichenkette pc_format vollstandig.

int AppendF (const t Char * pc_format, ...);

Flagt an das Ende die formatierte Zeichenkette pc_format an.

int InsertF (t Size o pos. const t Char * pc_format, ...):

Flgt an der Position o _pos die formatierte Zeichenkette pc_format ein. Es muld o0 pos <= GetlLen () gelten.

int ReplaceF (t_Size o pos, t Size o _dellen, const t Char * pc_format, ...);

Ersetzt o dellen Zeichen an der Position o pos durch die formatierte Zeichenkette pc_format. Es mul3 o_pos
+ 0 _dellen <= GetlLen () gelten.

Klein-/GroRbuchstaben

Die folgenden Methoden nutzen globale Funktionen der Systemschnittstelle (siehe Abschnitt 'Zeichen
und Zeichenketten', Funktionen t1_ToUpper und t1_TolLower).

bool ToUpper ()
Wandelt die gesamte Zeichenkette in GroRbuchstaben um (Windows-1252).

bool ToLower ():

Wandelt die gesamte Zeichenkette in Kleinbuchstaben um (Windows-1252).

bool ToUpper2 ();
Wandelt die gesamte Zeichenkette in GroRBbuchstaben um (teilw. UTF-kompatibel).

bool ToLower2 ();

Wandelt die gesamte Zeichenkette in Kleinbuchstaben um (teilw. UTF-kompatibel).

Vergleichsoperatoren

Die folgenden Operatoren vergleichen die beiden Zeichenketten vollstdandig miteinander. Wurde bis zum
Ende einer der beiden Zeichenketten kein Unterschied festgestellt, gilt die langere als groRRer. Die
Operatoren verhalten sich semantisch wie CompTo, liefern jedoch als Riickgabewert true oder false.

bool operator == (const t Char * pc_comp) const;
bool operator == (const gct String & co_comp) const;
bool operator != (const t Char * pc_comp) const;
bool operator != (const gct String & co_comp) const;
bool operator < (const t Char * pc_comp) const;
bool operator < (const gct String & co_comp) const;
bool operator <= (const t_Char * pc_comp) const;
bool operator <= (const gct String & co_comp) const;
bool operator > (const t Char * pc_comp) const;
bool operator > (const gct String & co_comp) const;
bool operator >= (const t _Char * pc_comp) const;
bool operator >= (const gct String & co_comp) const;

Spirick Tuning Referenzhandbuch Seite 130

Zuweisungsoperatoren
Die folgenden Operatoren weisen der eigenen Zeichenkette einen neuen Wert zu. Es erfolgt eine Priifung
auf Selbstzuweisung (s. 0.).

gct_String & operator = (t _Char c_asgn);

Setzt die Lange auf Eins und Gbernimmt das Zeichen c_asgn. Es darf kein Nullzeichen sein.

gct _String & operator = (const t _Char * pc_asgn);

Ubernimmt die nullterminierte Zeichenkette pc_asgn vollstandig. Es wird eine echte Kopie (deep copy)
angefertigt. Der Inhalt von pc_asgn wird in den eigenen Speicherbereich kopiert.

gct String & operator = (const gct String & co_asgn);

Ubernimmt die Zeichenkette co asgn vollstidndig. Es wird eine echte Kopie (deep copy) angefertigt. Der
Inhalt von co_asgn wird in den eigenen Speicherbereich kopiert.

Anfiigeoperatoren

Die folgenden Operatoren fligen an das Ende der eigenen Zeichenkette einen neuen Wert an. Es erfolgt
eine Prifung auf Selbstzuweisung (s. 0.).

gct _String & operator += (t _Char c_app):

Figt an das Ende das einzelne Zeichen c_app an. Es darf kein Nullzeichen sein.
gct String & operator += (const t Char * pc_app);

Figt an das Ende die nullterminierte Zeichenkette pc_app an.

gct String & operator += (const gct String & co_app);

Flgt an das Ende die Zeichenkette co_app an.

Temporares Anfligen

Die folgenden Operatoren erzeugen ein temporéares String-Objekt, das eine Kopie der eigenen
Zeichenkette und den angefliigten Wert enthélt. Die eigene Zeichenkette bleibt unverandert.

gct_String operator + (t_Char c_app) const;

Liefert ein String-Objekt mit angefligtem einzelnen Zeichen c_app. Es darf kein Nullzeichen sein.

gct_String operator + (const t Char * pc_app) const;

Liefert ein String-Objekt mit angefligter nullterminierter Zeichenkette pc_app.

gct_String operator + (const gct String & co_app) const;

Liefert ein String-Objekt mit angefligter Zeichenkette co_app.

friend gct _String operator + (t_Char c_init, const gct String & co_app):
Liefert ein String-Objekt, das aus der Zusammensetzung von c_init und co_app besteht.

friend gct String operator + (const t Char * pc_init, const gct String & co_app):

Liefert ein String-Objekt, das aus der Zusammensetzung von pc_init und co_app besteht.

Konvertieren

Die folgenden Methoden dienen der Konvertierung zwischen char- und wchar_t-basierten Stringobjekten.
Es erfolgt keine Priifung auf Selbstzuweisung (s. 0.).

Spirick Tuning Referenzhandbuch Seite 131

template <class t_string> void Convert (const t string & co_asgn);

Ubernimmt die Zeichenkette co_asgn ohne Beriicksichtigung von Multibytecharacters.

template <class t_string> bool MbConvert (const t _string & co_asgn);
Ubernimmt die Zeichenkette co_asgn mit Beriicksichtigung von Multibytecharacters (sieche Abschnitt
'Zeichen und Zeichenketten').

template <class t_asgnChar> bool MbConvert (const t asgnChar * po_asgn);

Ubernimmt die nullterminierte Zeichenkette po_asgn mit Beriicksichtigung von Multibytecharacters (siehe
Abschnitt 'Zeichen und Zeichenketten').

3.2.2 String-Instanzen (tuning/xxx/[w]string.h)

Zur Erleichterung des Umgangs mit der Stringschnittstelle werden in der Bibliothek Spirick Tuning einige
Standardinstanzen des Klassentemplates gct String vordefiniert. Die Makros STRING DCL(t Block,
StoreSpec) und WSTRING DCL(t Block, StoreSpec) generieren fir eine Wrapperklasse eines globalen
Storeobjekts eine Stringklasse. Die Makroverwendung

STRING_DCL (gct_AnyBlock. ct_Any32)
expandiert zu folgendem Text (die Makroparameter sind fett hervorgehoben):

typedef gct String <gct _CharBlock <gct NullDataBlock
<gct_AnyBlock <ct Any32Store>, char>, char>, ct Any32Store> ct Any32String;

Die Makroverwendung
WSTRING DCL (gct_AnyBlock, ct Any32)
expandiert zu folgendem Text (die Makroparameter sind fett hervorgehoben):

typedef gct String <gct CharBlock <gct NullDataBlock
<gct _AnyBlock <ct Any32Store>, wchar_t>, wchar t>, ct Any32Store> ct Any32WString;

Stringklassen werden nicht wie Blockklassen oder Arraycontainer im 'Vierer-Block' generiert, sondern
einzeln. Eine Stringklasse enthalt vergleichsweise sehr viele Methoden. Das Erzeugen mehrerer Klassen
in einem einzigen Makro wirde die Ubersetzungsdauer unndtig erhdhen.

Jedes Verzeichnis eines dynamischen Stores enthalt die zwei Stringdateien 'string.h' und "wstring.h'. In
jeder Datei wird mit Hilfe des Makros STRING DCL bzw. WSTRING DCL je eine Stringklasse deklariert. Z. B.
enthalt die Datei "tuning/std/string.h' die Klasse ct Std String. Sie besitzt den GréRentyp t UInt und
fordert den Speicher fir den dynamischen Block vom globalen Standardstoreobjekt an.

In der Datei "tuning/std/[w]string.h’ wird deklariert:
typedef ... ct_Std [WIString;

In der Datei "tuning/rnd/[w]string.h’ wird deklariert:
typedef ... ct Rnd [W]String;

In der Datei "tuning/chn/[wlstring.h' wird deklariert:
typedef ... ct_Chn [W]String;

Spirick Tuning Referenzhandbuch Seite 132

3.2.3 Polymorphe Stringklassen (tuning/[w]string.hpp)

Neben den vordefinierten Instanzen des Templates gct_String enthalt die Bibliothek Spirick Tuning die
beiden Stringklassen ct _String und ct_WString, die von polymorphen Collections verwaltet werden
kénnen. Das Makro 0BJ STRING DCL(StoreSpec) generiert eine Stringklasse, die von einer vordefinierten
Templateinstanz erbt, die wiederum von ct _Object abgeleitet ist. Darin werden Konstruktoren,
Gleichoperatoren und ct_Object-spezifische Methoden definiert. Die Makroverwendung

0BJ_STRING DCL(ct_Chn 0Obj)
expandiert zu folgendem Text (die Makroparameter sind fett hervorgehoben):

class ct _Chn ObjectString: public ct Chn ObjString

{
public:
inline ct_Chn ObjectString ();
inTine ct_Chn_ObjectString (t_Char c_init);
inline ct Chn _ObjectString (t_Char c_init, t Size o len);
inTine ct_Chn_ObjectString (const t _Char * pc_init);
inTine ct _Chn ObjectString (const t Char * pc_init, t Size o_Tlen);
inline ct_Chn_ObjectString (const ct Chn ObjString & co init);
inline ct Chn ObjectString (const ct Chn ObjectString & co_init);
TL_CLASSID (ct_Chn_ObjectString)
virtual bool operator < (const ct Object & co_comp) const;
virtual t_UInt GetHash () const;
inline ct Chn ObjectString & operator = (t _Char c_asgn);
inline ct Chn ObjectString & operator = (const t Char * pc_asgn);
inTine ct_Chn_ObjectString & operator = (const ct_Chn ObjectString & co_asgn);

b

Zusatzliche Methoden

bool operator < (const ct_Object & co_comp) const;:

Dieser Vergleichsoperator wird aufgerufen, wenn ein Stringobjekt in eine sortierte Arraycollection
eingefligt wird. Er priift, ob das Gbergebene Objekt vom Typ ct String (oder abgeleitet) ist und fuhrt
dann einen Zeichenkettenvergleich aus. Andernfalls wird der Vergleichsoperator der Basisklasse
aufgerufen.

In der Datei 'tuning/string.hpp' wird deklariert:
0BJ_STRING DCL(ct_Chn_0bj)
typedef ct _Chn ObjectString ct String;

In der Datei 'tuning/wstring.hpp' wird deklariert:
0BJ_STRING DCL(ct_Chn_WObj)
typedef ct_Chn_WObjectString ct WString;

3.2.4 Dateiname (tuning/filename.hpp)

Die Klasse ct_FileName bietet zahlreiche Mdglichkeiten zur Bearbeitung von Dateinamen. Ein Dateiname
wird als zusammenhangende nullterminierte Zeichenkette gespeichert. Auf seine Komponenten kann mit
Hilfe ihrer Position (des Offsets) zugegriffen werden. Einzelne Komponenten kénnen zwar nicht als
nullterminierte Zeichenketten abgefragt, aber von einem anderen Dateinamenobjekt kopiert werden.

Ein Dateiname wird in vier Komponenten unterteilt: Laufwerk (Drive), Pfad (Path), Name (Name) und
Erweiterung (Ext). Laufwerk und Pfad werden zusammengenommen DrivePath genannt, Name und
Erweiterung NameExt. Die Pfadkomponente enthélt stets einen abschlieRenden [Backlslash. Der Pfad ohne
diesen [Back]slash wird PurePath genannt, Laufwerk und Pfad ohne [Back]slash PureDrivePath.

Spirick Tuning Referenzhandbuch Seite 133

Die Klasse ct FileName unterstlitzt auch die Universal Naming Convention (UNC). Anstatt einer
Laufwerksbezeichnung (z. B. A:) kann ein Netzwerkname (z. B. \\server\\share) stehen. In beiden Fallen
wird mit der Bezeichnung Drive auf die Komponente zugegriffen. Nur in den Methoden HasDriveOrUNC,
HasDrive und HasUNC wird zwischen Laufwerksbezeichnung und Netzwerkname unterschieden.

Bei der Zuweisung einer Pfadkomponente werden unter MS Windows automatisch Slash-Zeichen durch
einen Backslash ersetzt (unter Linux umgekehrt). Wird die Pfadkomponente einzeln zugewiesen, ist der
abschlieRende [Backlslash optional und wird ggf. ergdnzt. Der trennende Punkt wird weder dem Namen
noch der Erweiterung zugeordnet. Bei der Zuweisung einer einzelnen Erweiterung ist die Angabe des
Punktes optional.

Nach dem Zuweisen einer vollstandigen Zeichenkette werden die Positionen der einzelnen Komponenten
berechnet. Daflir existieren zwei Maoglichkeiten. Die 'Zuweisung als Name' versucht, am Ende der
Zeichenkette den Namen und die Erweiterung zu erkennen. Nur wenn die Zeichenkette mit einem
[Backlslash endet, sind Namens- und Erweiterungskomponente leer. Bei der 'Zuweisung als Pfad’
werden stets die letzten Zeichen der Pfadkomponente zugeordnet und ggf. ein [Backlslash angehangt.

Basisklassen

ct Object (siehe Abschnitt ‘Abstraktes Objekt’)
ct_String (siehe Abschnitt ‘Polymorphe Stringklasse’)

Klassendeklaration

class ct FileName: public ct String

{
ct_FileName ();
ct _FileName (const char * pc_init);
operator = (const char * pc_asgn);
operator = (const ct FileName & co_asgn);

ct_FileName &
ct FileName &

inline void AssignAsPath (const char * pc_path);

void AssignAsPath (const char * pc_path, t Size u Ten);
inTine void AssignAsPath (const ct String & co_path);
inTine void AssignAsName (const char * pc_name);

void AssignAsName (const char * pc_name, t _Size u_Tlen);
inline void AssignAsName (const ct_String & co_name);
bool HasDriveOrUNC () const;

bool HasDrive () const:

boo HasUNC () const;

bool HasPath () const;

boo1 HasName () const;

bool HasExt () const;

bool HasDot () const;:

bool HasWildCards () const;

inline t_Size GetDrivelen () const;

inline t Size GetPathLen () const:

inline t Size GetPurePathLen () const;

inTine t Size GetDrivePathLen () const:

inline t Size GetPureDrivePathLen () const;

inline t_Size GetNameLen () const:

inline t Size GetExtLen () const;

inTine t_Size GetNameExtLen () const;

inTine t Size GetDotLen () const:

inTine t_Size GetAllLen () const:

inTine t _Size GetDriveOffs () const;

inTine t _Size GetPathOffs () const;

inline t _Size GetNameOffs () const;:

inTine t Size GetExtOffs () const:

Spirick Tuning Referenzhandbuch

Seite 134

inline const char
inline const char
inline const char
inline const char
inline const char

inTine ct_String
inline ct_String
inTine ct_String
inTine ct_String
inline ct_String
inTine ct_String
inline ct_String
inTine ct_String

inline void
void
inline void
inline void
void
inline void
inline void
void
inline void
inline void
void
inline void
inline void
void
inline void
inline void
void
inline void

inline void
inline void
inline void
inline void
inline void
inline void

inline void
void
inline void
inline void
void
inline void
inline void
void
inline void
void
bool
bool
void
void

>

Methoden
ct FileName ();

X % 3k ok X

GetDriveStr () const;
GetPathStr () const;
GetNameStr () const;
GetExtStr () const;
GetA11Str () const;

GetDrive () const;

GetPath () const;
GetPurePath () const;
GetDrivePath () const;
GetPureDrivePath () const;
GetName () const;

GetExt () const;
GetNameExt () const;

SetDrive (const char * pc);

SetDrive (const char * pc, t Size u_len);
SetDrive (const ct_String & co);

SetPath (const char * pc);

SetPath (const char * pc, t Size u_len);
SetPath (const ct String & co);
SetDrivePath (const char * pc);
SetDrivePath (const char * pc, t Size u_len);
SetDrivePath (const ct _String & co);
SetName (const char * pc);

SetName (const char * pc, t Size u_len);
SetName (const ct String & co);

SetExt (const char * pc);

SetExt (const char * pc, t Size u_Ten);
SetExt (const ct String & co);

SetNameExt (const char * pc);

SetNameExt (const char * pc, t Size u_len);
SetNameExt (const ct String & co);

CopyDriveFrom (const ct _FileName * pco_copy);
CopyPathFrom (const ct FileName * pco _copy);
CopyDrivePathFrom (const ct_FileName * pco_copy);
CopyNameFrom (const ct_FileName * pco_copy);
CopyExtFrom (const ct _FileName * pco_copy);
CopyNameExtFrom (const ct_FileName * pco_copy);

InsertPath (const char * pc_path);

InsertPath (const char * pc_path, t Size u_len);
InsertPath (const ct_String & co_path);
InsertDrivePath (const char * pc_path);
InsertDrivePath (const char * pc_path, t Size u_len);
InsertDrivePath (const ct String & co_path);
AppendPath (const char * pc_path);

AppendPath (const char * pc_path, t Size u_len);
AppendPath (const ct String & co path);
CompressPath ();

IsAbs () const;

IsRel () const;

ToAbs (const char * pc_currDrivePath, bool b withDrive
ToRel (const char * pc_currDrivePath, bool b_withDrive

Initialisiert ein leeres Dateinamenobjekt.

ct FileName (const char * pc_init);

Initialisiert das Objekt mit der Methode AssignAsName.

true);
false);

Spirick Tuning Referenzhandbuch Seite 135

ct _FileName & operator = (const char * pc_asgn);

Ruft die Methode AssignAsName auf.

ct_FileName & operator = (const ct FileName & co_asgn);

Ubernimmt alle Angaben des Objektes cOo_asgn.

void AssignAsPath (const char * pc_path);
void AssignAsPath (const char * pc_path, t Size u_Ten);
void AssignAsPath (const ct_String & co_path);

Diese Methoden weisen dem Objekt eine neue Zeichenkette zu und berechnen die Positionen der
Komponenten. Die letzten Zeichen werden dem Pfad zugeordnet. Name und Erweiterung sind leer.

void AssignAsName (const char * pc_name);
void AssignAsName (const char * pc name, t Size u_len);
void AssignAsName (const ct_String & co_name):

Diese Methoden weisen dem Objekt eine neue Zeichenkette zu und berechnen die Positionen der
Komponenten. Es wird versucht, am Ende Name und Erweiterung zu erkennen. Nur wenn die
Zeichenkette mit einem Backslash endet, sind Name und Erweiterung leer.

booT HasDriveOrUNC () const;
bool HasDrive () const:

bool HasUNC () const;

bool HasPath () const;

bool HasName () const;

bool HaskExt () const:

Diese Methoden liefern bei Vorhandensein einzelner Komponenten den Wert true.

bool HasDot () const;

Liefert true, wenn zwischen Name und Erweiterung ein Punkt vorhanden ist.

bool HasWildCards () const;

Liefert true, wenn in Name oder Erweiterung Wildcards ('*' und '?') vorkommen.

t Size GetDriveLen () const;

t Size GetPathLen () const;

t Size GetPurePathLen () const;

t Size GetDrivePathLen () const;

t Size GetPureDrivePathLen () const;
t Size GetNamelen () const;

t Size GetExtLen () const;

t Size GetNameExtLen () const;

Diese Methoden liefern die Ladngen einzelner Komponenten.

t Size GetDotLen () const;

Liefert den Wert Eins, wenn zwischen Name und Erweiterung ein Punkt vorhanden ist, sonst Null.

t Size GetAllLen () const;

Liefert die Ladnge des gesamten Dateinamens.
t Size GetDriveOffs () const;
t Size GetPathOffs () const;

t Size GetNameOffs () const:
t Size GetExtOffs () const;

Diese Methoden liefern die Positionen einzelner Komponenten.

Spirick Tuning Referenzhandbuch Seite 136

const char * GetDriveStr () const;

*
const char * GetPathStr () const;
const char * GetNameStr () const;
const char * GetExtStr () const;
const char * GetA11Str () const;

Diese Methoden liefern Zeiger auf den Anfang einzelner Komponenten.

ct_String GetDrive () const;
ct_String GetPath () const;

ct _String GetPurePath () const;

ct _String GetDrivePath () const;
ct_String GetPureDrivePath () const;
ct_String GetName () const;

ct String GetExt () const;

ct_String GetNameExt () const;

Diese Methoden liefern einzelne Komponenten als temporéare Stringobjekte.

void SetDrive (const char * pc):

void SetDrive (const char * pc, t Size u_len);
void SetDrive (const ct String & co);

void SetPath (const char * pc);

void SetPath (const char * pc, t Size u_len);
void SetPath (const ct String & co);

void SetDrivePath (const char * pc);

void SetDrivePath (const char * pc, t Size u_len);
void SetDrivePath (const ct String & co);

void SetName (const char * pc);

void SetName (const char * pc, t Size u_len);
void SetName (const ct String & co);

void SetExt (const char * pc);

void SetExt (const char * pc, t Size u len);
void SetExt (const ct String & co);

void SetNameExt (const char * pc);

void SetNameExt (const char * pc, t Size u_len);
void SetNameExt (const ct_String & co);

Mit diesen Methoden kénnen einzelne Komponenten geadndert werden.

void CopyDriveFrom (const ct _FileName * pco_copy);
void CopyPathFrom (const ct_FileName * pco_copy);

void CopyDrivePathFrom (const ct FileName * pco_copy):
void CopyNameFrom (const ct FileName * pco_copy);

void CopyExtFrom (const ct_FileName * pco_copy);

void CopyNameExtFrom (const ct FileName * pco_copy);

Diese Methoden kopieren einzelne Komponenten von einem anderen Objekt.
void InsertPath (const char * pc_path);

void InsertPath (const char * pc path, t Size u_len);
void InsertPath (const ct String & co _path);

Diese Methoden fligen am Anfang der Pfadkomponente einen Teilpfad ein.
void InsertDrivePath (const char * pc_path);

void InsertDrivePath (const char * pc path, t Size u_len);
void InsertDrivePath (const ct String & co path);

Diese Methoden fligen am Anfang der Pfadkomponente einen Teilpfad ein und ersetzen die
Laufwerkskomponente.

void AppendPath (const char * pc_path);
void AppendPath (const char * pc_path, t Size u_len);
void AppendPath (const ct_String & co_path);

Diese Methoden fligen am Ende der Pfadkomponente einen Teilpfad an.

Spirick Tuning Referenzhandbuch Seite 137

void CompressPath ();

Diese Methode entfernt sich aufhebende Teilpfade (.\ und path\..\) aus der Pfadkomponente. Z. B. wird
A:\SRC\ . ASPIRICK.TXT zu A:\SRC\SPIRICK.TXT und A:\SRC\. \SPIRICK.TXT zu A:\SPIRICK.TXT komprimiert.

bool IsAbs () const;

Liefert true, wenn der Pfad absolut ist, also mit einem Backslash beginnt.

bool IsRel () const;

Liefert true, wenn der Pfad relativ ist.

void ToAbs (const char * pc_currDrivePath, bool b withDrive = true);

Wandelt den vorhandenen relativen Pfad in einen absoluten bzgl. des Verzeichnisses pc_currDrivePath
um. Ist b withDrive gleich true, wird das Laufwerk von pc_currDrivePath Gbernommen, andernfalls wird die
Laufwerkskomponente geldscht.

void ToRel (const char * pc_currDrivePath, bool b withDrive = false);

Wandelt den vorhandenen absoluten Pfad in einen relativen bzgl. des Verzeichnisses pc_currDrivePath
um. Ist b withDrive gleich true, wird das Laufwerk von pc_currDrivePath Gbernommen, andernfalls wird die
Laufwerkskomponente geldscht.

3.2.5 Zeichenketten formatieren (tuning/printf.hpp)

In dieser Schnittstelle befindet sich die fir char und wchar_t tGberladene Funktionen t1 VSprintf. Sie
ermdglicht das Formatieren von Zeichenketten mit variabler Lange und variabler Anzahl von Parametern.
Es wird empfohlen, diese Funktionen nicht direkt zu verwenden, sondern Uber die Stringmethoden
AssignF, AppendF, InsertF und Replacef. Im Beispielprogramm TString befinden sich auch
Demonstrationsbeispiele fir t1_VSprintf.

Funktionen

int t1 _VSprintf (char * * ppc_buffer, const char * pc_format, va_list o_arglList);
int t1 _VSprintf (wchar t * * ppc_buffer, const wchar_t * pc format, va list o_arglList);

Formatiert die Zeichenkette pc_format mit den Parametern o_arglList und schreibt das Ergebnis in einen
Puffer, der mit malloc allokiert wurde. Bei Erfolg wird die Anzahl der Zeichen (ohne das abschlieRende
Nullzeichen) zurtiickgegeben, und * ppc_buffer enthalt einen Zeiger auf den Puffer, der mit free
freigegeben werden mul3. Andernfalls wird eine Zahl kleiner als Null zurickgegeben, und der Puffer muf3
nicht freigegeben werden.

3.2.6 Zeichenketten sortieren (tuning/stringsort.hpp)

Die Bibliothek Spirick Tuning enthalt einen optimierten Sortieralgorithmus. Er ist auf Zeichenketten
spezialisiert. Diese besitzen die Eigenschaft, aus einzelnen Zeichen zu bestehen. Ein Zeichen wiederum
besitzt einen Wertebereich von O bis 255. Um Werte in diesem Bereich zu sortieren, missen sie nicht
miteinander verglichen werden, sondern ihr Wert kann als Index zum Eintrag in eine Tabelle genutzt
werden. AnschlieRend wird die Tabelle von O bis 255 durchlaufen. Dabei erscheinen die Werte in
sortierter Reihenfolge.

Wourde dieser Schritt flir das erste Zeichen durchgefiihrt, kdnnen jeder Stelle in der Tabelle mehrere
Zeichenketten zugeordnet worden sein. Deshalb legt der Algorithmus eine Kette an. Diese wird
anschlieBend mit demselben Verfahren, aber dem nachsten Zeichen (dem zweiten, dritten usw.) sortiert.

Der Eintrag in die Tabelle erfolgt indirekt tber eine SortPage. Damit kann die natlrliche Sortierreihenfolge
geandert werden. Sollen z. B. Klein- und GroBbuchstaben gleichberechtigt behandelt werden, enthélt die

Spirick Tuning Referenzhandbuch Seite 138

SortPage an der Stelle mit dem Index 'a' den Wert 'A'. Soll zusatzlich das 'A' unter 'A' einsortiert
werden, muR auch an der Stelle mit dem Index 'A' ein 'A' eingetragen werden.

Die private Methode GetDefaultSortPage liefert als Voreinstellung eine SortPage mit nattrlicher
Sortierreihenfolge. Damit werden die Strings nach aufsteigender Wertigkeit ihrer Zeichen sortiert. Soll in
umgekehrter Reihenfolge sortiert werden, ist beim Index i der Wert 256 - i einzutragen. Das erste
Zeichen (Index Null) einer SortPage mul} stets den Wert Null besitzen.

Der Algorithmus erwartet als Parameter ein C++-Array von Zeigern (const char * * ppc_strings) und
schreibt seine Resultate in ein C++-Array von t_Int-Werten (t_Int * pi_sortedIndex). Der Speicher fir
beide Arrays mul3 vom Anwender verwaltet werden. Das t_Int-Array enthalt am Ende in aufsteigender
Reihenfolge die Indizes der sortierten Strings. Das Stringarray selbst wird nicht geadndert.

Das Sortierverfahren bendétigt folgenden Speicher:

1. Den Parameter char * apc [n] und das Resultat t Int ai [n], wobei n die Anzahl der zu sortierenden
Strings ist.

2. Das Array t_Int ai_temp [n], in dem die Ketten gespeichert werden.

3. x* 256 * sizeof (t_Int) fur die Reihenfolgetabellen, wobei x die maximale Anzahl der Zeichen ist, in
denen zwei Zeichenketten am Anfang Ubereinstimmen.

Die Rechenzeit ist nicht von der Lange der Zeichenketten abhéangig, sondern von der Ldénge, mit der zwei
Strings am Anfang Ubereinstimmen. Diese Abhéngigkeit besteht bei gsort () in Verbindung mit strcmp ()
auch, denn strcmp () bricht an der Stelle der ersten Nichtlbereinstimmung ab. Im Gegensatz zu qgsort ()
ist der neue Sortieralgorithmus jedoch nicht von einer eventuellen Vorsortierung abhangig. Er bendtigt
fur ein vollkommen unsortiertes Array genauso lange wie fir ein vollstdndig sortiertes und ist im
Durchschnitt doppelt so schnell wie gsort () in Verbindung mit strcmp ().

Klassendeklaration

class ct_StringSort

{

public:
bool Sort (const char * * ppc_strings, t_Int * pi_sortedIndex, t_Int i numOfStrings,
const char * pc_sortPage = GetDefaultSortPage ());
b
Methoden

bool Sort (const char * * ppc_strings, t Int * pi_sortedIndex, t Int i _numOfStrings, const char * pc_sortPage =
GetDefaultSortPage ());

Speichert die sortierten Indizes des Zeichenketten-Arrays ppc_strings in pi_sortedIndex. Die Arrays
ppc_strings und pi_sortedIndex miissen vom Anwender bereitgestellt und freigegeben werden. Temporéare
Zwischenspeicher werden automatisch angefordert und freigegeben. Der Rickgabewert false deutet auf
Speichermangel oder einen Fehler in der SortPage (erstes Zeichen ungleich Null) hin.

3.2.7 Zahlen sortieren (tuning/stringsort.hpp)

Der Algorithmus zum Sortieren von Zeichenketten (siehe voriger Abschnitt) kann auch auf Zahlen
angewendet werden, indem z. B. eine t _UInt32 Zahl als Folge von vier Zeichen betrachtet wird. Diese
Idee wurde in der Klasse ct_UInt32Sort umgesetzt. Der Algorithmus wurde fir little-endian Hardware
implementiert.

Klassendeklaration

class ct UInt32Sort
{

Spirick Tuning Referenzhandbuch Seite 139

public:
bool Sort (const t UInt32 * pu_ints, t Int * pi_sortedIndex,
t Int i _numOfInts);

Methoden
bool Sort (const t UInt32 * pu_ints, t Int * pi_sortedIndex, t Int i _numOfInts);

Speichert die sortierten Indizes des t UInt32-Arrays pu_ints in pi_sortedIndex. Die Arrays pu_ints und
pi_sortedIndex missen vom Anwender bereitgestellt und freigegeben werden. Temporére
Zwischenspeicher werden automatisch angefordert und freigegeben. Der Riickgabewert false deutet auf
Speichermangel hin.

3.3 Dateien und Verzeichnisse

3.3.1 Datei (tuning/file.hpp)

Innerhalb der Bibliothek Spirick Tuning werden Pfad- und Dateinamen als UTF-8-Strings interpretiert.
Unter Linux werden die Strings unverandert an die Systemfunktionen tbergeben. Unter MS Windows
werden Pfad- und Dateinamen intern in UTF-16 umgewandelt.

Die Klasse ct_File hillt die globalen Funktionen der Systemschnittstelle in ein objektorientiertes Gewand
und enthélt einige Zusatzfunktionen, z. B. das SchlieRen der Datei im Destruktor. ct_File erbt von
ct_FileName. Damit stehen zahlreiche Methoden zum Bearbeiten des Namens der Datei zur Verfigung. Die
Methoden TryOpen, Open, Create, Load, Save, Exists, Move, Copy und Delete dlrfen nur auf eine nicht
gedffnete Datei angewendet werden.

Basisklassen
ct Object (siehe Abschnitt ‘Abstraktes Objekt’)
ct_String (siehe Abschnitt ‘Polymorphe Stringklasse’)

ct FileName (siehe Abschnitt ‘Dateiname’)

Klassendeklaration
class ct File: public ct FileName
{
public:
ct File ();
ct File (const char * pc_init);
ct File (const ct FileName & co_init):
~ct File O);
ct File & operator = (const char * pc_asgn);
ct File & operator = (const ct _FileName & co_asgn);
bool TryOpen (bool b_readOnly = true, bool b_sequential = true,
t UInt32 u milliSec = 0);
bool Open (bool b_readOnly = true, bool b_sequential = true):
bool Create (bool b _createNew = false);
boo Close ():
bool Load (ct _String * pco_str);
bool Save (const ct _String * pco_str);
bool Exists ();
bool Move (const char * pc new);
bool Copy (const char * pc_new, bool b_overwrite = true);

Spirick Tuning Referenzhandbuch Seite 140

bool Delete ();

bool QuerySize (t_FileSize & o _size) const;
bool QueryPos (t _FileSize & o pos) const;
bool EndOfFile (bool & b _eof) const;
bool SeekAbs (t_FileSize o _pos) const;
bool SeekRel (t_FileSize o _pos) const;
bool Truncate (t_FileSize o size) const;
bool Read (void * pv_dst, t FileSize o _len) const;
bool Write (const void * pv_src, t FileSize o_Tlen) const;
b
Methoden
ct File ();

Initialisiert das Dateiobjekt.

ct_File (const char * pc_init):

Initialisiert das Dateiobjekt und ruft ct_FileName: :AssignAsName (pc_init) auf.

ct_File (const ct_FileName & co_init);

Initialisiert das Dateiobjekt mit dem Dateinamen co_init.

~ct File ();

Schliel3t die Datei, wenn sie noch gedffnet ist.

ct_File & operator = (const char * pc_asgn):

Ruft ct_FileName::AssignAsName (pc_asgn) auf.

ct_File & operator = (const ct_FileName & co_asgn);:

Weist dem Dateiobjekt den neuen Dateinamen co_asgn zu.

bool TryOpen (bool b readOnly = true, bool b _sequential = true, t UInt32 u milliSec = 0);

Versucht, eine bestehende Datei abhangig vom Parameter b_readOnly zum Lesen oder Schreiben zu
o6ffnen. Der optionale Parameter b_sequential beeinfluRt die Arbeitsweise des Cachemanagers. Wird die
Datei sequentiell bearbeitet, sollte er auf true gesetzt werden. Liefert false, wenn das Offnen innerhalb
von u_milliSec Millisekunden nicht gelingt.

bool Open (bool b _readOnly = true, bool b _sequential = true);

Offnet eine bestehende Datei abhidngig vom Parameter b readOnly zum Lesen oder Schreiben. Der
optionale Parameter b_sequential beeinfluRt die Arbeitsweise des Cachemanagers. Wird die Datei
sequentiell bearbeitet, sollte er auf true gesetzt werden.

bool Create (bool b createNew = false);

Erzeugt eine neue Datei und 6ffnet sie zum Schreiben. Eine eventuell vorhandene Datei gleichen Namens
wird Uberschrieben. Liefert false, wenn b_createNew gleich true ist und eine Datei mit demselben Namen
bereits existiert.

bool Close ();

Schlie3t die gedffnete Datei.

bool Load (ct _String * pco_str);

Lad den gesamten Inhalt der Datei (6ffnen, lesen, schlieRen) in das Stringobjekt pco_str. Die Datei darf
keine Nullzeichen enthalten.

Spirick Tuning Referenzhandbuch Seite 141

bool Save (const ct String * pco_str);

Sichert den gesamten Inhalt des Stringobjekts pco_str in die Datei (6ffnen, schreiben, schlieRen).

bool Exists ();:

Liefert true, wenn die Datei existiert.

bool Move (const char * pc_new);
Verschiebt die Datei nach pc_new. Befinden sich alter und neuer Name innerhalb desselben
Verzeichnisses, wird nur der Name des Eintrags geandert. Bei Erfolg wird auch der interne Name
(Basisklasse ct _FileName) aktualisiert.

bool Copy (const char * pc_new, bool b _overwrite = true);
Kopiert die Datei nach pc_new. Ist der optionale Parameter b overwrite gleich true, wird eine eventuell
vorhandene Datei gleichen Namens Uberschrieben.

bool Delete ();
Léscht die Datei.

bool QuerySize (t FileSize & o_size) const;

Ermittelt die aktuelle GréRRe der gedffneten Datei.

bool QueryPos (t FileSize & o_pos) const;

Ermittelt die aktuelle Position des Zugriffszeigers der ge6ffneten Datei.

bool EndOfFile (bool & b eof) const;

Setzt b_eof auf true, wenn sich der Zugriffszeiger am Ende der Datei befindet.

bool SeekAbs (t FileSize o _pos) const;

Positioniert den Zugriffszeiger der gedffneten Datei absolut auf die Position o _pos.

bool SeekRel (t FileSize o pos) const;

Positioniert den Zugriffszeiger der gedffneten Datei relativ auf die Position o _pos.

bool Truncate (t FileSize o size);

Verandert die GroRRe der gedffneten Datei auf o_size Bytes.

bool Read (void * pv_dst, t FileSize o_len) const;

Liest o_len Bytes aus der ge6ffneten Datei nach pv_dst und verschiebt den Zugriffszeiger.

bool Write (const void * pv_src, t FileSize o_len) const;

Schreibt o _Ten Bytes von pv_src in die ge6ffnete Datei und verschiebt den Zugriffszeiger.

3.3.2 Verzeichnis (tuning/dir.hpp)

Innerhalb der Bibliothek Spirick Tuning werden Pfad- und Dateinamen als UTF-8-Strings interpretiert.
Unter Linux werden die Strings unverandert an die Systemfunktionen tbergeben. Unter MS Windows
werden Pfad- und Dateinamen intern in UTF-16 umgewandelt.

Die Klasse ct Directory hullt die globalen Funktionen der Systemschnittstelle in ein objektorientiertes
Gewand und enthaélt einige Zusatzfunktionen, z. B. das Zerlegen des aktuellen Verzeichnisses in seine
Komponenten. ct_Directory erbt von ct_FileName. Damit stehen zahlreiche Methoden zum Bearbeiten des
Namens des Verzeichnisses zur Verfligung. Es werden jedoch nur die Laufwerks- und Pfadkomponente
verarbeitet (PureDrivePath). Name und Erweiterung werden nicht berlicksichtigt.

Spirick Tuning Referenzhandbuch Seite 142

Basisklassen

ct Object (siehe Abschnitt ‘Abstraktes Objekt’)
ct_String (siehe Abschnitt ‘Polymorphe Stringklasse’)
ct FileName (siehe Abschnitt ‘Dateiname’)

Klassendeklaration
class ct Directory: public ct_FileName
{
public:
ct _Directory ();
ct_Directory (const char * pc_init);
ct Directory (const ct _FileName & co_init);
ct Directory & operator = (const char * pc_asgn);
ct Directory & operator = (const ct FileName & co_asgn);
bool QueryCurrentDrive ();
bool QueryCurrentDirectory ():
bool QueryCurrentDriveDirectory ():
bool Create ();
bool Exists ();
bool Move (const char * pc new);
bool Delete ();
b
Methoden

ct Directory ();

Initialisiert das Verzeichnisobjekt.

ct Directory (const char * pc_init);

Initialisiert das Verzeichnisobjekt und ruft ct_FileName::AssignAsPath (pc_init) auf.

ct Directory (const ct FileName & co_init);

Initialisiert das Verzeichnisobjekt mit dem Dateinamen co_init.

ct_Directory & operator = (const char * pc_asgn);

Ruft ct_FileName::AssignAsPath (pc_asgn) auf.

ct_Directory & operator = (const ct FileName & co_asgn):

Weist dem Verzeichnisobjekt den neuen Dateinamen co_asgn zu.

bool QueryCurrentDrive ():

Setzt die Laufwerkskomponente auf das aktuelle Laufwerk.

bool QueryCurrentDirectory ();
Setzt die Pfadkomponente auf das aktuelle Verzeichnis der Laufwerkskomponente, verandert die
Laufwerkskomponente nicht.

bool QueryCurrentDriveDirectory ();

Setzt die Laufwerkskomponente, wenn sie noch leer ist, und setzt die Pfadkomponente auf das aktuelle
Verzeichnis.

Spirick Tuning Referenzhandbuch Seite 143

bool Create ();

Erzeugt ein Verzeichnis.

bool Exists ();:

Liefert true, wenn das Verzeichnis existiert.

bool Move (const char * pc_new);

Verschiebt das Verzeichnis nach pc_new. Befinden sich alter und neuer Name innerhalb desselben
Ubergeordneten Verzeichnisses, wird nur der Name des Eintrags geandert. Bei Erfolg wird auch der
interne Name (Basisklasse ct_FileName) aktualisiert.

bool Delete ();

Loscht das leere Verzeichnis.

3.3.3 Verzeichnis durchlaufen (tuning/dirscan.hpp)

Innerhalb der Bibliothek Spirick Tuning werden Pfad- und Dateinamen als UTF-8-Strings interpretiert.
Unter Linux werden die Strings unverandert an die Systemfunktionen tbergeben. Unter MS Windows
werden Pfad- und Dateinamen intern in UTF-16 umgewandelt.

Die Klasse ct _DirScan erbt von ct Directory und indirekt von ct_FileName. Die Laufwerks- und
Pfadkomponente des Dateinamens bestimmen das zu durchlaufende Verzeichnis. Die Namens- und
Erweiterungskomponente dienen als Parameter (siehe unten) und als Resultat. Wahrend des
Durchlaufens des Verzeichnisses enthalten sie den Namen des aktuellen Eintrags.

Die Funktionen zum Durchlaufen von Verzeichnissen kdnnen auch zum Ermitteln der Eigenschaften einer
einzelnen Datei verwendet werden. In diesem Fall wird in der Methode FindFirst der Dateiname ohne
Jokerzeichen verwendet. Liefert die Funktion true, wurden mit einem einzigen Systemruf sdmtliche
Attribute und Zeitangaben ermittelt. Das abschlieBende FindNext oder AbortFind darf nicht vergessen
werden.

Die FindOnce-Methoden fassen drei Arbeitsschritte in einem Aufruf zusammen: Zuerst wird ein evtl.
aktiver Suchvorgang beendet, danach wird ein neuer Name zugewiesen, und mit FindFirst wird ein neuer
Suchvorgang gestartet.

Basisklassen
ct Object (siehe Abschnitt ‘Abstraktes Objekt’)
ct_String (siehe Abschnitt ‘Polymorphe Stringklasse’)

ct_FileName (siehe Abschnitt ‘Dateiname’)
ct Directory (siehe Abschnitt ‘Verzeichnis’)

Datentypen, Konstanten
typedef unsigned t FileAttributes;

const t_FileAttributes co AttrArchive = 0x01;

const t _FileAttributes co AttrDirectory = 0x02;
const t_FileAttributes co AttrHidden = 0x04;
const t _FileAttributes co AttrReadOnly = 0x08;
const t _FileAttributes co AttrSystem = 0x10;

Mit dem Datentyp t_FileAttributes und den zugehdrigen Konstanten kdnnen mehrere Dateiattribute in
einen einzigen Wert durch Oder-Verknipfung zusammengefal3t werden.

Spirick Tuning Referenzhandbuch Seite 144

Klassendeklaration

class ct DirScan: public ct Directory

{
public:
ct_DirScan ();
ct _DirScan (const char * pc_init);
ct _DirScan (const ct FileName & co_init);
~ct_DirScan ():
ct _DirScan & operator = (const char * pc_asgn);
ct _DirScan & operator = (const ct _FileName & co_asgn);
bool FindOnce ();
bool FindOnce (const char * pc_find):
bool FindOnce (const ct _FileName & co find);
bool FindOncePath ();
bool FindOncePath (const ct FileName & co_find);
bool FindFirst O);
bool FindFirstFile ();
bool FindFirstDirectory ();:
bool FindNext ();
bool FindNextFile ();
bool FindNextDirectory ();
void AbortFind ();
bool Found ()
t MicroTime GetCreationTime () const:
t MicroTime GetLastAccessTime () const;
t MicroTime GetLastWriteTime () const;
t FileSize GetSize () const;
t FileAttributes GetAttributes () const;
bool IsArchive () const;:
bool IsDirectory () const;
bool IsHidden () const;
bool IsReadOnly () const;
bool [sSystem () const;
b
Methoden

ct DirScan ();

Initialisiert ein leeres Objekt.

ct_DirScan (const char * pc_init);

Initialisiert das Objekt und ruft ct_FileName: :AssignAsName (pc_init) auf.

ct_DirScan (const ct_FileName & co_init):

Initialisiert das Objekt mit dem Dateinamen co_init.

~ct DirScan ();

Gibt die evtl. vorhandene Betriebssystem-Ressource frei.

ct DirScan & operator = (const char * pc_asgn);

Ruft ct_FileName::AssignAsName (pc_asgn) auf.

ct_DirScan & operator = (const ct FileName & co_asgn);

Weist dem Objekt den neuen Dateinamen co_asgn zu.

Spirick Tuning Referenzhandbuch Seite 145

bool FindOnce ();

Beginnt mit dem aktuellen Dateinamen einen neuen Suchvorgang.

pbool FindOnce (const char * pc_find);

Ruft ct_FileName::AssignAsName (pc_find) auf und beginnt einen neuen Suchvorgang.

bool FindOnce (const ct FileName & co find);

Ruft ct_FileName::AssignAsName (co_find) auf und beginnt einen neuen Suchvorgang.

bool FindOncePath ();
Ruft ct_FileName::AssignAsName (GetPureDrivePath ()) auf und beginnt einen neuen Suchvorgang, d. h. es
wird nicht im aktuellen Verzeichnis gesucht, sondern das Verzeichnis selbst wird gesucht.
bool FindOncePath (const ct FileName & co_find);
Ruft ct_FileName::AssignAsName (co_find. GetPureDrivePath ()) auf und beginnt einen neuen Suchvorgang,
d. h. es wird nicht im Verzeichnis von co_find gesucht, sondern das Verzeichnis selbst wird gesucht.
bool FindFirst ();
Sucht den ersten Verzeichniseintrag und liefert bei Erfolg true. AnschlieRend kénnen Eigenschaften des
Verzeichniseintrages abgefragt und mit FindNext der ndchste gesucht werden.
bool FindFirstFile ();

Sucht den ersten Verzeichniseintrag, der kein Unterverzeichnis ist, und liefert bei Erfolg true.
AnschlieRend kénnen Eigenschaften der Datei abgefragt und mit FindNextFile die ndchste gesucht
werden.

bool FindFirstDirectory ();

Sucht den ersten Verzeichniseintrag, der ein Unterverzeichnis ist, und liefert bei Erfolg true.
AnschlieBend kénnen Eigenschaften des Unterverzeichnisses abgefragt und mit FindNextDirectory das
nachste gesucht werden.

bool FindNext ();

Sucht den nachsten Verzeichniseintrag und liefert bei Erfolg true. Anschlieend kénnen Eigenschaften
des Verzeichniseintrages abgefragt und weitere gesucht werden. Beim Riickgabewert false ist die Suche
beendet, und die Betriebssystem-Ressource wurde automatisch freigegeben.

bool FindNextFile ():

Sucht den nachsten Verzeichniseintrag, der kein Unterverzeichnis ist, und liefert bei Erfolg true.
AnschlieBend kénnen Eigenschaften der Datei abgefragt und weitere gesucht werden. Beim
Rickgabewert false ist die Suche beendet, und die Betriebssystem-Ressource wurde automatisch
freigegeben.

bool FindNextDirectory ():
Sucht den nachsten Verzeichniseintrag, der ein Unterverzeichnis ist, und liefert bei Erfolg true.
AnschlieRend kénnen Eigenschaften des Unterverzeichnisses abgefragt und weitere gesucht werden.
Beim Rickgabewert false ist die Suche beendet, und die Betriebssystem-Ressource wurde automatisch
freigegeben.

void AbortFind ();
Beendet die Suche vorzeitig und gibt die Betriebssystem-Ressource frei. Vor dem Aufruf der Methode
mul mindestens ein Verzeichniseintrag gefunden worden sein.

bool Found ():

Liefert true, wenn der vorhergehende Aufruf von FindFirst oder FindNext den Wert true geliefert hat.

Spirick Tuning Referenzhandbuch Seite 146

t MicroTime GetCreationTime () const;

Liefert die Zeit, an der der Verzeichniseintrag erzeugt wurde, als UTC Mikrosekunden.

t MicroTime GetLastAccessTime () const;

Liefert die Zeit, an der zuletzt auf den Verzeichniseintrag lesend oder schreibend zugegriffen wurde, als
UTC Mikrosekunden.

t MicroTime GetLastWriteTime () const;

Liefert die Zeit, an der zuletzt auf den Verzeichniseintrag schreibend zugegriffen wurde, als UTC
Mikrosekunden.

t FileSize GetSize () const;

Liefert die GrofRe des Verzeichniseintrages.

t FileAttributes GetAttributes () const;

bool
booT
bool
bool
booT

Liefert alle Attribute des Verzeichniseintrags in einen einzigen Wert.

IsArchive () const;
IsDirectory () const:
IsHidden () const;
IsReadOnly () const;
IsSystem () const;

Diese Methoden ermitteln einzelne Attribute des Verzeichniseintrages.

Parameterarten fiir Verzeichnisse

Die Klasse ct _DirScan erbt von ct Directory und indirekt von ct_FileName. Die Laufwerks- und
Pfadkomponente des Dateinamens bestimmen das zu durchlaufende Verzeichnis. Mit Hilfe der Methode
ct_Directory::Exists kann geprift werden, ob das Verzeichis existiert.

ct _DirScan co_dirScan;
co_dirScan. SetDrivePath ("c:\\spirick\\tuning");

if (co_dirScan. Exists ())
/..

Die Namens- und Erweiterungskomponente des Dateinamens bestimmen den Inhalt, nach dem gesucht
werden soll. Daflr existieren drei Parameterarten:

co_dirScan. SetNameExt ("*");
Die Zeichenkette "*" fihrt zum ungefilterten Durchlaufen des gesamten Verzeichnisses.
co_dirScan. SetNameExt ("*.?pp");

Befinden sich in Name oder Erweiterung die Wildcards '*' oder '?', liefert die Klasse ct _DirScan nur die
zutreffenden Verzeichniseintrage. Wildcards sind auf UNIX-Systemen nicht verfligbar.

co_dirScan. SetNameExt ("dirscan.hpp");
Name und Erweiterung kénnen auch einen eindeutigen Dateinamen enthalten. Liefert die Methode
FindFirst den Wert true, existiert dieser Verzeichniseintrag. Anschlieend kdénnen alle zugehdrigen

Informationen abgefragt werden.

Wahrend des Durchlaufens des Verzeichnisses werden Name und Erweiterung des aktuellen Eintrags im
ct_DirScan-Objekt gespeichert. Der urspriingliche Inhalt von Name und Erweiterung geht dabei verloren.

Spirick Tuning Referenzhandbuch Seite 147

Verzeichnis vollstandig durchlaufen

Zum vollstandigen Durchlaufen eines Verzeichnisses wird eine for-Schleife nach folgendem Muster
empfohlen:

ct_DirScan co_dirScan ("c:\\spirick\\tuning*");

for (co_dirScan. FindFirst ();
co_dirScan. Found ();
co_dirScan. FindNext ())

{
/...

}

Verzeichnis durchlaufen, nur Dateien

Zum Durchlaufen aller Dateien eines Verzeichnisses (ohne Unterverzeichniseintrage) wird eine for-
Schleife nach folgendem Muster empfohlen:

ct _DirScan co_dirScan ("c:\\spirick\\tuning*");

for (co _dirScan. FindFirstFile ();
co_dirScan. Found ();
co_dirScan. FindNextFile ())

{
/]

}

Verzeichnis durchlaufen, nur Unterverzeichnisse

Zum Durchlaufen aller Unterverzeichniseintrage eines Verzeichnisses (ohne Dateien) wird eine for-
Schleife nach folgendem Muster empfohlen:

ct_DirScan co_dirScan ("c:\\spirick\\tuning*");

for (co_dirScan. FindFirstDirectory ();
co_dirScan. Found ();
co_dirScan. FindNextDirectory ())

{
/.

}

3.4 Weitere Werkzeuge

3.4.1 Uhrzeit und Datum (tuning/timedate.hpp)

Die Klasse ct_TimeDate hillt die globalen Funktionen der Systemschnittstelle in ein objektorientiertes

Gewand und ermdglicht den Zugriff auf die einzelnen Datums- und Zeit-Komponenten. Die Zeit wird in
Mikrosekunden seit dem 1. 1. 1970 O Uhr angegeben. Es kann sowohl die koordinierte Weltzeit (UTC)
als auch die lokale Zeit verwendet werden, die der im Betriebssystem eingestellten Zeitzone entspricht.

Klassendeklaration

class ct _TimeDate
{
public:
ct_TimeDate ();
ct_TimeDate (t_MicroTime i_time);

Spirick Tuning Referenzhandbuch Seite 148

void Clear ():

t MicroTime GetTime () const;
void SetTime (t_MicroTime i _time);
void QueryUTCTime ()
void QuerylLocalTime ();
inTine unsigned GetYear () const;
inline unsigned GetMonth () const;
inline unsigned GetDay () const;
inline unsigned GetDayOfWeek () const;
inline unsigned GetHour () const;
inTine unsigned GetMinute () const;
inTine unsigned GetSecond () const;
inline unsigned GetMicroSecond () const;
inTine void SetYear (unsigned u);
inline void SetMonth (unsigned u);
inTine void SetDay (unsigned u);
inTline void SetDayOflWeek (unsigned u);
inline void SetHour (unsigned u);
inline void SetMinute (unsigned u);
inline void SetSecond (unsigned u);
inline void SetMicroSecond (unsigned u);
inTine bool operator == (const ct TimeDate & co_td) const;
inline bool operator != (const ct TimeDate & co _td) const;
inTine bool operator < (const ct _TimeDate & co_td) const;
inline bool operator <= (const ct TimeDate & co _td) const;
inTine bool operator > (const ct TimeDate & co_td) const;
inTine bool operator >= (const ct TimeDate & co_td) const;
b
Methoden

ct TimeDate ():

Setzt alle Komponenten auf den Wert Null.

ct_TimeDate (t_MicroTime i_time);

Berechnet aus einem Wert in Mikrosekunden die einzelnen Komponenten.

void Clear ():

Setzt alle Komponenten auf den Wert Null.

t MicroTime GetTime () const;

Berechnet aus den einzelnen Komponenten einen Wert in Mikrosekunden.

void SetTime (t MicroTime i_time);

Berechnet aus einem Wert in Mikrosekunden die einzelnen Komponenten.

void QueryUTCTime ();
Fragt die aktuelle UTC Systemzeit ab.

void QuerylLocalTime ();

Fragt die aktuelle lokale Systemzeit ab.

Spirick Tuning Referenzhandbuch Seite 149

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned GetMicroSecond

void
void
void
void
void
void
void
void

booT
booT
bool
booT
bool
booT

3.4.2

GetYear () const;
GetMonth () const;
GetDay () const;
GetDayOfWeek () const;
GetHour () const;
GetMinute () const;
GetSecond () const;

() const;

Diese Methoden liefern die Werte einzelner Komponenten.

SetYear (unsigned u);

SetMonth (unsigned

u);

SetDay (unsigned u):
SetDayOfWeek (unsigned u);
SetHour (unsigned u);
SetMinute (unsigned u);
SetSecond (unsigned u);
SetMicroSecond (unsigned u);

Mit diesen Methoden kénnen einzelne Komponenten geadndert werden.

operator == (const
operator != (const
operator < (const
operator <= (const
operator > (const
operator >= (const

ct_TimeDate
ct_TimeDate
ct_TimeDate
ct_TimeDate
ct_TimeDate

&
&
&
&
&
ct TimeDate &

co_td)
co_td)
co_td)
co_td)
co_td)
co_td)

const;
const;
const;
const;
const;
const;

Diese Operatoren vergleichen zwei ct_TimeDate-Objekte miteinander.

MD5 Summe (tuning/md5.hpp)

Die Klasse ct_MD5 ist fur die einmalige Berechnung eines MD5-Hashwertes vorgesehen. Die Daten, aus
denen der Hashwert berechnet wird, konnen komplett im Konstrukor oder in mehreren Blocken
Ubergeben werden. Am Ende der Berechnung kann das Ergebnis binar oder textuell abgefragt werden.
Fir eine neue Berechnung muf3 ein neues ct_MD5-Objekt verwendet werden.

Klassendeklaration
typedef t UInt8 t MD5Result [16];

class ct MD5

{
public:

void
void

const t MD5Result &

const char *
bool

b

Methoden
ct MD5 ();

ct MD5 ();

ct_MD5 (const t_MD5Result & ac_init):
ct MD5 (const void * pv_data, t UInt u_Ten);

Update (const void * pv_data, t UInt u_Ten);
Finalize ();

GetResultStr ();
operator == (const ct MD5 & co_comp) const;

Initialisiert das Objekt.

GetResult () const;

Spirick Tuning Referenzhandbuch Seite 150

ct MD5 (const t MD5Result & ac_init);

Initialisiert das Objekt mit einem vorhandenen bindren Rechenergebnis.

ct MD5 (const void * pv_data, t UInt u_Ten);
Initialisiert das Objekt und ruft die Methoden Update und Finalize auf.

void Update (const void * pv_data, t UInt u_len);

Stehen die Originaldaten nicht in einem zusammenhangenden Speicherbereich zur Verfiigung, so kénnen
mit der Update-Methode nacheinander einzelne Teilblocke zur Berechnung Ubergeben werden. Die
Parameter pv_data und u_len beschreiben Position und Lange eines Teilblocks.

void Finalize ();

Beendet die Hashwert-Berechnung. AnschlieRend kann das Rechenergebnis abgefragt werden.

const t MD5Result & GetResult () const;

Liefert das binare Rechenergebnis.

const char * GetResultStr ();

Liefert das textuelle Rechenergebnis. Es besteht aus 32 Hexadezimalziffern mit Kleinbuchstaben und
einem abschlieRenden Nullzeichen.

bool operator == (const ct MD5 & co_comp) const;

Vergleicht zwei ct_MD5-Objekte, bei denen die Berechnung abgeschlossen ist.

3.4.3 Universally Unique Identifier (tuning/uuid.hpp)

Mit der Klasse ct_UUID kédnnen Universally Unique Identifier erzeugt und verarbeitet werden.

Klassendeklaration
typedef t UInt8 t UUID [16];

class ct_UUID

{
public:
ct_WID O);
ct_UUID (const ct UUID & co_init);
ct_UUID (const t UUID & ao_init);
ct_UUID & operator = (const ct UUID & co_asgn):
booT Iskmpty () const;
t UInt GetHash () const;
const t UUID & GetUUID () const;
void Clear ():
bool Create ();
bool ToStr (char * pc_dst, t UInt u_len, bool b upperCase) const:
bool FromStr (const char * pc_src, t UInt u_len);
bool operator == (const ct UUID & co_comp) const;
bool operator != (const ct UUID & co_comp) const;
IE
Methoden
ct UWUID ();

Initialisiert alle Elemente mit Nullen.

Spirick Tuning Referenzhandbuch Seite 151

ct_UUID (const ct_UUID & co_init);

Initialisiert das Objekt durch Kopie von einem anderen Objekt.

ct_UUID (const t_UUID & ao_init);

Initialisiert das Objekt mit einem vorhandenen bindren Rechenergebnis.

ct_UUID & operator = (const ct_UUID & co_asgn);

Ubernimmt den Inhalt des Objektes co_asgn.

bool IsEmpty () const;

Liefert true, wenn alle Elemente gleich Null sind.

t UInt GetHash () const;

Liefert einen Hashwert, der z. B. flirr den Eintrag in eine Hashtabelle verwendet werden kann.

const t UUID & GetUUID () const;

Liefert das binare Rechenergebnis.

void Clear ():

Setzt alle Elemente auf Null.

bool Create ();

Erzeugt einen neuen Universally Unique Identifier.

bool ToStr (char * pc dst, t UInt u Tlen, bool b_upperCase) const;

Berechnet eine textuelle Reprasentation der UUID. Das Ergebnis besteht aus 36 Zeichen und enthalt kein
abschlieBendes Nullzeichen. Position und Lange des Resultatpuffers werden durch pc_dst und u_len
bestimmt. Die Ladnge des Puffers mulR mindestens 36 Zeichen betragen. Ist der Parameter b_upperCase
gleich true, dann werden GroRbuchstaben verwendet.

bool FromStr (const char * pc_src, t UInt u_len);
Berechnet eine UUID aus einer textuellen Reprasentation. Es werden die ersten 36 Zeichen des Puffers
verwendet, der durch pc_src und u_len bestimmt ist.

bool operator == (const ct UUID & co_comp) const;

bool operator != (const ct_UUID & co _comp) const;

Diese Operatoren vergleichen zwei ct_UUID-Objekte miteinander.

Spirick Tuning Referenzhandbuch Seite 152

4 DESIGNDIAGRAMME

4.1 Zur Notation

Die folgenden Abschnitte enthalten einige objektorientierte Designdiagramme. Sie veranschaulichen das
Zusammenspiel der Komponenten innerhalb der Bibliothek Spirick Tuning. Zur ihrer Erstellung wurde die
Notation 'Unified Modeling Language' (UML) verwendet. Die folgende Abbildung zeigt einen Teil der
grafischen Elemente der UML.

BaseClass
Attribute
Method

T

DerivedClass & —
Value_of_Part1 1 1
Reference_to_Part2

Call_AssociatedClass| C Part2

*

Part1

1

AssociatedClass

Klassen werden als umrandete Vierecke dargestellt. Jedes Viereck enthélt drei Bereiche: den
Klassennamen, die Liste der Attribute und die Liste der Methoden. In den Designdiagrammen der
folgenden Abschnitte werden vier Verbindungsarten verwendet:

- die Vererbung,

- die Aggregation als Wert,

- die Aggregation als Referenz und
- die Assoziation.

17

Aggregationen (Teil-Ganzes-Relationen) kénnen zusatzlich mit Kardinalitdten versehen werden. Im
Beispiel bedeuten sie: Ein Objekt der Klasse DerivedClass enthélt genau ein Objekt der Klasse Partl, und
ein Objekt der Klasse Partl gehoért (im Sinne dieser Relation) zu genau einem Objekt der Klasse
DerivedClass. Ein Objekt der Klasse DerivedClass enthalt optional eine Referenz auf ein Objekt der Klasse
Part2, und ein Objekt der Klasse Part2 kann von beliebig vielen Objekten der Klasse DerivedClass
referenziert werden.

Zwischen DerivedClass und AssociatedClass besteht eine Assoziation. Auch diese kann mit Kardinalitaten
naher beschrieben werden. Die Bedeutung im Beispiel ist: Zu einem Objekt der Klasse DerivedClass
existiert genau ein Objekt der Klasse AssociatedClass, und zu einem Objekt der Klasse AssociatedClass
existieren beliebig viele Objekte der Klasse DerivedClass.

Spirick Tuning Referenzhandbuch Seite 153

4.2 Polymorphe Klassenhierarchie

In der folgenden Abbildung wird die polymorphe Klassenhierarchie der Bibliothek Spirick Tuning

zusammengefal3t. Sie zeigt sdmtliche Klassen, die direkt oder indirekt von ct_Object erben. Zur Erhéhung

der Ubersichtlichkeit wurde die groRBe Zahl der Attribute und Methoden ausgeblendet.

Die Klasse ct_Collection enthalt Zeiger auf Instanzen des Typs ct _Object. Eine Collection kann mehrere
Zeiger auf ct_Object-Instanzen besitzen. Im Sinne dieser Referenz-Aggregation ist ein ct_0bject in beliebig

vielen Collections enthalten.

E3

ct_Collection

* ct_Object

AN

ct_WString

ct_String

SN

A

ct_Array ct_SortedArray ct_DList

ct_BlockDList ct_RefCollection ct_FileName

2l HI BN

ct_RefDList ct_BlockRefDList ct_File ct_Directory

i

ct_DirScan

Spirick Tuning

Referenzhandbuch

Seite 154

4.3 Ein Array

Die folgende Abbildung enthalt samtliche Klassen, die bei der Implementierung eines Array-Containers
verwendet werden. Neben den 6ffentlichen Methoden werden auch einige private Attribute dargestellt.
Sie erleichtern das Verstandnis der Verbindungen zwischen den Klassen. Die Containerklasse wurde mit
Hilfe der folgenden Anweisungen generiert:

#include "tuning/chn/array.h"
class ct Any { /* ... */ };
gct Chn_Array <ct Any> co AnyArray;

Die Implementierung des Array-Containers beginnt auf der untersten Stufe mit der dynamischen
Storeklasse ct_ChnStore. Von ihr wird eine globale Instanz gebildet. C++-Templates kénnen als Parameter
keine Objekte besitzen, sondern nur Typen und Konstanten. Deshalb mappt die Wrapperklasse

ct_Chn Store die Methoden des globalen Storeobjekts auf statische Methoden einer Klasse. Von ihr
koénnen beliebig viele Instanzen gebildet werden, die jedoch stets auf dasselbe globale Storeobjekt
zugreifen. Das Kurzel _innerhalb des Namens weist auf den geschachtelten GréRentyp t UInt hin.

ct_Chn_Store dient dem Template gct_Block als Parameter. Zwischen gct_Block <ct_Chn_Store> und
ct_Chn_Store besteht eine Assoziation, denn das Blocktemplate ruft die Methoden der Wrapperklasse auf.
Die Klasse ct_Chn Block enthalt keine eigenen Attribute und Methoden. Sie dient nur der kiirzeren
Schreibweise des Namens gct Block <ct Chn_Store>. Die Blockschnittstelle wird mit Hilfe des Templates
gct_ItemBlock um Methoden zum Zugriff auf Elemente erweitert. Die Hilfstemplates gct FixItemBlockBase
und gct_FixItemBlock stellen die feste ElementgroRe fir gct ItemBlock bereit.

Das Containertemplate gct Array besitzt als Parameter den Typ der verwalteten Objekte ct _Any und die
Blockklasse gct FixItemBlock <t block, sizeof (gct ArrayNode <ct Any>)>. Der Array-Container erbt von der
Blockklasse und nutzt den dynamischen Speicherblock zur kompakten Unterbringung der verwalteten
Objekte. Das Hilfstemplate gct_ArrayNode dient dem Erzeugen und Léschen der Objekte. Es enthélt als
Attribut o 0bj je ein Objekt und besitzt eigene Operatoren new und delete. Das Hilfstemplate

gct _FixItemArray stellt die Parameter fir gct FixItemBlock bereit.

Die Containerschnittstelle wird mit Hilfe des Templates gct_ExtContainer um nitzliche Methoden
erweitert. Das Template gct _Chn Array enthélt keine eigenen Attribute und Methoden. Es dient nur der
kirzeren Schreibweise des Namens gct_ExtContainer <gct FixItemArray <t obj, ct _Chn Block> >.

Spirick Tuning Referenzhandbuch Seite 155

t_block : class

get_Block

#o_Pos: typename t_staticStore::t_Position gcthixliemBlockBase

#o_Size: t_Size

+o_FixSize: t_Size
+0_SizeMax: t_Size

<<create>>-gct_Block()
<<create>>-gct_Block(co_init: gct_Block) +SetFixSize(o_fs: t_Size): void
<<destroy>>-gct_Block()
<<CppOperator>>+=(co_asgn: gct_Block): gct_Block
+Swap(co_swap: gct_Block): void

+GetByteSize(): t_Size

+SetByteSize(o_newSize: t_Size): void

+GetAddr(): void

+GetStore(): typename t_staticStore::t_Store

t_block : class

gct_ltemBlock

-GetRawAddr_(o_pos: t_Size): char
+GetFixSize(): t_Size
+GetltemSize(): t_Size
+SetltemSize(o_size: t_Size): void
+IncltemSize1(): void
+DecltemSize1(): void

ct_Chn_Store

+Swap(: ct_Chn_Store): void +IncltemSize(o_inc: t_Size): void

+MaxAIIoc()_: t_Ulnt +DecltemSize(o_dec: t_Size): woid

+store|nfos{ze(): t Ulnt +GetltemAddr(o_pos: t_Size): oid

+Alloc(: t_Size): t_Position +Insertltems(o_pos: t_Size, o_count: t_Size): void
+Realloc(: t_Position, : t_Size): t_Position +Deleteltems(o_pos: t_Size, o_count: t_Size): void

+Free(: t_Position): void +GetDefaultPageSize(): t_Size

+AddrOf(o_pos: t_Position): void +AlignPageSize(o_fixSize: t_Size, o_pageSize: t_Size): void

+PosOf(pv_adr: wid): t_Position
+SizeOf(o_pos: t_Position): t_Size
+RoundedSizeOf(: t_Position): t_Size
+CanFreeAll(): bool

+FreeAll(): void

+GetStore(): ct_ChnStore

*
1

ct_ChnStore
-aso_FreeChains: st_FreeChain
-o_Entries: t_Uint
-o_Size: t_Ulnt
-b_InFree: bool gct_Array
<<CppOperator>>-=(: ct_ChnStore): ct_ChnStore
<<create>>-ct_ChnStore() <<create>>-gct_Array()
<<destroy>>-ct_ChnStore() <<create>>-gct_Array(co_init: gct_Array)
+Swap(co_swap: ct_ChnStore): void <<destroy>>-gct_Array()
<<CppOperator>>+new(u_size: size_t): void <<CppOperator>>+=(co_asgn: gct_Amray): gct_Array
<<CppOperator>>+delete(pv: void): void +IsEmpty(): bool
+MaxAlloc(): t_Uint +GetLen(): t_Length
+StorelnfoSize(): t_Uint +First(): t_Position
+Alloc(o_size: t_Size): t_Position +Last(): t_Position
+Realloc(o_pos: t_P n, o_size: t_Size): t_Position +Next(o_pos: t_Position): t_Position
+Free(o_pos: t_Position): void +Prev(o_pos: t_Position): t_Position
+AddrOf(o_pos: t_Position): void +Nth(u_idx: t_Length): t_Position
+PosOf(pv_adr: woid): t_Position +GetObj(o_pos: t_Position): t_Object
+SizeOf(o_pos: t_Position): t_Size +AddObj(po_obj: t_Object): t_Position
+RoundedSizeOf(o_pos: t_Position): t_Size +AddObjBefore(o_pos: t_Position, po_obj: t_Object): t_Position
+CanFreeAll(): bool +AddObjAfter(o_pos: t_Position, po_obj: t_Object): t_Position
+FreeAll(): void +AppendObj(po_obj: t_Object, o_count: t_Length): void
+GetEntries(): t_Ulnt +TruncateObj(o_count: t_Length): void
+GetSize(): t_Ulnt +DelObj(o_pos: t_Position): t_Position
+QueryAllocEntries(): t_Ulnt +DelAll(): void
+QueryAllocSize(): t_Ulnt +FreeObj(o_pos: t_Position): t_Position
+QueryFreeEntries(): t_Ulnt +FreeAll(): void
+QueryFreeSize(): t_Uint +SetPageSize(o_size: t_Size): wid
+FreeUnused(): void

it _obj: Class

gct_ArrayNode T :
gct_FixltemArray
+0_Obj: t_obj

<<create>>-gct_ArrayNode()
<<create>>-gct_ArrayNode(o_obj: t_obj)
<<CppOperator>>+new(: size_t, pv: wid): void
<<CppOperator>>+delete(: woid, : woid): void
<<CppOperator>>+delete(: void): void

gct_ExtContainer

1
1 +GetFirstObj(): t_Object
+GetLastObj(): t_Object
ct_Any +GetNextObj(o_pos: t_Position): t_Object

+GetPrevObj(o_pos: t_Position): t_Object

+GetNthObj(u_idx: t_Length): t_Object
+AddObjBeforeFirst(po_obj: t_Object): t_Position
+AddObjAfterLast(po_obj: t_Object): t_Position
+AddObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Position
+AddObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Position
+GetNewObj(po_obj: t_Object): t_Object
+GetNewFirstObj(po_obj: t_Object): t_Object
+GetNewlastObj(po_obj: t_Object): t_Object
+GetNewObjBefore(o_pos: t_Position, po_obj: t_Object): t_Object
+GetNewObjAfter(o_pos: t_Position, po_obj: t_Object): t_Object
+GetNewObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Object
+GetNewObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Object
+DelFirstObj(): t_Position
+DelLastODbj(): t_Position
+DelNextObj(o_pos: t_Position): t_Position
+DelPrevObj(o_pos: t_Position): t_Position
+DelNthObj(u_idx: t_Length): t_Position
+FreeFirstObj(): t_Position
+FreelLastObj(): t_Position
+FreeNextObj(o_pos: t_Position): t_Position
+FreePrevObj(o_pos: t_Position): t_Position
+FreeNthObj(u_idx: t_Length): t_Position

Spirick Tuning Referenzhandbuch Seite 156

4.4 Ein Zeigerarray

Die folgende Abbildung enthalt sdmtliche Klassen, die bei der Implementierung eines Zeigerarray-
Containers verwendet werden. Neben den 6ffentlichen Methoden werden auch einige private Attribute
dargestellt. Sie erleichtern das Verstandnis der Verbindungen zwischen den Klassen. Die Containerklasse
wurde mit Hilfe der folgenden Anweisungen generiert:

#include "tuning/chn/ptrarray.h"
class ct Any { /* ... */ };
gct_Chn_PtrArray <ct Any> co_AnyPtrArray;

Die Implementierung des Zeigerarray-Containers beginnt auf der untersten Stufe mit der dynamischen
Storeklasse ct_ChnStore. Von ihr wird eine globale Instanz gebildet. C++-Templates kénnen als Parameter
keine Objekte besitzen, sondern nur Typen und Konstanten. Deshalb mappt die Wrapperklasse

ct_Chn Store die Methoden des globalen Storeobjekts auf statische Methoden einer Klasse. Von ihr
koénnen beliebig viele Instanzen gebildet werden, die jedoch stets auf dasselbe globale Storeobjekt
zugreifen. Das Kurzel _innerhalb des Namens weist auf den geschachtelten GréRentyp t UInt hin.

ct_Chn_Store dient dem Template gct_Block als Parameter. Zwischen gct_Block <ct_Chn_Store> und
ct_Chn_Store besteht eine Assoziation, denn das Blocktemplate ruft die Methoden der Wrapperklasse auf.
Die Klasse ct _Chn Block enthalt keine eigenen Attribute und Methoden. Sie dient nur der kiirzeren
Schreibweise des Namens gct Block <ct Chn_Store>. Die Blockschnittstelle wird mit Hilfe des Templates
gct_ItemBlock um Methoden zum Zugriff auf Elemente erweitert. Die Hilfstemplates gct FixItemBlockBase
und gct_FixItemBlock stellen die feste ElementgroRe fir gct ItemBlock bereit.

Ein Zeigercontainer baut auf einem Container auf, der untypisierte C++-Zeiger verwaltet. Das
Containertemplate gct_Array besitzt als Parameter den Typ der verwalteten Objekte void * und die
Blockklasse gct FixItemBlock <t block, sizeof (gct ArrayNode <void *>)>. Der Array-Container erbt von der
Blockklasse und nutzt den dynamischen Speicherblock zur kompakten Unterbringung der der C++-
Zeiger. Das Hilfstemplate gct_ArrayNode dient dem Erzeugen und Léschen der Zeiger. Es enthélt als
Attribut o Obj je einen untypisierten C++-Zeiger und besitzt eigene Operatoren new und delete. Da der
Basiscontainer zur Verwaltung typisierter Zeiger verwendet wird, besitzt gct ArrayNode eine Referenz-
Aggregation zur Klasse ct_Any. Das Hilfstemplate gct FixItemArray stellt die Parameter fir gct FixItemBlock
bereit.

Die Containerschnittstelle wird mit Hilfe des Templates gct_ExtContainer um nltzliche Methoden
erweitert. Das Template gct _Chn Array enthélt keine eigenen Attribute und Methoden. Es dient nur der
kirzeren Schreibweise des Namens gct _ExtContainer <gct FixItemArray <t obj, ct Chn Block> >.

Fir C++-Zeiger existiert der Gleichheitsoperator operator ==. Deshalb kann der bisherige Container um die
Schnittstelle des Templates gct_CompContainer erweitert werden. Der davon abgeleitete Zeigercontainer
nutzt die Funktionalitat seiner Basisklassen und wandelt untypisierte C++-Zeiger in Zeiger auf die Klasse
ct_Any um. Das Template gct_Chn_PtrArray enthélt keine eigenen Attribute und Methoden. Es dient nur der
kirzeren Schreibweise des Namens gct PtrContainer <ct Any, gct Chn Array <void *> >.

Spirick Tuning Referenzhandbuch Seite 157

gct_Block

get_Block(co_init: gct_Block)

gct_Block()

=(co_asgn: gct_Block): gct_Block
Swap(co_swap: gct_Block): void
GetByteSize(): t_Size
SetByteSize(o_newSize: t_Size): void
GetAddr(): void

GetStore(): typename t_staticStore::t_Store

ct_Chn_Store

Swap(: ct_Chn_Store): woid
MaxAlloc(): t_Ulnt

StorelnfoSize(): t_Ulnt

Alloc(: t_Size): t_Position

Realloc(: t_Position, : t_Size): t_Position
Free(: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: void): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf{(: t_Position): t_Size
CanFreeAll(): bool

FreeAll(): void

GetStore(): ct_ChnStore

1

ct_ChnStore

aso_FreeChains: st_FreeChain
o_Entries: t_Ulnt

o_Size: t_Ulnt

b_InFree: bool

ct_ChnStore(: ct_ChnStore)

=(: ct_ChnStore): ct_ChnStore
ct_ChnStore()

ct_ChnStore()

Swap(co_swap: ct_ChnStore): void
new(u_size: size_t): void
delete(pv: void): void

MaxAlloc(): t_Ulnt

StorelnfoSize(): t_Ulnt
Alloc(o_size: t_Size): t_Position
Realloc(o_pos: t_Position, o_size: t_Size): t_Position
Free(o_pos: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: wid): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(o_pos: t_Position): t_Size
CanFreeAll(): bool

FreeAll(): void

GetEntries(): t_Ulnt

GetSize(): t_Ulnt

QueryAllocEntries(): t_Ulnt
QueryAllocSize(): t_Ulnt
QueryFreeEntries(): t_Ulnt
QueryFreeSize(): t_Ulnt

FreeUnused(): void

obj

0o_Pos: typename t_staticStore::t_Position
o_Size: t_Size m< o_FixSize: t_Size
gct_Block() o_SizeMax: t_Size

gct_Fixltem

SetFixSize(o_fs: t_Size): void

gct_ltemBlock

class
gct_Chn_Array

gct_CompContainer

GetRawAddr_(o_pos: t_Size): char

GetFixSize(): t_Size

GetltemSize(): t_Size

SetltemSize(o_size: t_Size): void

IncltemSize1(): void

DecltemSize1(): woid

IncltemSize(o_inc: t_Size): void
DecltemSize(o_dec: t_Size): woid
GetltemAddr(o_pos: t_Size): void
Insertitems(o_pos: t_Size, o_count: t_Size): void
Deleteltems(o_pos: t_Size, o_count: t_Size): void
GetDefaultPageSize(): t_Size
AlignPageSize(o_fixSize: t_Size, o_pageSize: t_Size): void

ContainsObj(po_obj: t_Object): bool

CountObjs(po_obj: t_Object): t_Length

SearchFirstObj(po_obj: t_Object): t_Position
SearchLastObj(po_obj: t_Object): t_Position
SearchNextObj(o_pos: t_Position, po_obj: t_Object): t_Position
SearchPrevObj(o_pos: t_Position, po_obj: t_Object): t_Position
GetFirstEqualObj(po_obj: t_Object): t_Object
GetLastEqualObj(po_obj: t_Object): t_Object
AddObjCond(po_obj: t_Object): t_Position
AddObjBeforeFirstCond(po_obj: t_Object): t_Position
AddObjAfterLastCond(po_obj: t_Object): t_Position
DelFirstEqualObj(po_obj: t_Object): t_Position
DelLastEqualObj(po_obj: t_Object): t_Position
DelFirstEqualObjCond(po_obj: t_Object): t_Position
DelLastEqualObjCond(po_obj: t_Object): t_Position

gct_Array

Node(o_pos: t_Position): gct_ArrayNode <t_obj>
CopyFrom(co_copy: gct_Array): void

FirstForSearch(po_obj: t_Object): t_Position
LastForSearch(po_obj: t_Object): t_Position
NextForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
PrevForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
gct_Array()

gct_Array(co_init: gct_Array)

gct_Array()

=(co_asgn: gct_Array): gct_Array

IsEmpty(): bool

GetLen(): t_Length

First(): t_Position

Last(): t_Position

Next(o_pos: t_Position): t_Position

Prev(o_pos: t_Position):
Nth(u_idx: t_Length): t_Position

GetObj(o_pos: t_Position): t_Object

AddObj(po_obj: t_Object): t_Position

AddObjBefore(o_pos: t_Position, po_obj: t_Object): t_Position
AddObjAfter(o_pos: t_Position, po_obj: t_Object): t_Position
AppendObj(po_obj: t_Object, o_count: t_Length): void
TruncateObj(o_count: t_Length): void

DelObj(o_pos: t_Position): t_Position

DelAll(): void

FreeObj(o_pos: t_Position): t_Position

FreeAll(): void

SetPageSize(o_size: t_Size): wid

gct_ArrayNode

©0_Obj: t_obj

get_ArrayNode()
gct_ArrayNode(o_obj: t_obj)
new(: size_t, pv: void): void
delete(: void, : void): void
delete(: void): void

gct_ExtContainer

GetFirstObj(): t_Object

GetLastObj(): t_Object

GetNextObj(o_pos: t_Position): t_Object

GetPrevObj(o_pos: t_Position): t_Object

GetNthODbj(u_idx: t_Length): t_Object

AddObjBeforeFirst(po_obj: t_Object): t_Position
AddObjAfterLast(po_obj: t_Object): t_Position
AddObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Position
AddObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Position
GetNewObj(po_obj: t_Object): t_Object
GetNewFirstObj(po_obj: t_Object): t_Object
GetNewlastObj(po_obj: t_Object): t_Object
GetNewObjBefore(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjAfter(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Object
GetNewObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Object
DelFirstObj(): t_Position

DelLastObj(): t_Position

DelNextObj(o_pos: t_Position): t_Position

DelPrevObj(o_pos: t_Position): t_Position

FreeNextObj(o_pos: t_Position): t_Position
FreePrevObj(o_pos: t_Position): t_Position
FreeNthObj(u_idx: t_Length): t_Position

t_obj : class

gct_PtrContainer

get_PtrContainer()

GetPtr(o_pos: t_Position): t_obj

GetFirstPtr(): t_obj

GetLastPtr(): t_obj

GetNextPtr(o_pos: t_Position): t_obj

GetPrevPtr(o_pos: t_Position): t_obj

GetNthPtr(u_idx: t_Length): t_obj

AddPtr(po_obj: t_obj): t_Position

AddPtrBefore(o_pos: t_Position, po_obj: t_obj): t_Position
AddPtrAfter(o_pos: t_Position, po_obj: t_obj): t_Position
AddPtrBeforeFirst(po_obj: t_obj): t_Position

t_obj): t_Position

t_Length, po_obj: t_obj): t_Position
AddPtrAfterNth(u_idx: t_Length, po_obj: t_obj): t_Position
DelPtr(o_pos: t_Position): t_Position

DelFirstPtr(): t_Position

DelLastPtr(): t_Position

DelNextPtr(o_pos: t_Position): t_Position
DelPrevPtr(o_pos: t_Position): t_Position
DelNthPtr(u_idx: t_Length): t_Position

DelAllPtr(): void

DelPtrAndObj(o_pos: t_Position): t_Position
DelFirstPtrAndObj(): t_Position

DelLastPtrAndODbj(): t_Position

DelNextPtrAndObj(o_pos: t_Position): t_Position
DelPrevPtrAndObj(o_pos: t_Position): t_Position
t_Length): t_Position

DelAlIPtrAndObj(): void

SearchFirstPtr(po_obj!
SearchLastPtr(po_obj:
SearchNextPtr(o_pos: t_Position
SearchPrevPtr(o_pos: t_Position, po_obj: t_obj): t_Position
AddPtrCond(po_obj: t_obj): t_Position
AddPtrBeforeFirstCond(po_obj: t_obj): t_Position
AddPtrAfterLastCond(po_obj: t_obj): t_Position
DelFirstEqualPtr(po_obj: t_obj): t_Position
DelLastEqualPtr(po_obj: t_obj): t_Position
DelFirstEqualPtrCond(po_obj: t_obj): t_Position
DelLastEqualPtrCond(po_ol Position
DelFirstEqualPtrAndObj(po_ol j): t_Position
DelLastEqualPtrAndObj(po_obj: t_obj): t_Position
DelFirstEqualPtrAndObjCond(po_obj: t_obj): t_Position
DelLastEqualPtrAndObjCond(po_obj: t_obj): t_Position

Spirick Tuning Referenzhandbuch

Seite 158

4.5 Eine Liste

Die folgende Abbildung enthalt sdmtliche Klassen, die bei der Implementierung eines Listen-Containers
verwendet werden. Neben den 6ffentlichen Methoden werden auch einige private Attribute dargestellt.
Sie erleichtern das Verstandnis der Verbindungen zwischen den Klassen. Die Containerklasse wurde mit
Hilfe der folgenden Anweisungen generiert:

#include "tuning/chn/dlist.h"
class ct Any { /* ... */ };
gct_Chn32DList <ct Any> co AnyDList;

Die Implementierung des Listen-Containers beginnt auf der untersten Stufe mit der dynamischen
Storeklasse ct_ChnStore. Von ihr wird eine globale Instanz gebildet. C++-Templates kénnen als Parameter
keine Objekte besitzen, sondern nur Typen und Konstanten. Deshalb mappt die Wrapperklasse
ct_Chn32Store die Methoden des globalen Storeobjekts auf statische Methoden einer Klasse. Von ihr
koénnen beliebig viele Instanzen gebildet werden, die jedoch stets auf dasselbe globale Storeobjekt
zugreifen. Das Kurzel 32 innerhalb des Namens weist auf den geschachtelten GréRentyp t UInt32 hin.

Das Containertemplate gct DList besitzt als Parameter den Typ der verwalteten Objekte ct_Any und die
Storeklasse ct Chn32Store. Der Listen-Container enthalt die Storeklasse als Attribut o Store und nutzt
deren Methoden zum Verwalten des Speichers fir die Knoten (Nodes). Das Hilfstemplate gct DListNode
dient dem Erzeugen und Ldschen der Objekte. Es enthalt als Attribut o 0bj je ein Objekt und besitzt
eigene Operatoren new und delete. Listen-Nodes sind durch Positionszeiger in beiden Richtungen
miteinander verbunden.

Die Containerschnittstelle wird mit Hilfe des Templates gct_ExtContainer um nitzliche Methoden
erweitert. Das Template gct Chn320List enthélt keine eigenen Attribute und Methoden. Es dient nur der
kirzeren Schreibweise des Namens gct ExtContainer <gct DList <ct Any. ct Chn32Store> >,

Spirick Tuning Referenzhandbuch Seite 159

ct_Chn32Store

Swap(: ct_Chn32Store): void

MaxAlloc(): t_UlInt

StorelnfoSize(): t_Ulnt

Alloc(: t_Size): t_Position

Realloc(: t_Position, : t_Size): t_Position
Free(: t_Position): void

AddrOf(o_pos: t_Position): void
PosOf(pv_adr: wid): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(: t_Position): t_Size 1
CanFreeAll(): bool
FreeAll(): void
GetStore(): ct_ChnStore

*

1

ct_ChnStore

aso_FreeChains: st_FreeChain
o_Entries: t_Ulnt

o_Size: t_UlInt

b_InFree: bool

ct_ChnStore(: ct_ChnStore)

=(: ct_ChnStore): ct_ChnStore
ct_ChnStore()

ct_ChnStore()

Swap(co_swap: ct_ChnStore): woid
new(u_size: size_t): woid

delete(pv: wid): void

MaxAlloc(): t_Ulnt

StorelnfoSize(): t_Ulnt
Alloc(o_size: t_Size): t_Position
Realloc(o_pos: t_Position, o_size: t_Size): t_Position
Free(o_pos: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: wid): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(o_pos: t_Position): t_Size
CanFreeAll(): bool

FreeAll(): void

GetEntries(): t_Ulnt

GetSize(): t_Ulnt
QueryAllocEntries(): t_Ulint
QueryAllocSize(): t_Ulnt
QueryFreeEntries(): t_Ulnt
QueryFreeSize(): t_UInt
FreeUnused(): woid

gct_DList

o_First: t_Position
o_Length: t_Length
o_Store: t_store

Node(o_pos: t_Position): gct_DListNode <t_Object, t_Position>
NewNode(: t_Position, : t_Position, : t_obj): t_Position
CopyFrom(co_copy: gct_DList): void

FirstForSearch(po_obj: t_Object): t_Position
LastForSearch(po_obj: t_Object): t_Position
NextForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
PrevForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
get_DList()

get_DList(co_init: gct_DList)

gct_DList()

=(co_asgn: gct_DList): gct_DList

Swap(co_swap: gct_DList): void

IsEmpty(): bool

GetLen(): t_Length

First(): t_Position

Last(): t_Position

Next(o_pos: t_Position): t_Position

Prev(o_pos: t_Position): t_Position

Nth(u_idx: t_Length): t_Position

GetObj(o_pos: t_Position): t_Object

AddObj(po_obj: t_Object): t_Position

AddObjBefore(o_pos: t_Position, po_obj: t_Object): t_Position
AddObjAfter(o_pos: t_Position, po_obj: t_Object): t_Position
AppendObj(po_obj: t_Object, o_count: t_Length): void
TruncateObj(o_count: t_Length): void

DelObj(o_pos: t_Position): t_Position

DelAll(): void

FreeObj(o_pos: t_Position): t_Position

FreeAll(): void

GetStore(): t_store

gct_ExtContainer

gct_DListNode

o_Obj: t_obj
o_Prev. t_ptr
o_Next: t_ptr

get_DListNode()
gct_DListNode(o_obj: t_obj)
new(: size_t, pv: void): void
delete(: void, : void): void
delete(: woid): void

{t_container : class |

GetFirstObj(): t_Object

GetLastObj(): t_Object

GetNextObj(o_pos: t_Position): t_Object

GetPrevObj(o_pos: t_Position): t_Object

GetNthObj(u_idx: t_Length): t_Object
AddObjBeforeFirst(po_obj: t_Object): t_Position
AddObjAfterLast(po_obj: t_Object): t_Position
AddObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Position
AddObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Position
GetNewODbj(po_obj: t_Object): t_Object

GetNewrFirstObj(po_obj: t_Object): t_Object
GetNewLastObj(po_obj: t_Object): t_Object
GetNewObjBefore(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjAfter(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Object
GetNewODbjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Object
DelFirstObj(): t_Position

DelLastObj(): t_Position

DelNextObj(o_pos: t_Position): t_Position

DelPrevObj(o_pos: t_Position): t_Position

DelNthObj(u_idx: t_Length): t_Position

FreeFirstObj(): t_Position

FreeLastObj(): t_Position

FreeNextObj(o_pos: t_Position): t_Position

FreePrevObj(o_pos: t_Position): t_Position

FreeNthObj(u_idx: t_Length): t_Position

Spirick Tuning Referenzhandbuch Seite 160

4.6 Eine Blockliste

Die folgende Abbildung enthalt sdmtliche Klassen, die bei der Implementierung eines Blocklisten-
Containers verwendet werden. Neben den 6ffentlichen Methoden werden auch einige private Attribute
dargestellt. Sie erleichtern das Verstandnis der Verbindungen zwischen den Klassen. Die Containerklasse
wurde mit Hilfe der folgenden Anweisungen generiert:

#include "tuning/chn/blockdlist.h"
class ct Any { /* ... */ };
gct Chn32BTockDList <ct Any> co AnyBlockDList;

Die Implementierung des Blocklisten-Containers beginnt auf der untersten Stufe mit der dynamischen
Storeklasse ct_ChnStore. Von ihr wird eine globale Instanz gebildet. C++-Templates kénnen als Parameter
keine Objekte besitzen, sondern nur Typen und Konstanten. Deshalb mappt die Wrapperklasse
ct_Chn32Store die Methoden des globalen Storeobjekts auf statische Methoden einer Klasse. Von ihr
koénnen beliebig viele Instanzen gebildet werden, die jedoch stets auf dasselbe globale Storeobjekt
zugreifen. Das Kurzel 32 innerhalb des Namens weist auf den geschachtelten GréRentyp t UInt32 hin.

ct_Chn32Store dient dem Template gct_Block als Parameter. Zwischen gct Block <ct_Chn32Store> und
ct_Chn32Store besteht eine Assoziation, denn das Blocktemplate ruft die Methoden der Wrapperklasse
auf. Die Klasse ct_Chn32Block enthalt keine eigenen Attribute und Methoden. Sie dient nur der kirzeren
Schreibweise des Namens gct Block <ct Chn32Store>. Die Blockschnittstelle wird mit Hilfe des Templates
gct_ItemBlock um Methoden zum Zugriff auf Elemente erweitert. Die Hilfstemplates gct VarItemBlockBase
und gct_VarItemBlock stellen die feste ElementgroRe fir gct ItemBlock bereit.

Das Storetemplate gct BlockStore besitzt als Parameter die Elementblockklasse gct VarItemBlock
<ct_Chn32BTock> und die Zeichenblockklasse gct CharBlock <ct Chn32Block, char>. Der Blockstore erbt von
der Elementblockklasse und nutzt den dynamischen Speicherblock zur kompakten Verwaltung der
eigenen Speicherblocke. Die Klasse ct_Chn32BlockStore enthalt keine eigenen Attribute und Methoden. Sie
dient nur der kirzeren Schreibweise des Namens gct BlockStore <gct Var..., gct Char...>.

Das Containertemplate gct DList besitzt als Parameter den Typ der verwalteten Objekte ct Any und die
Storeklasse ct_Chn32BlockStore. Der Listen-Container enthélt die Storeklasse als Attribut o Store und nutzt
deren Methoden zum Verwalten des Speichers fiir die Knoten (Nodes). Das Hilfstemplate gct DListNode
dient dem Erzeugen und Léschen der Objekte. Es enthalt als Attribut o 0bj je ein Objekt und besitzt
eigene Operatoren new und delete. Listen-Nodes sind durch Positionszeiger in beiden Richtungen
miteinander verbunden.

Die Containerschnittstelle wird mit Hilfe des Templates gct ExtContainer um nitzliche Methoden
erweitert. Das Template gct Chn32BTockDList enthalt keine eigenen Attribute und Methoden. Es dient nur
der kirzeren Schreibweise des Namens gct_ExtContainer <gct_DList <ct_Any. ct_Chn32BlockStore> >,

Spirick Tuning Referenzhandbuch Seite 161

ct_ChnStore

aso_FreeChains: st_FreeChain
o_Entries: t_Ulnt

o_Size: t_UInt

b_InFree: bool

ct_ChnStore(: ct_ChnStore)

=(: ct_ChnStore): ct_ChnStore
ct_ChnStore()

ct_ChnStore()

Swap(co_swap: ct_ChnStore): void
new(u_size: size_t): void
delete(pv: : void

MaxAlloc(): t_Ulnt

StorelnfoSize(): t_Ulnt
Alloc(o_size: t_Size): t_Position
Realloc(o_pos: t_Position, o_size: t_Size): t_Position
Free(o_pos: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: wid): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(o_pos: t_Position): t_Size
CanFreeAll(): bool

FreeAll(): void

GetEntries(): t_Ulnt

GetSize(): t_Ulnt
QueryAllocEntries(): t_Ulnt
QueryAllocSize(): t_Ulnt
QueryFreeEntries(): t_Ulnt
QueryFreeSize(): t_Ulnt
FreeUnused(): woid

ct_Chn32Store

Swap(: ct_Chn32Store): void
MaxAlloc(): t_Ulnt

StorelnfoSize(): t_Ulnt

Alloc(: t_Size): t_Position

Realloc(: t_Position, : t_Size): t_Position
Free(: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: woid): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(: t_Position): t_Size
CanFreeAll(): bool

FreeAll(): void

GetStore(): ct_ChnStore

staticStore : class
gct_Block

o_Pos: typename t_staticStore::t_Position
o_Size: t_Size

gct_Block()

get_Block(co_init: gct_Block)

gct_Block()

=(co_asgn: gct_Block): gct_Block
Swap(co_swap: gct_Block): void
GetByteSize(): t_Size
SetByteSize(o_newSize: t_Size): void
GetAddr(): void

GetStore(): typename t_staticStore::t_Store

ct_Chn32Block

>“

gct_VarltemBlockBase

t_obj : class

gct_DListNode

o_Obj: t_obj
o_Prev: t_ptr
o_Next: t_ptr

gct_DListNode()
get_DListNode(o_obj: t_obj)
new(: size_t, pv. void): void
delete(: woid, : void): void
delete(: void): void

gct_ltemBlock

GetRawAddr_(o_pos: t_Size): char

GetFixSize(): t_Size

GetltemSize(): t_Size

SetltemSize(o_size: t_Size): wid

IncltemSize1(): void

DecltemSize1(): void

IncltemSize(o_inc: t_Size): void
DecltemSize(o_dec: t_Size): void
GetltemAddr(o_pos: t_Size): void
Insertitems(o_pos: t_Size, o_count: t_Size): void
Deleteltems(o_pos: t_Size, o_count: t_Size): void
GetDefaultPageSize(): t_Size
AlignPageSize(o_fixSize: t_Size, o_pageSize: t_Size): void

o_FixSize: t_Size
o_SizeMax: t_Size

get_VarltemBlockBase()
SetFixSize(o_fs: t_Size): woid

t_itemBlock : class
t_charBlock : class

gct_BIockStore"

so_Data: st_Data

ldxAddrOf(o_pos: t_Position): t_Position
FreePlain(o_pos: t_Position): void
FreeSort(o_pos: t_Position): void
gct_BlockStore()

Swap(co_swap: gct_BlockStore): void
MaxAlloc(): t_Ulnt

StorelnfoSize(): t_Ulnt

Alloc(o_size: t_Size): t_Position
Realloc(o_pos: t_Position, o_size: t_Size): t_Position
Free(o_pos: t_Position): void
AddrOf(o_pos: t_Position): void
PosOf(pv_adr: wid): t_Position
SizeOf(o_pos: t_Position): t_Size
RoundedSizeOf(o_pos: t_Position): t_Size
CanFreeAll(): bool

FreeAll(): void

SetSortedFree(b: bool): void
SetPageSize(o_size: t_Size): void
Lastldx(): t_Position

HasFree(): bool

FreeUnused(): void

ct_Chn32BlockStore

t_obj : class

get_DList

o_First: t_Position
o_Length: t_Length
o_Store: t_store

Node(o_pos: t_Position): gct_DListNode <t_Object, t_Position>
NewNode(: t_Position, : t_Position, : t_obj): t_Position
CopyFrom(co_copy: gct_DList): woid

FirstForSearch(po_obj: t_Object): t_Position
LastForSearch(po_obj: t_Object): t_Position
NextForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
PrevForSearch(o_pos: t_Position, po_obj: t_Object): t_Position
get_DList()

get_DList(co_init: gct_DList)

get_DList()

=(co_asgn: gct_DList): gct_DList

Swap(co_swap: gct_DList): void

IsEmpty(): bool

GetLen(): t_Length

First(): t_Position

Last(): t_Position

Next(o_pos: t_Position): t_Position

Prev(o_pos: t_Position): t_Position

Nth(u_idx: t_Length): t_Position

GetObj(o_pos: t_Position): t_Object

AddODbj(po_obj: t_Object): t_Position

AddObjBefore(o_pos: t_Position, po_obj: t_Object): t_Position
AddObjAfter(o_pos: t_Position, po_obj: t_Object): t_Position
AppendObj(po_obj: t_Object, o_count: t_Length): void
TruncateObj(o_count: t_Length): void

DelObj(o_pos: t_Position): t_Position

DelAll(): void

FreeObj(o_pos: t_Position): t_Position

FreeAll(): void

GetStore(): t_store

gct_ExtContainer

GetFirstObj(): t_Object

GetLastObj(): t_Object

GetNextObj(o_pos: t_Position): t_Object

GetPrevObj(o_pos: t_Position): t_Object

GetNthObj(u_idx: t_Length): t_Object
AddObjBeforeFirst(po_obj: t_Object): t_Position
AddObjAfterLast(po_obj: t_Object): t_Position
AddObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Position
AddObjAfterNth(u_idx: t_Length, po_obj: t_Object): t_Position
GetNewObj(po_obj: t_Object): t_Object

GetNewFirstObj(po_obj: t_Object): t_Object
GetNewLastObj(po_obj: t_Object): t_Object
GetNewObjBefore(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjAfter(o_pos: t_Position, po_obj: t_Object): t_Object
GetNewObjBeforeNth(u_idx: t_Length, po_obj: t_Object): t_Object
GetNewObjAfterNth(u_idx: t_Length, po_obj: t Object): t_Object
DelFirstObj(): t_Position

DelLastObj(): t_Position

DelNextObj(o_pos: t_Position): t_Position

DelPrevObj(o_pos: t_Position): t_Position

DelINthObj(u_idx: t_Length): t_Position

FreeFirstObj(): t_Position

FreeLastObj(): t_Position

FreeNextObj(o_pos: t_Position): t_Position

FreePrevObj(o_pos: t_Position): t_Position

FreeNthObj(u_idx: t_Length): t_Position

gct_Chn32BlockD!

Spirick Tuning

Referenzhandbuch

Seite 162

5 INSTALLATION UND BEISPIELE

5.1 Hinweise zur Installation

5.1.1 Verfligbare Plattformen

Die Klassenbibliothek Spirick Tuning ist zur Zeit fir die Betriebssysteme MS Windows XP, MS Windows
7, MS Windows 10 sowie Linux x86/x86-64 mit Kernel 2.6.32 bis 6.2.0 verfligbar. Sie wurde mit 32-
und 64-Bit-Speichermodellen entwickelt und getestet. Die Klassen kénnen sowohl in einer singlethreaded
als auch in einer multithreaded Umgebung eingesetzt werden. Der Quelltext ist an die Compiler MS
Visual C++ 8.0 (2005) bis 17.0 (2022) sowie g++ 4.4.5 bis 12.2.0 angepal3t.

Die Verfligbarkeit fir andere Umgebungen kann beim Hersteller erfragt werden. Die Klassen zur
Speicher- und Objektverwaltung und zur Zeichenkettenverarbeitung sind gréoRtenteils system- und
compilerunabhangig. Sie lassen sich mit geringem Aufwand portieren. Bei globalen Funktionen und
Klassen, die Systemdienste zur Verfligung stellen, ist jedoch eine detaillierte Anpassung erforderlich.

5.1.2 Abhangigkeiten

Die Klassenbibliothek Spirick Tuning verwendet das Laufzeitsystem des Compilers und des
Betriebssystems. Auf Linux Plattformen werden zuséatzlich PThreads verwendet. Dariber hinaus
bestehen keine Abhéngigkeiten zu anderen Bibliotheken. Die Klassenbibliothek Spirick Tuning kann ohne
Wechselwirkungen mit anderen Bibliotheken kombiniert werden, z. B. mit BOOST oder der C+ +
Standardbibliothek.

5.1.3 Installation

Die Klassenbibliothek Spirick Tuning wird im Quelltext ausgeliefert. Zum Installieren werden alle
Verzeichnisse in ein Verzeichnis auf der Festplatte, z. B. c:\spirick, kopiert. Dabei entstehen folgende
Unterverzeichnisse:

Verzeichnis Inhalt

c:\spirick\tuning C++-Templates und -Klassen
c:\spirick\tuning\sys Systemschnittstelle in C
c:\spirick\tuning\std Standardstore
c:\spirick\tuning\rnd Roundstore
c:\spirick\tuning\chn Chainstore
c:\spirick\samples Beispielprogramme

Spirick Tuning Referenzhandbuch Seite 163

Im Lieferumfang befinden sich Makefiles, die sowohl mit nmake als auch mit gmake verwendet werden
kénnen. Sie erzeugen eine bindre Bibliothek 'tuning.lib' bzw. 'tuning.a’. Die Klassenbibliothek kann auch
in ein anderes Buildsystem eingebunden werden. Vor dem Compilieren ist zu priifen, ob sich das
Verzeichnis oberhalb von tuning (im Beispiel c:\spirick) im Includepfad befindet.

Die mitgelieferten Makefiles verwenden die Umgebungsvariablen TL_PROJECT TARGETDIR, TL_COMPILER und
TL_RELEASE. Mit TL_PROJECT TARGETDIR kann das Zielverzeichnis fir Compiler und Linker angegeben werden.
Die Variable TL_COMPILER sollte Infos Gber Compilerversion und Architektur enthalten, z.B. "msc192164"
fir den MS Compiler 19.21 64-Bit. Mit dieser Variablen wird im Zielverzeichnis ein Unterverzeichnis
angelegt. Die Variable TL_RELEASE steuert, ob eine Debug- oder eine Release-Version kompiliert wird.

5.1.4 Performance-Tests

Mit Hilfe der Prazisionszeit und der Heapinformationen kann die Performance einzelner Klassen und
Templates genau gemessen werden. Zum Erreichen einer bestmdéglichen Rechengeschwindigkeit sollten
Bausteine eingesetzt werden, die mit dem globalen Chainstore arbeiten, z. B. ct_Chn_String oder
gct_Chn_Array. Eine bestmdgliche Speicherauslastung wird mit Array- und Blocklisten-Containern erzielt.
Belegen alle Nodes einer Blockliste zusammengenommen nicht mehr als 64 KB, wird das Template
gct_Chnl6BlockDList empfohlen.

In der Bibliothek Spirick Tuning werden zahlreiche Parameter und Zwischenergebnisse mit ASSERT-Makros
Uberprift. Diese Prifungen befinden sich auch an rechenzeitkritischen Stellen. Deshalb sollte zum
Performance-Test statt einer Debug- eine Release-Version verwendet werden. Dazu ist ein
Compilerschalter zu setzen oder das Makro NDEBUG zu definieren.

5.1.6 Inline-Methoden

Beim Expandieren von Inline-Methoden der Bibliothek Spirick Tuning ist zu beachten, daR Inline-Methoden
z. T. sehr tief geschachtelt sind. Die Schachtelung ist eine Folge des schichtweisen Aufbaus der

zahlreichen Schnittstellen. Die Standardeinstellung der meisten Compiler fir die Schachtelungstiefe wird
dabei haufig Uberschritten. Deshalb enthélt die Datei "tuning/defs.hpp’ folgende Praprozessoranweisung:

#pragma inline_depth (32)

5.1.6 DLL's

Alle globalen Funktionen und Klassen sind flir den Einsatz in DLL's vorgesehen. Sie wurden mit dem
Makro TL_EXPORT versehen. Sollen die Deklarationen exportiert werden, ist global das Makro TL BUILD DLL
zu setzen.

5.1.7 Globale Objekte

Die Bibliothek Spirick Tuning enthalt einige globale Storeobjekte (je eine globale Instanz des Standard-,
Round- und Chainstores). Sie werden von zahlreichen anderen Klassen und Templates, z. B.
ct_Chn32String, direkt oder indirekt verwendet. Obwohl die Reihenfolge der Initialisierung globaler Objekte
nicht standardisiert ist, kénnen globale Anwenderobjekte sicher auf globale Stores zugreifen. Globale
Stores werden automatisch erzeugt, wenn zum ersten mal darauf zugegriffen wird oder wenn der erste
Thread gestartet wird (siehe Abschnitt 'Globale Stores').

Globale Anwenderobjekte kénnen auch in ihrem Destruktor (am Programmende) sicher auf globale Stores
zugreifen, da diese zwar automatisch erzeugt, aber nicht zerstért werden. Das bedeutet jedoch, dal3 ein
Heapwalker die globalen Storeobjekte am Programmende als Memoryleak melden kann. Dieser Effekt

Spirick Tuning Referenzhandbuch Seite 164

14kt sich nur vermeiden, indem die vordefinierten globalen Storeobjekte nicht verwendet oder manuell
geléscht werden. Je nach Bedarf kann auch ein eigener Mechanismus (z. B. mit Referenzzahlern)
implementiert werden.

In der Datei "tuning/sys/cprocess.cpp’ werden auf dhnliche Weise zwei globale Mutexobjekte bei der
ersten Verwendung oder beim Starten des ersten Threads automatisch erzeugt, aber nicht automatisch
zerstort. Auch diese Objekte kdnnen am Programmende manuell geléscht werden, wenn sichergestellt
ist, dal® sie nicht mehr verwendet werden (z. B. im Destruktor eines globalen Anwenderobjekts).

5.1.8 Multithreading

Bei der Entwicklung der Klassenbibliothek Spirick Tuning wurde auf Sicherheit beim Multithreading
geachtet. Weder Funktionen noch Klassen enthalten lokale statische Variable. Globale Variable im
Filescope sind selten und sind entweder konstant (z. B. Umrechnungstabellen) oder schiitzen sich selbst
(Reservespeicher, Roundstore, Chainstore).

In einer singlethreaded Umgebung kénnen die Funktionen t1_EnterCriticalSection und
t1 LeaveCriticalSection zwar aufgerufen werden, bleiben aber ohne Wirkung. Die Funktionen
t1 BeginThread und t1_EndThread stehen singlethreaded nicht zur Verfiigung.

5.1.9 Exception Handling

C++ Exceptions sind ein allgemeiner Mechanismus zur Fehlerbehandlung. Sie besitzen jedoch nicht nur
Vorteile. Nach dem Auslésen einer Exception werden zwar die Destruktoren aller auf dem Stack
befindlichen Objekte aufgerufen. Damit bleibt die Konsistenz der Daten gewahrt. Der Compiler muf3
jedoch zur Laufzeit Gber alle fertig konstruierten Objekte Buch filhren. Damit verlangsamt sich die
Geschwindigkeit.

Da sich C++ Exceptions mit einer Compileroption ausschalten lassen und die Bibliothek Spirick Tuning auf
eine bestmdgliche Geschwindigkeit ausgelegt ist, verwendet sie selbst keine Exceptions. Sie kann
jedoch in Umgebungen mit oder ohne Exception Handling eingesetzt werden. Die Containerklassen
verbleiben in einem konsistenten Zustand, auch wenn im Konstruktor oder Destruktor eines enthaltenen
Objekts eine Exception auftritt.

Spirick Tuning Referenzhandbuch Seite 165

5.2 Beispielprogramme

Im Lieferumfang der Bibliothek Spirick Tuning befinden sich einige Beispielprogramme. Sie sind
kommandozeilenorientiert und Ubertragen textuelle Informationen zur Standardausgabe. In jeder der
folgenden Dateien (aufRer int.cpp) befindet sich eine main-Funktion.

5.2.1 Protokollklasse (samples/int.cpp)

Die Klasse ct_Int protokolliert Konstruktoren und Destruktoren zur Standardausgabe und wird zum
Testen von Containern und Collections verwendet. ct_Int enthélt einen Wert des Typs int. Er wird
indirekt in einem dynamisch erzeugten int-Objekt gespeichert. Wird 'vergessen', den Destruktor eines
ct_Int-Objekts aufzurufen, wird das dynamische int-Objekt nicht freigegeben. Dieser Fehler tritt bei einer
Heapanalyse zutage.

Klassendeklaration
class ct_Int: public ct_Object
{
int * pi_Value;
public:
ct_Int O;
ct_Int (int 1);
ct_Int (const ct _Int & co_init);
~ct Int O);
virtual bool operator < (const ct Object & co_comp) const;
virtual int GetHash () const;
ct_Int & operator = (int 1);
ct_Int & operator = (const ct_Int & co_asgn);
bool operator == (const ct_Int & co_comp) const;
bool operator < (const ct_Int & co_comp) const;
int GetValue () const;
b

5.2.2 Speicheriiberlauf (samples/talloc.cpp)

Das Beispielprogramm TAlloc demonstriert die Verwendung der Techniken zur Erkennung und
Behandlung eines Speicherliberlaufs. Die Funktionen MyReserveHandler und MyOverflowHandler dienen als
Reservehandler und Overflowhandler.

void MyReserveHandler ()

{

printf ("ReserveHandler HasReserve = %d ReserveSize = %d\n",
t1 HasReserve (), t1 GetReserveSize ())

}

void MyOverflowHandler ()

{
printf ("OverflowHandler\n");

}

Spirick Tuning Referenzhandbuch Seite 166

Am Beginn der main-Funktion werden die beiden Handler registriert und die Grél3e des Reservespeichers
auf 1 MB festgelegt. Das erfolgreiche Setzen des Reservespeichers mul3 vom Reservehandler
protokolliert werden.

void main ()

{

t1_SetReserveHandler (MyReserveHandler);
t1 _SetOverflowHandler (MyOverflowHandler);
t1 SetReserveSize (1024 * 1024);

AnschlieBend wird in einer Schleife fortlaufend 1 MB Speicher angefordert.

for (unsigned u = 0; u < t1_MaxAlloc () / (1024 * 1024); u ++)

{
printf ("Zd\n", u);
t1 Alloc (1024 * 1024);

}

Wird das Ende des verfligbaren virtuellen Speichers erreicht, liefert die C-Standardfunktion malloc den
Wert Null. Dann gibt die Bibliothek Spirick Tuning den Reservespeicher frei und versucht die
Speicheranforderung erneut. Das Freigeben des Reservespeichers mul3 vom Reservehandler protokolliert
werden. Da der Reservespeicher dieselbe GréfRe wie die zyklische Speicheranforderung besitzt, ist ein
Schleifendurchlauf spater der Speicher endgliltig verbraucht. Dann wird der Overflowhandler aufgerufen
und das Programm beendet.

Das Beispielprogramm TAlloc kann z. B. folgende Ausgabe erzeugen:

ReserveHandler HasReserve = 1 ReserveSize = 1048576
0

1

2

95

96

ReserveHandler HasReserve = 0 ReserveSize = 1048576

97
OverflowHandler

5.2.3 Alignment (samples/talign.cpp)

Das kleine Beispielprogramm TAlign gibt die GroRBe der Datentypen t RefCount, ct RefCount und t_ChnInfo
aus. Die GroRRe dieser Datentypen beeinfluRt das Alignment im Chainstore und den verschiedenen
Refstores. Unabhangig vom gewahlten Speichermodell (32 Bit oder 64 Bit) sollte folgende Ausgabe

erscheinen

sizeof (t_RefCount) =4
sizeof (ct RefCount) = 8
sizeof (t_ChnInfo) =38

b.2.4 Globale Stores (samples/tstore.cpp)

Im Beispielprogramm TStore wird jeweils ein globaler Store einem Hartetest unterworfen. Relevante
Testergebnisse sind die Gesamtrechenzeit und der Speicherbedarf des Heaps. Am Beginn der Datei kann
mit Praprozessoranweisungen ein globaler Store ausgesucht werden. Zum Testen des Standardstores
dienen die folgenden Zeilen.

#include "tuning/std/store.hpp”
#define GetStore GetStdStore

Spirick Tuning Referenzhandbuch Seite 167

Die Funktionen PrintLong und HeapInfo dienen dem Protokollieren des Heaps. Am Beginn der main-Funktion
wird ein Array mit untypisierten Zeigern angelegt. AnschlieRend wird der aktuelle Zustand des Heaps
ausgegeben und der Wert des Prazisionstimers gespeichert. Im Hartetest wird jedem Zeiger des Arrays
Speicher zugewiesen. Die GréRe des Speichers liegt zuféallig zwischen 10 und 110 Bytes und wird
mehrmals gedndert. Am Ende wird der Speicher wieder freigegeben.

Nach dem Hartetest werden die verbrauchte Zeit und der Zustand des Heaps protokolliert. Nach dem
Freigeben ungenutzten Speichers wird noch einmal der Zustand des Heaps ausgegeben. Beim Aufruf
dieses Beispielprogramms ist zu beachten, dal® der Compiler u. U. keine Informationen Uber die Freiliste
liefert. Die folgenden Ausgaben wurden auf einem Testsystem erzielt.

Standardstore: Roundstore: Chainstore:

Heap info | Heap info | Heap info
AllocEntries 0.000.012 | AllocEntries 0.000.012 | AllocEntries 0.000.012
FreeEntries 0.000.001 | FreeEntries 0.000.001 | Freekntries 0.000.001
AllocSize 0.001.960 | AllocSize 0.001.960 | AllocSize 0.001.960
FreeSize 0.063.528 | FreeSize 0.063.528 | FreeSize 0.063.528
HeapSize 0.065.488 | HeapSize 0.065.488 | HeapSize 0.065.488

Start | Start | Start

Ready 181 ms | Ready 135 ms | Ready 47 ms

| |

Heap info | Heap info | Heap info
AllocEntries 0.000.013 | AllocEntries 0.000.013 | AllocEntries 0.005.023
FreeEntries 0.000.008 | FreeEntries 0.000.010 | Freekntries 0.000.008
AllocSize 0.001.976 | AllocSize 0.001.976 | AllocSize 0.470.232
FreeSize 0.521.928 | FreeSize 0.652.904 | FreeSize 0.053.672
HeapSize 0.523.904 | HeapSize 0.654.880 | HeapSize 0.523.904

Free unused | Free unused | Free unused

| |

Heap info | Heap info | Heap info
AllocEntries 0.000.013 | AllocEntries 0.000.013 | AllocEntries 0.000.013
FreeEntries 0.000.001 | FreeEntries 0.000.001 | FreeEntries 0.000.001
AllocSize 0.001.976 | AllocSize 0.001.976 | AllocSize 0.002.264
FreeSize 0.063.512 | FreeSize 0.063.512 | FreeSize 0.063.224
HeapSize 0.065.488 | HeapSize 0.065.488 | HeapSize 0.065.488

5.2.5 Block (samples/tblock.cpp)

Im Beispielprogramm TBlock wird mit einer selbstdefinierten Blockbasisklasse die Nutzung von
Paddingbytes demonstriert. Mit einem Teststore, der alle Anforderungen und Freigaben protokolliert,
wird das Verhalten des Templates gct ResBlock bei verschiedenen MinimalgréRen Uberprift.

5.2.6 Block- und Packstore (samples/tblockstore.cpp)

Das Beispielprogramm TBlockstore prift die Funktionsweise von Block- und Packstore. Der Blockstore
wird mit einem Elementblock und einem Pageblock Gberprift. Die Storeklassen auf der untersten Ebene
protokollieren alle Anforderungen und Freigaben, die von den Ubergeordneten Block- und Packstores an
sie weitergereicht werden.

Im Hauptprogramm werden nacheinander Anforderungen und Freigaben an Block- und Packstore erzeugt
und protokolliert. Anhand der zugehdrigen Ausgaben der Protokollstores wird ersichtlich, ob sich Block-
und Packstore wie erwartet verhalten.

Spirick Tuning Referenzhandbuch Seite 168

5.2.7 Container (samples/tcontainer.cpp)

Das Beispielprogramm TContainer demonstriert einige elementare Containeroperationen. Mit
Templatefunktionen werden verschiedene Objekt- und Zeiger-Containerarten getestet. Wichtig ist, dal3
zu jedem Konstruktor der Klasse ct_Int ein Destruktor aufgerufen wird. Die Funktionen PrintContainer
und PrintPtrContainer protokollieren den Inhalt eines Containers auf die Standardausgabe. Container
kénnen unterschiedliche Datentypen fiir Positionszeiger verwenden. Deshalb werden sie mit eigenen
Templatefunktionen ausgegeben.

void PrintPos (t_UInt u)

{
printf ("%d"., u);
}

void PrintPos (void * p)

{
printf ("%p", p);

}

template <class t_container>
void PrintContainer (t container * po_cont)

printf ("Container:");

for (typename t container::t Position o _pos = po_cont-> First ();
0 pos !=0;
0_pos = po_cont-> Next (o _pos))

printf (" Entry[");
PrintPos (o_pos);
printf ("1=%d", po_cont-> GetObj (o pos)-> GetValue ());

}

printf ("\n");
1

In der Testfunktion werden ein Container erzeugt und verschiedene Methoden aufgerufen. Zwischen den
Containeroperationen wird mehrmals der aktuelle Inhalt des Containers ausgegeben, um das erwartete
Ergebnis mit dem tatsachlichen zu vergleichen.

template <class t_container>
void Test ()
{

gct_CompContainer <t container> * po cont = new gct CompContainer <t container>;
typename t_container::t Position o_posl;

ct_Int co_int (1);

PrintContainer (po_cont);

po_cont-> AddObjCond (& co_int);

po_cont-> DelObj (po_cont-> First ())
PrintContainer (po_cont);
delete po_cont;

}

5.2.8 Collections (samples/tcollection.cpp)

Das Beispielprogramm TCollection demonstriert einige elementare Zeigercontainer- und
Collectionoperationen. Es ist dhnlich wie TContainer aufgebaut und erzeugt eine &hnliche Ausgabe.
Wichtig ist, dal3 zu jedem Konstruktor der Klasse ct_Int ein Destruktor aufgerufen wird. Mit
Templatefunktionen werden je ein Zeigercontainer und eine Collection getestet.

Spirick Tuning Referenzhandbuch Seite 169

5.2.9 [Zeiger]Mapcontainer (samples/t[ptrimap.cpp)

Die Beispielprogramme TMap und TPtrMap demonstrieren einige elementare Operationen mit
Mapcontainern. Wichtig ist, daR zu jedem Konstruktor der Klasse ct_Int ein Destruktor aufgerufen wird
und dald eingefligte Schllissel auch gefunden werden.

FUr Mapcontainer existieren keine vordefinierten Standardinstanzen. Deshalb dienen die
Beispielprogramme TMap und TPtrMap auch als Vorlage fir mégliche Parameter der Templates gct Map
und gct_PtrMap.

5.2.10 Zugriffsbeschleunigung (samples/taccess.cpp)

Das Beispielprogramm TAccess demonstriert die Zugriffsbeschleunigung von speziellen Containern. Mit
Templatefunktionen werden je ein Array, ein sortiertes Array und eine Hashtabelle getestet. In der
Testfunktion werden ein Container und einige Hilfsvariable erzeugt. Der Container wird mit zufallig
erzeugten Zeichenketten der Lange 1 bis 40 gefillt. Die fiir den Aufbau des Containers bendétigte Zeit
wird protokolliert. Anschlielend wird jede einzelne Zeichenkette mit der Methode SearchFirstObj im
Container gesucht. Die gesamte flir das Suchen bendétigte Zeit wird protokolliert. Das Programm kann fir
die verschiedenen Containerarten folgende Ausgaben erzeugen:

Array: Sortiertes Array: Hashtabelle:

Begin construction . . . | Begin construction . . . | Begin construction . . .
Ready: 89 ms | Ready: 1224 ms | Ready: 111 ms

Begin searching . . . | Begin searching . . . | Begin searching . . .
Ready: 49667 ms | Ready: 215 ms | Ready: 94 ms

5.2.11 Exceptions in Containern (samples/texception.cpp)

Das Beispielprogramm TException demonstriert das Verhalten von Containern beim Auftreten von
Exceptions im Konstruktor oder Destruktor enthaltener Objekte. Relevante Testergebnisse sind das
Zerstoren vollstandig konstruierter Objekte und das Erhalten der Konsistenz im Container. Zum Testen
der Container wird die Klasse ct Throw verwendet.

bool b Throw = true;

class ct_Throw

{

int 1;
public:

static int i_Num;

static int i_Throw;
ct_Throw ();
ct _Throw (const ct Throw &);
~ct_Throw ();

ct _Throw & operator = (const ct_Throw &):

int GetHash () const { return i Num; }

b

Alle Methoden der Klasse Ubertragen eine Meldung auf die Standardausgabe und l6sen unter bestimmten
Bedingungen eine Exception aus. Als Beispiel folgt der Default-Konstruktor.

ct_Throw::ct _Throw ()

printf ("%2d ct_Throw O\n", ++ i Num);

Spirick Tuning Referenzhandbuch Seite 170

if ((b_Throw) || (i_Num == 1 Throw))

{

i_Num --;

throw 1:

}
}

Von mehreren Containerarten werden Instanzen erzeugt.

gct _Std32DList <ct Throw> co DList;

gct Std32BlockDList <ct_Throw> co BDList;
gct _Std32Array <ct Throw> co Array;

gct _Std32Array <ct Throw> co Array2;
gct_Std32HashTable <ct Throw> co HashTable;

Die Funktion TArrayConstructor testet den Konstruktor eines Arraycontainers.

void TArrayConstructor ()

{

b Throw =
co_Array.
co_Array.
co_Array.
co_Array.

ct_Throw

false;

AddObj ():
AddObj ():
AddObj ()
AddObj ():

:1_Throw = ct_Throw::i Num + 3;

gct Std32Array <ct Throw> co_array2 = co_Array;

}

Die Funktion TArrayDestructor testet den Destruktor eines Arraycontainers.

void TArrayDestructor ()

b Throw = false;
gct_Std32Array <ct Throw> co_array;

Cco_array.
co_array.

CO_array

co_array.

b Throw
}

AddObj ():
AddObj ()
AddObj ():
AddObj ();
true;

In der main-Funktion werden die verschiedenen Containerarten Uberprift. Fir jeden einzelnen Container
werden mehrere Methoden aufgerufen, die Exceptionhandler enthalten. Zum Beispiel wird die Methode
AddObj eines Arraycontainers getestet.

void main ()

(
try
{

co_Array. AddObj ():

}

catch (int 1)

printf ("Exception %d from co_Array. AddObj O\n", 1);
printf ("Array Tlength Zd\n", co Array. GetlLen ());

}

Nach dem Priifen einzelner Methoden werden Konstruktor und Destruktor des Containers getestet.

try
{

TArrayConstructor ();

}

catch (int 1)

Spirick Tuning Referenzhandbuch Seite 171

printf ("Exception %d from TArrayConstructor OO\n", i);
ct_Throw:: i_Throw = 1000;

co_Array. DelAll ();

}

Das Programm erzeugt unter anderem folgende Ausgaben:

1 ct_Throw ()
Exception 1 from co Array. AddObj ()
Array Tength 0

ct_Throw (
ct_Throw (
ct_Throw (
ct_Throw (
ct_Throw (
ct_Throw (
ct _Throw (copy)
~ct_Throw ()
6 ~ct_Throw ()
Exception 2 from TArrayConstructor ()
5 ~ct_Throw ()
4 ~ct_Throw ()
3 ~ct_Throw ()
2 ~ct_Throw ()

opy)

~N 0O N OO > w N

)
)
)
)
copy)
C
C
(

5.2.12 Interlocked (samples/tinterlocked.cpp)

Das Beispielprogramm Tlinterlocked priift das Verhalten der Funktionen t1_InterlockedIncrement und
t1_InterlockedDecrement. Es werden finf Threads gestartet, die gleichzeitig und ohne Synchronisierung
mit den Interlocked-Funktionen auf die eine Variable und mit den Operatoren ++ und -- auf eine andere
Variable zugreifen. Am Ende wird erwartet, daf die Interlocked-Variable den Wert der Testkonstanten
enthalt und die andere Variable einen zufalligen Wert.

5.2.13 Threads (samples/tthread.cpp)

Das Beispielprogramm TThread prift das Starten und Beenden von Threads sowie die Thread-
synchronisation. Zum Protokollieren des Programmablaufs werden von der main-Funktion und den
Threadfunktionen Informationen zur Standardausgabe Gbertragen. Das Programm wird an verschiedenen
Stellen mit t1_Delay unterbrochen. Die Lange der Pausen ist so gewahlt, dal3 nie zwei Threads
gleichzeitig versuchen etwas auszugeben. Dadurch erscheinen die asynchronen Ausgaben in einer
geordneten Reihenfolge.

Zu Beginn der main-Funktion werden drei Threads gestartet und deren Ende abgewartet. Danach werden
zwei kritische Abschnitte geschachtelt. Dabei darf sich das Programm nicht selbst blockieren.
AnschlieBend wird ein Thread gestartet, der zehnmal in einen kritischen Abschnitt eintritt und nach dem
Verlassen eine Pause einlegt. In der Mitte dieser Schleife tritt der Hauptthread in einen kritischen
Abschnitt ein und wartet eine Sekunde. In dieser Zeit dirfen vom zweiten Thread keine Ausgaben
erscheinen. AnschlieBend wird die Schieife fortgesetzt. Am Ende der main-Funktion werden dieselben
Tests mit kritischen Abschnitten fiir ProzeRBsynchronisation durchgefiihrt. Dabei wird auch das
versuchsweise Sperren des Mutexobjekts mit einem Timeout getestet.

Spirick Tuning Referenzhandbuch Seite 172

5.2.14 Semaphoren (samples/tsemaphore.cpp)

Im Beispielprogramm TSemaphore wird die Funktionsweise von Thread- und ProzeR3-Semaphoren
geprift. Zunachst werden die Semaphoren wie Mutexobjekte verwendet. Die Ausgaben erscheinen
ahnlich wie vom Programm TThread. AnschlieBend wird mit einem Semaphor eine einfache Message-
Queue getestet.

5.2.15 Prozesse (samples/texec.cpp)

Das Beispielprogramm TExec priift das Verhalten der Funktionen t1_Exec und t1_IsProcessRunning. Der
zweite Prozeld wird einmal asynchron und einmal synchron gestartet. Nach dem asynchronen Aufruf
wartet das Hauptprogramm mit t1_IsProcessRunning, bis der zweite Prozel beendet ist. Nach dem
synchronen Aufruf gibt das Hauptprogramm den Rickgabecode aus.

Es werden auch die verschiedenen Arten der Parameteribergabe geprift. Ein ProzeRparameter ist im
einfachsten Fall eine nullterminierte Zeichenkette ohne Leerzeichen und Anfiihrungsstriche. Es kann
jedoch auch eine leere Zeichenkette, ein Nullzeiger, eine Zeichenkette mit Leerzeichen und eine
Zeichenkette mit Anflhrungsstrichen verwendet werden. Der zweite Prozel® Ubertragt die Parameter zur
Kontrolle auf die Standardausgabe.

5.2.16 Starthilfe (samples/texechelper.cpp)

Hintergrund: Bei UNIX-ahnlichen Betriebssystemen werden neue Prozesse meist mit fork oder davon
abgeleiteten Funktionen gestartet. Dabei kann es zu Ressourcenproblemen kommen, wenn der Prozel3
mehrere Threads gestartet, mehrere Dateien gedffnet und/oder viel Arbeitsspeicher belegt hat. Diese
Probleme kann man umgehen, indem man relativ frih in der Startphase des Prozesses einen Hilfsprozel3
startet, der nur dazu dient, weitere Prozesse zu starten. Haupt- und Hilfsproze3 kommunizieren Gber
zwei Semaphoren und Sharedmemory miteinander.

Das Beispielprogramm TExecHelper enthélt dieselben Schritte wie TExec. Statt der Funktion t1_Exec wird
aber die Klasse ct_ExecHelper verwendet.

5.2.17 Gemeinsame Ressourcen (samples/tshared.cpp)

Das Beispielprogramm TShared prift das Verhalten der gemeinsamen Ressourcen Mutex und
Sharedmemory. Fir jeden der beiden Tests wird mit t1_Exec ein zweiter ProzeR gestartet. Im ersten Test
sperrt der zweite Prozeld das gemeinsame Mutexobjekt zehnmal in einer Schleife. Nach der Freigabe wird
jeweils eine Pause eingelegt. In der Mitte dieser Schleife sperrt der Hauptprozel®3 das Mutexobjekt und
wartet eine Sekunde. In dieser Zeit diirfen vom zweiten Prozel® keine Ausgaben erscheinen.
AnschlieBend wird die Schleife fortgesetzt. Im zweiten Test wird der Zugriff auf den gemeinsamen
Speicher geprift und protokolliert.

5.2.18 Zeichenketten (samples/tstring.cpp)

Das Beispielprogramm TString prift einige elementare Operationen flr Zeichenketten. Die Tests werden
parallel mit einer char- und einer wchar_t-Klasse durchgefihrt, z. B. ct_String und ct _WString oder

ct Rnd String und ct _Rnd WString. Bei der Standardausgabe eines Programms kdnnen printf und wprintf
nicht gemischt verwendet werden. Deshalb wird bei wchar_t-Zeichenketten jedes Zeichen einzeln mit
printf ausgegeben. Die meisten Teiltests werden mit char und wchar_t durchgefiihrt und protokolliert.
AnschlieRend wird das erwartete Ergebnis als eine Stringkonstante ausgegeben, d. h. auf der
Standardausgabe erscheint dreimal hintereinander dieselbe Ausgabe.

Spirick Tuning Referenzhandbuch Seite 173

Im einzelnen werden die folgenden Tests durchgefiihrt: Suche nach Zeichen und Zeichenketten,
Vergleich von Zeichen und Zeichenketten, Einfigen, Loschen, Ersetzen, Austauschen, temporére
Stringobjekte, Zeichenketten formatieren, Konstruktoren und Umwandeln von char- und wchar_t-
Zeichenketten.

5.2.19 Zeichenketten sortieren (samples/tsort.cpp)

Das Beispielprogramm TSort demonstriert das Sortieren von Zeichenketten mit Hilfe der Klasse
ct_StringSort. Der Sortieralgorithmus wird mit der Standardfunktion gsort () im Zusammenspiel mit
stremp () und stricmp () verglichen. Es werden 1 000 000 Zeichenketten zuféllig erzeugt und sortiert.
Beim Sortieren wird die Zeit in Millisekunden gemessen und ausgegeben. Das Programm kann folgende
Ausgabe erzeugen:

StrCmp 937
StriCmp 1176
StringSort 212

Im zweiten Teil des Programms werden Zahlen mit Hilfe der Klasse ct_UInt32Sort sortiert. Dieselbe
Sortierung wird noch einmal mit gsort () durchgeflihrt, und die Rechenergebnisse werden miteinander
verglichen.

5.2.20 Dateiname (samples/tfilename.cpp)

Das Beispielprogramm TFileName demonstriert elementare Operationen der Klasse ct_FileName. Der
Zugriff auf die einzelnen Komponenten wird Uberpriift. Am Beginn der main-Funktion wird ein
Dateinamen-Objekt angelegt und mit einer Zeichenkette versehen. Alle Komponenten werden einzeln
abgefragt und ausgegeben.

void main ()

ct_FiTeName co name;
co_name. AssignAsName ("A:\\PATH\\NAME.EXT");

printf ("\n");

printf ("Drive \"%s\"\n", co_name. GetDrive (). GetStr ());

printf ("Path \"%s\"\n", co_name. GetPath (). GetStr ());

printf ("PurePath \"%s\"\n", co_name. GetPurePath (). GetStr ());
printf ("DrivePath \"%s\"\n", co_name. GetDrivePath (). GetStr ());
printf ("PureDrivePath: \"%s\"\n", co_name. GetPureDrivePath (). GetStr ());
printf ("Name 2 \"%Zs\"\n", co_name. GetName (). GetStr ());

printf ("Ext \"%s\"\n", co_name. GetExt (). GetStr ());

printf ("NameExt \"%s\"\n", co_name. GetNameExt (). GetStr ());
printf ("AT1 \"%s\"\n", co_name. GetAl1Str ());

AnschlieRend wird die Umwandlung in relative und absolute Dateinamen geprift.

co_name. ToRel ("A:\N\PATH\\X"):

printf ("ToRel S \"%Zs\"\n", co_name. GetAl1Str ());
co_name. ToAbs ("A:\\PATH\\X");

printf ("ToAbs S \"%Zs\"\n", co_name. GetAl1Str ());
co_name. TolLower ();

printf ("ToLower 2 \"%s\"\n", co_name. GetAll1Str ());
printf ("Wildc . %d\n", co_name. HasWildCards ());
printf ("Abs » %d\n", co_name. IsAbs ());

printf ("Rel » %d\n", co_name. IsRel ());

Am Ende wird eine Methode Uberprift, die ein temporéres ct_String-Objekt liefert.

Spirick Tuning Referenzhandbuch Seite 174

== "ext")
== \"ext\"\n");

if (co_name. GetExt ()
printf ("\nGetExt ()

Das Programm erzeugt folgende Ausgabe:

Drive "AT

Path "\PATH\"

PurePath "\PATH"

DrivePath "A:\PATH\"
PureDrivePath: "A:\PATH"

Name : "NAME"

Ext "EXT"

NameExt "NAME . EXT"

ATl "A:\PATH\NAME . EXT"
ToRel " ANAME.EXT"
ToAbs - "A:\PATH\NAME .EXT"
TolLower : "a:\path\name.ext"
Wildc 20

Abs o1

Rel -0

GetExt () == "ext"

5.2.21

Das Beispielprogramm TFile priift im Verzeichnis fir temporare Dateien einige elementare Operationen
der Klasse ct_File. An zwei Stellen im Programm versucht ein zweiter Prozel3 auf die Datei zuzugreifen,
die im Hauptprozel3 zum Lesen oder Schreiben gedffnet ist. Im einzelnen werden die folgenden Tests
durchgefiihrt: Erzeugen, Offnen, SchlieBen, Lesen, Schreiben, Positionieren, Andern der GroRe,
Verschieben und Ldschen.

Datei (samples/tfile.cpp)

5.2.22 Verzeichnis (samples/tdir.cpp)

Das Beispielprogramm TDir prift im Verzeichnis fir temporare Dateien einige elementare Operationen der
Klasse ct _Directory. Im einzelnen werden die folgenden Tests durchgefiihrt: Abfrage des aktuellen
Verzeichnisses, Erzeugen, Verschieben und Loschen.

5.2.23 Verzeichnis durchlaufen (samples/tdirscan.cpp)

Das Beispielprogramm TDirScan demonstriert elementare Operationen der Klasse ct _DirScan. Der Inhalt
eines Verzeichnisses wird gelesen und ahnlich dem MS-DOS-Kommando dir auf die Standardausgabe
Ubertragen. Die Funktion PrintEntry gibt die Daten eines einzelnen Verzeichniseintrags aus. In der main-
Funktion wird eine ct _DirScan-Variable angelegt und utberpriift, ob das Verzeichnis existiert. In der ersten
Schleife werden alle Verzeichniseintrége ungefiltert durchlaufen. In der zweiten Schleife werden nur
Dateien und in der dritten Schleife nur Unterverzeichnisse ausgegeben.

5.2.24 Verzeichnisbaum (samples/ttree.cpp)

Das Beispielprogramm TTree demonstriert dhnlich wie TDirScan elementare Operationen der Klasse
ct _DirScan. Das aktuelle Verzeichnis wird rekursiv durchlaufen. Alternativ kann auch ein anderes
Verzeichnis als Kommandozeilenparameter (ibergeben werden. Der Verzeichnisbaum wird &hnlich dem
MS-DOS-Kommando tree auf die Standardausgabe Ubertragen.

Spirick Tuning Referenzhandbuch Seite 175

5.2.25 Uhrzeit und Datum (samples/ttimedate.cpp)
Das Beispielprogramm TTimeDate vergleicht die Genauigkeit der Systemzeit mit der Prazisionszeit. In der
main-Funktion werden zwei Objekte der Klasse ct _TimeDate angelegt. In einer Schleife werden fortlaufend

die aktuelle Systemzeit und die Prazisionszeit ausgegeben. Im zweiten Teil des Programms wird die
Prazisionszeit in Millisekunden mit der Prazisionszeit in Mikrosekunden verglichen.

5.2.26 Systemnahe Informationen (samples/tinfo.cpp)

Das Beispielprogramm TInfo fragt der Reihe nach alle systemnahen Informationen ab, die in der Datei
"tuning/sys/cinfo.hpp" bereit gestellt werden, und Ubertragt sie auf die Standardausgabe.

5.2.27 MD5 und UUID (samples/tmd5.cpp und tuuid.cpp)

Die Beispielprogramme TMD5 und TUUID enthalten kleine Testsequenzen fir die Klassen ct_MD5 und
ct_UUID. Dabei werden die textuellen Reprasentationen der Rechenergebnisse ausgegeben.

Spirick Tuning Referenzhandbuch Seite 176

Index

AbortFind.....coeieiii 146
ACUITE. .ot 112, 116
AddKeyAndValPtr........ccoooiviiiiiiiiiiieens 86
AddKeyAndValPtrCond...........ccovvevieiiinnnns 86
AddKeyAndValue..........cooeeiiiiiiiiiiiieiinnns 82
AddKeyAndValueCond............ccevvviniinnnnnn. 83
AddOD]. . 49
AddODJATter. ... 49
AddODbjAfterLast.......cccoeveieieiiii i 53
AddObjAfterLastCond.........cccvvvieinviinnnnnnn. 69
AddODbjAfterNth............o 53
AddObjBefore.......ccovviiiiiiiii 49
AddObjBeforeFirst.........ccooviiiiiiiiiiaas 53
AddObjBeforeFirstCond............ccoeevieinnnnnn. 69
AddObjBeforeNth.........cccooiiiiiiiiiiiinee 53
AddODbJCoNd.. ... 69
AdAPIr .o 73
AdAPIrATtEr. . 73
AddPtrAfterLast.......ccooviiiiiiiiiiiiiii e 73
AddPtrAfterLastCond..........cccoeeiviiiiiiinennn. 75
AddPtrAfterNth......ccoooiiii 73
AddPtrBefore......cooviiiiiiiiiiiiii 73
AddPtrBeforeFirst.......c.ccooviiiiiiiiiiiiins 73
AddPtrBeforeFirstCond............cccoveviinnnn 75
AddPtrBeforeNth............ccoiiiiiiiii. 73
AddPtrCond.......coooviiiiiiiicic e 75
AddRefAfterLastCond.........cccovvviininennnnnnn. 79
AddRefBeforeFirstCond............ccocvivvinennnn. 79
AddRefCond......c..oviviiiii 79
AddrOf. . 12
AlignPageSize............ccooviiieiinnn. 30, 31, 34
Alles ersetzen..........ooeviiiiiiiiiiiiiiieen, 129
AllOC. o 12
AllOCDaAta. e 34, 44
AlIOCPr . 34
AnfUgen.....cooviiii 128
Anfigen und Léschen mehrerer Objekte..... 49
Anflgeoperatoren........c.ooevviiiiiiiinnnnnnnns 131
Anzahl der Objekte.......cccoovieiiiiiiiis 48
APPENd. ..o 128
AppendChars.......c.cociiiiiiiiii e 29
AppendF.o 130
Appendltems.......oiiiiiiii 31
AppendODbj.....couiiii 49
AppendPath........ccoooiiiiiii 137
ARRAY DCLS.....coiiiiiiiii e, 57
ASSIGN. e 127
AssignAsName.........coooviiiiiiiiiiiie 136
AssignAsPath........cooooiiiiiii 136
AssignChars.........coooiiiiiiiiiii 29
ASSIGNF ... 130
Bedingtes Einflgen.........cccooovvivinnnnns 69, 79
Bedingtes Einfligen von Zeigern................. 75
Bedingtes Léschen gefundener Objekte....... 70

Bedingtes Léschen gefundener Paare....83, 86
Bedingtes Léschen gefundener Paare und

referenzierter Objekte.........ccovviiiiinnnenne. 87
Bedingtes Loschen gefundener Zeiger......... 76
Bedingtes Léschen gefundener Zeiger und
referenzierter Objekte............c.ccvvnennn 76, 80
Bedingtes Léschen von Zeigern gefundener
Objekte. .o 80
Before. ..o 61
BLOCK DCLS....ceiiiiiie i 35
BLOCK DLIST DCLS.....cciviiiiiieieiieeanene 64
BLOCK STORE DCLS......ccieiievieieieieenenen 37
BLOCKPTR _DLIST DCLS......ccccviieieeeenn 90
BLOCKREF DLIST DCLS.......ccoviiiininenenes 67
BLOCKREF _STORE DCLS........ccveiviiiiennne. 42
BLOCKREFPTR _DLIST DCLS...........cceutnens 92
CanFreeAll.... ..o 13
Clear....coovviiiiiiiie e 127, 149, 152
CloSE..ciiiiiiiiiiiiiiiiieane 114, 116, 117, 141
co_AttrArchive.............o 144
co_AttrDirectory.........ocoeviiiiiiiiiiiinn 144
co_AttrHidden............oooi 144
co_AttrReadOnly.........o.oooviiiiiiiiiininnn, 144
CO_AttrSystem........oooviiiiiiiiiii 144
co_DayFactor.........cooeviiiiiiiiiis 107
co_HourFactor.........ocooviiiiiiiiiinn, 107
co_InvalidFileld............coooviiiiiiie 118
co_MicroSecondFactor.............coeveininnnnn. 107
co_MilliSecondFactor............cccevvuvninennnn. 107
co_MinuteFactor..........coovvviiiiiiiiien 107
co_SecondFactor........ccccoveviiiniiniiiiniene. 107
COLLMAP DCL...tiiiiiiiieiiieece e 99
COLLMAP DEF.....ciiiieiiiieeeeeeeeeeee 99
CompressPath..........coiiiiiiiiiiiii 138
CompSubStr.....ccvviiii 127
ComMPT 0. i 127
ContainsKey....cooovviiiiiiiiiii i 82, 85
ContainsObj...c.vvviiii 68
ContainsPtr......cocoiviiii e 75
ContainsRef......c.oooiiiiii 79
CONVErt .. 132
[0 o 1 142
CopyDriveFrom.......cccooiiiiiiiiiiiiiieeas 137
CopyDrivePathFrom............coooiiiiiiint s 137
COopYEXTFrom.. oo 137
CopyNameExtFrom........ccoooiiiiiiiiiiinnns 137
CopyNameFrom........cocovveiiiiiiiiiiiiinens 137
CopyPathFrom.......c.coooiiiiiii 137
CountKeysS....ovviiiiiiiiiiiicic e 82, 85
CountODbjs...civiiiiiii 68
CoUNPIS. .o 75
CountRefs...ccoviiiiiiii 79
Create............ 114,116, 117, 141, 144, 152
CreateChnStore........coovviieviiiiiiieieenns 19
CreateRndStore.......coocviieiiiiiiiiiiiiee, 17

Spirick Tuning Referenzhandbuch Seite 177

CreateStdStore...ovviiiii it 16

ct AnyBlock.........cooooi 20, 21
Ct ANyStore......ocooviiiiiiiii 11
Ct AITAY. ..ot 99
ct BlockDList.......ocovuiiiiiiiiiiiieeen 100
ct_BlockRefDList.........cccooviviiiiiiiinininnns 100
ct Chn [WI]String........cocoviiiiiiiiinninn, 132
ct Chn BlocK.......c.oovviiiiiiiii 35
ct Chn_BlockRefStore...........cooveviiiiinnnnnnn. 42
ct Chn_BlockStore.........cocoviviiiiiiiinininnn. 38
ct Chn RefStore.........oocvviviiiiiiiiiiieenn, 41
ct Chn _Store.....c.cooovviiiiiiiie, 19
ct Chn16BIloCK......ovviviiiiiiiii 35
ct Chn16BlockRefStore...........ccccvvvvininnnnn. 42
ct Chn16BlockStore............coeviviiiiinnnnn, 38
ct Chn16RefStore.........coovviviiiiiiiin, 41
ct Chn16Store......c.cocviiiiiiiiiii, 19
ct Chn32BIlocK......ovvviviiiiiiiii 35
ct_Chn32BlockRefStore................ocooiniis 42
ct Chn32BlockStore..........cocovviiiiiiiinnnnn, 38
ct_ Chn32RefStore........ccccocviiiiiniiinn, 41
ct Chn32Store......cocoviiiiiiii, 19
ct_ Chn8Block.........cccooiiiiii 35
ct_Chn8BlockRefStore...............coooeiinis 42
ct_Chn8BlockStore..........cc.oooviiiiiiinin, 38
ct_ Chn8RefStore..........coooviiiiiinnn, 41
ct Chn8Store........oooviiiiiiii 19
ct_ ChnStore........coovviiiiii 17
ct Collection.......ccoevvviiiiiii 95
ct Directory.......ocoviiiiiiiiiiii 143
ct DirScan.....ccooviiiiiiii 145
Ct DList...ciiiii 99
ct File..ooooiiii, 140, 141
ct FileName........cocoovviiiii, 134, 135
Ct MDb..oii 150
Ct ObjJeCT i 94
ct PackStore.........coooviiiiiiiii 43
ct PackStoreBase...........cocooviiiiiiiiiiinnnn. 43
ct PageBlock.........coooiiiiii, 34
ct PageBlockBase...............coooiiii 32
ct PrMutex........ooveiiiiiiinin, 113, 114
ct PrSemaphore..........cccoviviiiiiiiiiiinnn, 115
ct_RefCollection...........cooeiiviiiinn, 98
ct RefCount......cocoeviviiiiiiiii, 38, 39
ct RefDList...c..oiviieiiiiii 100
ct_ Rnd _[WIString......coovvvveiiiiiiiiieen. 132
ct Rnd_Block.......coovviiiiiii 35
ct_Rnd_BlockRefStore..................ooiniis 42
ct_ Rnd_BlockStore.........ccooviiiiiiiiiiinn, 38
ct Rnd_RefStore............oocooiin 41
ct Rnd_Store........cooovviviiiiii 17
ct Rnd16Block.........cccooiiiiiiii 35
ct Rnd16BlockRefStore...........cccovevinnnnnn. 42
ct_ Rnd16BlockStore...........ccocvvuviiiiinn, 38
ct Rnd16RefStore.........coovvviiiiiiiiinnnnn, 41
ct Rnd16Store.......coovevviiiiiiiiii 17
ct Rnd32BIoCK.....c.vvveiiiiiiiiiiiiee 35
ct Rnd32BlockRefStore.........c.cocvevinnnnnn. 42
ct Rnd32BlockStore........ccoovviiiiieieinnnnnnnnn. 38
ct Rnd32RefStore.......cccooveviiiiiiiiiiinn, 41

ct Rnd32Store.......cccoovviiiiiiiiiii, 17
ct_ Rnd8BIlocK........ccoevviiiiiiii 35
ct_Rnd8BlockRefStore.............ccooviiinnnin, 42
ct_Rnd8BlockStore............ooeeiiiiiinininnnn, 38
ct Rnd8RefStore.........covvvviiiiiiiiniiii, 41
ct Rnd8Store.......ccovvviiiiiiiiiii 17
Ct RNASTOre.....ocovviiiiiiii e 16
ct_SharedMemory............ceevvviinnns 116, 117
ct_SharedResource............coceevviiienennnnnn. 112
Ct_SortedArray.....cocoveviiiiiiiiiiii e 99
ct Std [WIString.....ccoovvveiiiiiiiiiien 132
ct Std BloCK.....oviiiiiiii 35
ct_Std BlockRefStore..........ccoovveiiiiiininnnnn, 42
ct_Std BlockStore........cocovviiiiiiiiiiin, 38
ct Std RefStore.........ocoooiiniiiin, 41
Ct Std STOre.....ovviiiiii e 16
ct_ Std16Block........ccoooiviiiiii 356
ct_Std16BlockRefStore..........cccoevvvinininnnnn. 42
ct_Std16BlockStore.........ccovviiviiiiiiinini, 38
ct Std16RefStore.......c.coviiiiiiiin, 41
ct_Std16Store.......cocevvviviiiiiiiiii 16
ct_Std32Block........ccooiiiiii 356
ct_Std32BlockRefStore..........c.ccoiviiiinnnn. 42
ct_Std32BlockStore........cooviiiiiiiiiin 38
ct_ Std32RefStore........coooovviiiiiiiiiiinn, 41
ct_Std32Store.......ccoeviiiniiiiiiii 16
ct Std8BIlocK........cocoveiiiiii 35
ct_Std8BlockRefStore.........cocovviiiiiinnnn, 42
ct_Std8BlockStore..........coovviiiiiiiiii, 38
ct_Std8RefStore..........cooeviiiiii 41
Ct_Std8Store......covvvviiiiiiiiii 16
ct StdStore........cooviiiiii 15
Ct SHIHNG e 133
Ct_StringSort....cccovvviiiiiiii 139
ct ThMutex.......ooooiiiiiiii 110
ct ThSemaphore...........ovevvviiieinnnnn. 111, 112
ct TimeDate..........oovvviiiiiiinnnn, 148, 149
Ct UINt32S0r...ucvivieiiiiiieiiieeeeeee 139
Ct UUID. ..o 151
Ct WSHING. .o 133
cu_HashPrimel...........ooii, 63
cu_HashPrime16.........ccoveviiiiiiiiiiinnnn, 63
cu_HashPrime2................coin, 63
cu HashPrime4d.............oooiiiinn, 63
cu_HashPrime8.................oco, 63
DecCharSize.......cccoevvviiiiiiiiiiii e, 29
DecltemSize........ccoooiiviiiiiiiii 31
DecltemSizeT.....ccovvviiiiiiiiiii e 31
DecRef.....cciiiiiiiii 39, 40, 66, 98
DelAll. ..o 49
DelAIIKEY ... 86
DelAllKeyAndValue...........ccooevivvininnnns 83, 87
DelAIIPLI ...t 74
DelAlIPtrAndODbj.......cccvviiiiii 74
Delete....cccovvvviiiiiiiiiiiiieen, 129, 142, 144
DeleteChars.........ccceviviiiiiiii 29
DeleteChnStore.........ccccoviiiiiiniiininns 19
Deleteltems........ccooviiiiiiiiii 31
DeleteRev......c.coooviviiiiiiiiii, 129

Spirick Tuning Referenzhandbuch Seite 178

DeleteRNdStore.....covvvviiiiiiiiiiiie i 17

DeleteStdStore.....c.oooeiiiiiiiiiiiiieeeee 16
DelFirstEqualObj......c.cocevuiiiiiiiiiiiiieeen 70
DelFirstEqualObjCond..........coceviviiiiiennnn.. 70
DelFirstEqualPtr......cccooviiiiiiiiiii e 75
DelFirstEqualPtrAndObj.........cocevveiiiiininnnnn. 76
DelFirstEqualPtrAndObjCond...................... 76
DelFirstEqualPtrCond.........cccoovvieviiiiennnnn. 76
DelFirstEqualRef........ccccoviiiiiiiiie e 80
DelFirstEqualRefAndObj...........cceveiinnnnn.. 80
DelFirstEqualRefAndObjCond..................... 80
DelFirstEqualRefCond..........ccccviiiiinnnnn. 80
DelFirstKey....oooviiiiiii i 86
DelFirstkeyAndValue...................o.e.e 83, 87
DelFirstkeyAndValueCond................... 83, 87
DelFirstKeyCond........ccovvviiiiiiiiiiiiiieaeaenns 86
DelFirstODbj....ouveieiiiii e 54
DelFirstPtr.....ccovvviii 73
DelFirstPtrAndODbj........cccoviiiiiiie 74
DelKeY. .o 86
DelKeyAndValue..........ccoooviiiiiiiinnnnn, 83, 87
DelLastEqualObj.........c.ccoviiiiiiiiiiieeee 70
DelLastEqualObjCond...........ccoiviiiiieinnnn.. 70
DelLastEqualPtr..........cooiiiiiiiiiiiiieeee 76
DelLastEqualPtrAndObj........c.ccvvvveieinnnnn. 76
DelLastEqualPtrAndObjCond...................... 76
DelLastEqualPtrCond..........ccovviiiiiiinnennenn.. 76
DelLastEqualRef.........ccooiiiiiiiiiie 80
DelLastEqualRefAndObj.........cccvvvvvinnnnn.. 80
DelLastEqualRefAndObjCond..................... 80
DelLastEqualRefCond.........ccccevvivviiiniinnn.. 80
DelLastKey...ooovviiiiiiiiiiii e 86
DelLastKeyAndValue.............ccevevvennn 83, 87
DelLastKeyAndValueCond................... 83, 87
DelLastKeyCond......c.cocovviiiiiiiiiiiiiiieeenne, 87
DelLastObj....cvveiiiiiiiii e 55
DellastPtr....ccoviriiiii i 74
DelLastPtrAndObj.......cccvveviiiiiiiiiiiieee 74
DelNextODbj....ocveveieieiii e 55
DelNextPtr...c.covviiii 74
DelNextPtrAndODbj.......cccoeiiiiiiiiii, 74
DeINthODj. .. 55
DelNthPr. .. 74
DelNthPtrANdODj....c.ciiiiiiii e 74
DelObj. e 49
DelPrevODbj......ouieiiiiiei 55
DelPrevPtr.. ..o 74
DelPrevPtrANdODbj........coviiiiiiiiiiiiieieeen 74
DelPtr . 73
DelPtrANdODbj.....c.oiiiiiii 74
DLIST DCLS...cuiiiiiiii e 59
Einflgen.. ..o 128
Einflgen von Objekten............ccoevvenns 49, b3
Einflgen von Paaren............ccocevvvvnnnn. 82, 86
Einflgen von Zeigern..........ccooovvviiiiiiennnns 73
ENdOfFile......oviei i 142
Ersetzen...cocviiiiiii i 129
et Compiler......ccoovviiiiiiii e 120
et ResError......cccovviiiiiiiii, 101

et System......cooiiiiiiiiiii 121
et UtfError........ooo 104
Exception.....ccoviiiiiiiiiiiii 8, 33, b0
EXiStS. ittt 142, 144
FIllChars.....cooiviiiii e 29
Finalize..........oooovii 151
FindFirst.. ..o 146
FindFirstDirectory........ccccvviviiiiiiiiniinnnn.. 146
FindFirstFile.........cooooiiiii, 146
FindNext.......ooovviiiiii, 146
FindNextDirectory........cccvvviiiiiiiiinnnnn.. 146
FindNextFile..............ooo, 146
FindOnce......ccooooviiiiiii, 146
FindOncePath.................oo, 146
Firstooooooii 48, 106, 126
Formatierte Zeichenketten....................... 130
Found.....c.oooiiiiii 146
Free .o 12
FreeAll.....ooooiiiiii 13, 50
FreeData........cooviiiiiiii e 34, 44
FreeFirstObj.....coviiiiii e 55
FreeLastObj......covviiiiiiiiiiiiii e 55
FreeNextODbj.....ccoeiviiiiii e 55
FreeNthODbj....o.ooeiiiiiii 55
FreeObj. .o 50
FreePrevODbj.....cocovviiiiiiiiii e 55
FreeUnused.......ccvviiiviiiiiiiiiiiiieeeenn 19, 37
FromStr...coooiiiiiii 1562
ft_ ThreadFunc.............oooiiiin 109
gct AnyContainer..........ccoevviiiiniiienennns 46, 48
GOt ATTAY ..t 56
get BlocK.....vvoiiiiii 22
gct BlockBase.........ooviiiiiiiii 22
gct BlockStore.......covvviiiiiiiiiii, 36
gct_CharBlocK.......ccvvvviiiiiiiiiiiiie 28
gCt Chn Array.....covveinieiiiiiiieeeee e 57
gct Chn BlockDList.....c.cocoviiiiiiniiininnn, 65
gct Chn BlockPtrDList.........ccveivuivicniennnn. 91
gct Chn_BlockRefDList.........coveiiiininnnn, 67
gct_Chn_BlockRefPtrDList..........cocvcvivinnnnn 92
gct Chn DList.....cocoivviiiiiiii 59
gct Chn HashTable.................ooo, 64
gct_ Chn _PtrArray........cocooviiiiiiiinnn, 88
gct Chn PtrDList....cccooviiiiiiiiin, 89
gct_ Chn_PtrHashTable...................ooinni 90
gct Chn_PtrSortedArray.......cc.ooviviiiinnnnnns 89
gct Chn_RefDList........cocovviiiiiiniinnn, 67
gct_ Chn_RefPtrDList............oooviiiiinin, 91
gct Chn_SortedArray..........cooeviiiiiiniinnnnnn. 61
gct Chn1BArray........ooveviiiii 57
gct Chn16BlockDList........c.cvcvviiiiiinininnnn. 65
gct_Chn16BlockPtrDList...........cocevinininnnn. 91
gct Chn16BlockRefDList.........cocovvvviininnnnn. 68
gct Chn16BlockRefPtrDList............cccuunee. 92
gct Chn16DLISt...cccvivieiiiiiiieieeeeee, 59
gct Chn16HashTable..........c.cocovviiiinennnn. 64
gct Chn1BPIrAIray.. ..o 88
gct Chn16PtrDList.....ccvviiiiiiiiiiieieeeene, 89

Spirick Tuning Referenzhandbuch Seite 179

gct_ Chn16PtrHashTable...........cocoviviiinnns 90

gct Chn16PtrSortedArray..........coevivinnnnn. 89
gct Chn16RefDList.....ccovvviiiiiiiie, 67
gct Chn16RefPtrDList.........cccocvviiiiininnnnn, 91
gct Chn16SortedArray........ooevvviviiieininnnnn. 62
gct Chn32Array......cooviviiiiiiiiiiiiiiees 57
gct Chn32BlockDList........coovvviviiiiieinnnnn, 65
gct Chn32BlockPtrDList.........cccvvviinnnnnnn. 91
gct Chn32BlockRefDList.........ocvvvvninienennns 68
gct_ Chn32BlockRefPtrDList..........cccovenenens 92
gct Chn32DList....ocovniiiiiiiiiiieee e, 59
gct Chn32HashTable...........ccocvvvviininennnn. 64
gct Chn32PtrArray......cocvevviiiiiiiiiiiice, 88
gct Chn32PtrDList....coccvviviiiiiiiiieieieeene, 89
gct Chn32PtrHashTable..........c.cocovvivinnin, 90
gct Chn32PtrSortedArray.......c.cocvvvevninennnn. 89
gct Chn32RefDList......cccvviiiiiiiiiiiiinne, 67
gct Chn32RefPtrDList.......ccovvvviiiiiiiininnnn, 92
gct Chn32SortedArray........ooevviiiiiininnnnnn, 62
gct Chn8Array.....c.coovviiiiiiii 57
gct_ Chn8BlockDList.........ccoviiiiiiiininnn, 65
gct_Chn8BlockPtrDList........cccvivivieininennn. 91
gct_Chn8BlockRefDList........ccvevviviiininnns 67
gct_Chn8BlockRefPtrDList.........cccevivinnnnns 92
gct Chn8DList....ccvviviiiiiiii, 59
gct Chn8HashTable................oon, 64
gct Chn8PtrAray......cccooviviiiiiiens 88
gct Chn8PtrDList........coovviiiiii, 89
gct_ Chn8PtrHashTable................ccocenen. 90
gct Chn8PtrSortedArray........c.covvviininnnnnn, 89
gct Chn8RefDList.......ovcvviviiiiiiiiiiene, 67
gct Chn8RefPtrDList.......ccoviiiiiiininnn, 91
gct Chn8SortedArray........oooveviiieieinininnnn. 61
gct_ CompContainer........cccovvveiiiiniiinininenns 68
get DList..cciviiiii 58
gct EmptyBaseBlock...........oooviiiiiiiiiinnnn, 23
gct EmptyBaseMiniBlock............c.ccceivnnn 24
gct EmptyBaseResBlock...............c...oeie. 26
gct ExtContainer........cooviiviiiiiiiiininnne, 52
get FixBlock.....oooviiiii 27
get_FixltemArray......ooovviiiiiiiie 57
get_FixltemBlock. ..o, 31
gct_FixltemSortedArray...........coooiiinnn, 61
gct HashTable........cocooviiiiiiii 62
gct_ItemBlock.....oooiiii 30
gCt Key..iviiiiiiiii 81, 84
get Map.....coooviiiiii 81
gct MiniBlocK........covvviiiiiiii 24
gct_MiniBlockBase............cooviiiiiiini, 23
gct NullDataBlock........c.cocevviiiiiiiiiiinn, 27
gct_ObjectBaseBlock........ccccoeviiiiiiniinnnn, 23
gct_ObjectBaseMiniBlock...................ceei. 24
gct_ObjectBaseResBlock.........c.c.ovivivnnnnn. 26
gct PackStore......cooovvviiiiiiiii, 44
gct PtrCompContainer.........c.ccvvvvvvininnnnnn. 78
gct PtrContainer.......ccoovvviviiiiiiiiiiin, 71
get PtrMap... .o 84
gct RefDList....occvviviiiiiiiie 65
gct RefStore.....cooovviviiiiii 39
gct ResBIOCK.......ovviiiiiiii 25

gct_ResBlockBase...........cooovvviiiiiiiinn, 25
gct Rnd_Array.....coooviiiiii 57
gct_Rnd BlockDList.......c.coovviiiiiiinin, 65
gct Rnd_BlockPtrDList.......c.cocvvivinininnnnnn. 91
gct Rnd_BlockRefDList........cccvcvviiininnnnnn. 67
gct Rnd_BlockRefPtrDList........c.ccovvennnnnnn. 92
gct RNd DList...cviviiiiiiiiiiiiieeeee, 59
gct Rnd HashTable...............ooooiinn, 64
gct Rnd PtrArray.......ocoeviiiiiiiieen, 88
gct Rnd _PtrDList.....cooviviviiiiiiiee, 88
gct Rnd _PtrHashTable.............coooeiiviinnn, 90
gct Rnd_PtrSortedArray........cccovvveiininnnnnnn. 89
gct Rnd _RefDList.....cocvviviiiiiiiiiiiine 67
gct Rnd _RefPtrDList......cccvevviniiiiiiiinne, 91
gct Rnd_SortedArray........coovvviiiiiiiinnnnn, 61
gct RNdTBArray.....cocoviviiie 57
gct Rnd16BlockDList.......cccvvvviiiiiiiniiiennn. 65
gct Rnd16BlockPtrDList.........cccvviinininnnn. 91
gct_ Rnd16BlockRefDList.........c.cocuvenininnnne. 67
gct_Rnd16BlockRefPtrDList...................ee. 92
gct RNdT16DList.....ccviviiiiiiii, 59
gct Rnd16HashTable..........ccoovvviiiiiinnnnnnn. 64
gct Rnd16PtrArray.........coovveiiiiiiiiin, 88
gct Rnd16PtrDList.....ccvviiiiiiiiee 88
gct Rnd16PtrHashTable.............c.occvvnnnn, 90
gct Rnd16PtrSortedArray..........cocevivennnn. 89
gct Rnd16RefDList......ccvvvviiiiiiiiiee, 67
gct Rnd16RefPtrDList......ccccvviviiiiiiinnn, 91
gct Rnd16SortedArray.........ovevvviiieininnnnnn. 61
gct RNd32Array....c.ooviviiiiiiiii, 57
gct Rnd32BlockDList.......cccvvvviiiiniiiiiiinnns 65
gct Rnd32BlockPtrDList........ccovuvviiiinininnnns 91
gct Rnd32BlockRefDList.........ccvvuvvivininnnne. 67
gct Rnd32BlockRefPtrDList...........ccvvvveeee. 92
gct Rnd32DList...ccovviiiiiiiiiiii 59
gct Rnd32HashTable............coveiviiininnn. 64
gct Rnd32PtrArray.....cccovvvviiiiiiiiiiinnn 88
gct RNd32PtrDList.....ccccovvviiiiiiiiiiieieeene, 88
gct Rnd32PtrHashTable............cccoceiienit, 90
gct Rnd32PtrSortedArray........cccvevevuennnnn. 89
gct Rnd32RefDList.....ccovvvviviiiiiiiiiiiins 67
gct Rnd32RefPtrDList........cccvvviiiiiinininnnns 91
gct Rnd32SortedArray.......c.ooevviiiiiininnnn, 61
gct RNd8BArray.....ccovvviiiiiiii 57
gct Rnd8BlockDList........cccooviiiiiniiinn, 65
gct_Rnd8BlockPtrDList.........ccoviviviininnnnnn. 91
gct Rnd8BlockRefDList.........cocvviiiininnnnn. 67
gct Rnd8BlockRefPtrDList.............c.cvien, 92
gct Rnd8DList.......cocvvvviiiiiiiiiii, 59
gct Rnd8HashTable.............ociviiiis 64
gct RNd8PtrArray......ccoooviviiiiiiiiiie, 88
gct Rnd8PtrDList.....cccovviviiiiiiii, 88
gct Rnd8PtrHashTable...........cccovviviiiininnns 90
gct Rnd8PtrSortedArray..........cocvvvvivinnnnnn. 89
gct Rnd8RefDList......cccovvvvviiiiiiiiiiieen, 67
gct Rnd8RefPtrDList.......c.cocviiiiiiiiiinn, 91
gct Rnd8SortedArray......cocovviviiiiiinennnnnn. 61
gct SortedArray......ccovviiiiiiiii 60
gCt Std AITay..ocoeeeieiie e 57
gct Std BlockDList......o.vvvvviiiiiiiiiiiee, 65

Spirick Tuning Referenzhandbuch Seite 180

gct _Std _BlockPtrDList......ccocvviviviiiiiinnenn, 91

gct _Std BlockRefDList.........ccoccvviviininnennn. 67
gct_Std BlockRefPtrDList.........ccccvvivinininnns 92
gct Std DList...cviiiiiiiiiiii 59
gct _Std HashTable.........oovviniiiiiiininns 64
gct Std PtrArray......cocovviiiiiii 88
gct Std PtrDList......ocviiiiiiii 88
gct _Std _PtrHashTable.................ooooiiinis 90
gct _Std _PtrSortedArray.......c.coovvvviiiinennnn. 89
gct Std RefDList....cccovvvvviiiiiiiiiiiee, 67
gct Std RefPtrDList......cccoviviiiiiiieiieenne, 91
gct _Std_SortedArray.......coovvveviiiiiiieininnnn, 61
gct StdTBArray.....ccovvviiiiii 57
gct Std16BlockDList......ccvvvvviiiiiieieiinne, 65
gct_Std16BlockPtrDList..........cccevvvvininnnnn. 91
gct _Std16BlockRefDList.........cccvveeinnnnnnn. 67
gct_Std16BlockRefPtrDList..............oveeeee 92
gct Std16DList....cceiviiniiiiiiii, 59
gct Std16HashTable..................ool, 64
gct Std16PtrArray.......covvviiiiii 88
gct Std16PtrDList.......vviviiiiiieiee 88
gct _Std16PtrHashTable.................coieie. 90
gct_Std16PtrSortedArray.........cocvvivinnnnnn. 89
gct Std16RefDList.......cccevvvviiiiiiiienn, 67
gct Std16RefPtrDList......cccocvviiiiiniiinnn, 91
gct Std16SortedArray......coooeeviiiiniiiinnnnn. 61
gct Std32Array....ccooviiiiiiiiii 57
gct _Std32BlockDList.....occvviiiiiiiiinn, 65
gct_Std32BlockPtrDList........ccccvvvieininnnnne. 91
gct _Std32BlockRefDList.......c.ccvviiininnnnnn, 67
gct _Std32BlockRefPtrDList..........c.covvuevnenn. 92
gct Std32DList...ucviviiiiiiiiiiii e 59
gct Std32HashTable...........cccccvivieiniinnnn. 64
gct Std32PtrArray......c.coevviiiiiiiiiiien, 88
gct Std32PtrDList......ccvvviiiiiiiiiiiees 88
gct _Std32PtrHashTable.............c.cocvvvvnnnnn. 90
gct _Std32PtrSortedArray........coocvviiininnnn, 89
gct Std32RefDList....coccvviviiiiiiiiiieiieen, 67
gct_Std32RefPtrDList.......ccccviviiiniiniinnnn, 91
gct _Std32SortedArray......oovviiiiiiiiiniienn. 61
gct Std8BArray.......coovviiiii 57
gct_Std8BlockDList.......cocvvvviviiiiiiiiiiinnn, 65
gct _Std8BlockPtrDList.......cccvuviiininiinnnnn, 91
gct_Std8BlockRefDList........ccovvviiiiininennn. 67
gct_Std8BlockRefPtrDList.............ccccvuneen. 92
gct Std8DList......cviviiiiiiiii, 59
gct _Std8HashTable...........ccooeiviiiiinn, 64
gct Std8PtrArray......ccooeviiiiiiiii, 88
gct Std8PtrDList.....cccvvvviiiiiiiiiii 88
gct _Std8PtrHashTable................oooini, 90
gct _Std8PtrSortedArray........cocevvviiiiininnnnn. 89
gct Std8RefDList......occvviviiiiiiii, 67
gct _Std8RefPtrDList.......cccvvvviiiiiiiiiniinnn, 91
gct_Std8SortedArray.......covviviiiiiiiiiiiinnn, 61
GCt StHNG...iviiiiiiii 122
get UtfCit..ooiii 105
gct VarltemBlock. ..o, 31
GetAddr........oiviiiiii 21
GetAllLen.......oooviiiiiiiii 136
GetAllocByteSize.....coovvvviiiiiiicii e 26

GetAllStr. . 137
GetAttributes.....coooviiiii 147
GetByteSize. ..o ii i 21
GetChar....ovv i 106, 126
GetCharAddr......ccovviiiiic e 29
GetCharPoS......cvviiii i 106
GetCharSize....covvviviiiiicc e 28
GetChNStore.....cvvi i 19
GetCreationTime......ccvveviiiiiiiii i, 147
GetData. .o 117
GetDaY. .ot 150
GetDayOfWeekK.......ccvvvviiiiiiiiiiciiiee, 150
GetDefaultPageSize...................... 30, 31, 33
GetDotLen.....cooveiiiiiiiii e 136
GetDrive. ..o 137
GetDriveLen....coovviiii i 136
GetDriveOffs..coooiii i 136
GetDrivePath.........coooiii 137
GetDrivePathLen............ccooiiiiiiinn. 136
GetDriveStr.. .o 137
GetEntries. ..o v 19
GetError...oo o 106
GetEXt. i 137
GetExtlen. ... 136
GetEXtOffs.. i 136
GetEXtStro 137
GetFirstEqualObj......ccocvviiiiiie 69
GetFirstEqualRef........cooiiiiiiii, 79
GetFirstODbj....ovvi i K]
GetFirstPtr ..o 72
GetFirstValPtr.....c.oooiiiiicic e 85
GetFirstValue.......cccooviiiiiiiiiicici e 82
GetFixPagePtrs.......cccoovviiiiiiiiiiii e 34
GetFiXSizZe. .o 30
GetHash.......ooovviiiii 95, 125, 152
GetHashSize.......cooviiiiii 63
GetHour...oooo 150
GetlnitSuUcCesS.....ovvvviieiiennnnns 110, 112, 113
GetltemAddr......cooooiiii 31
GetltemSize...cocviiiici 30
GetKeY. oo 82,85, 113
GetLastAccessTime......ccocevviviieiinnnnn... 147
GetLastEqualObj........cocvieiiiiiiiie 69
GetLastEqualRef......cccooviiiiiiii 79
GetLastODbj...o.veveiii i 53
GetLastPtr....oooiiiii 72
GetLastValPtr.....cooooiiiiiiii i 86
GetLastValue.....ccoooeiiiiiiii 82
GetLastWriteTime.......coovvvviiiiiiiiie e 147
Getlen. .o 48, 125
GetMaxByteSize......ooovvviiiiiiiiiiiiiees 21
GetMaxChainEXp......covveiiiiiiiiiiiiieea, 18
GetMaxCharSize......ccveiviiiii i 28
GetMaxltemSize.......coovviiiiiiiiiiii e 30
GetMaxLen....ovvvvviiiiiiiieienns 56, 60, 125
GetMicroSecond.........coevviiiiiiiiiiieieae 150
GetMIinByteSize......ccovvviiiiiiii i 26
GetMIiNUE....coviiieii i 150
GetMonth....cooiiiii 150
GetNaMEe. ... 137

Spirick Tuning Referenzhandbuch Seite 181

GetNameEXt......oovvviiiiiic i 137 HasWildCards.......cccvvieiiiiiiiii i 136
GetNameExtLen.......ccccooiiiiiiiiiiiii ... 136 |
GetNamelLen......ocooviiiiiiiiii s 136 INCCharSize.....coovvviiii e 29
GetNameOTffs....oooiiiiiiiicic e 136 INCIEMSIZE. .o 31
GetNameStr...coocviii i 137 IncltemSizeT...ccooviiiiii e 30
GetNewFirstObj.....cocovvviiiii i b4 [Te] 21=) P 39, 40, 66, 98
GetNewLastODbj......cocvvvviiiiiiiiii s b4 5 1 43, 45
GetNeWODj...ovieiiie 54 INitialize. ..o 39
GetNewObjJAfter....cocvvvviiiiiiee 54 INS eIt 128
GetNewODbjAfterNth..........ccoooiiiiiiiinne. 54 INsertChars......c.ocvviiiiiic e 29
GetNewObjBefore........ccooovvviiiiiiiiiennenn.. 54 InsertDrivePath.............ccoooviiiiiiiiinnnne. 137
GetNewObjBeforeNth..........cccvviiiiiiennnnn. 54 INSEItF. .. 130
GetNextODbj..cvvvvii 53 INnsertltems.....ccoviiiiii e 31
GetNextPtr. ..o 72 InsertPath........cccoiiiiiiii 137
GetNthODbj...oei i 53 ISADS. . 138
GetNthPIr. .o 73 ISAHOC...c.cciiieiieiiic e 39, 40, 66, 98
GetODj. i 49 ISArChiVe.. ..o 147
GetPageSize......oovvvviiiiiiii 34 ISDIr€CtOry..ovvvii i 147
GetPath.. ..o 137 ISEMPLY.ccciieiiiiiiiiieieeeeae 48, 125, 152
GetPathLen......coovvvi i iiiiiiiiie s 136 1] o 1= T 39, 41, 66, 99
GetPathOffs.....coooviiiii e 136 IsHidden.......ccooviiiiiii 147
GetPathStr.......oooiiiii 137 ISNUIL . 39
GetPrevODbj...o.oei 53 IsReadOnly.....cooiiiiiiiiiii e 147
GetPrevPIr....co i 73 ISRl e e 138
GetPEr . 72 ISSYStEM. et 147
GetPureDrivePath..............ocoooiiil. 137 Iterieren des Containers...........cc.ccoeevenne... 48
GetPureDrivePathLen........ccovvvvvvviiiiennnns 136 Iterieren und verandern................. 51, 77, 97
GetPurePath........ccoooiiiiiii 137 K
GetPurePathLen..........c.ooviiiiiiiiii i, 136 Klein-/GroRBbuchstaben...............c.oooeeeee. 130
GetRawAddr....c.ovvii i 29 Konvertieren....ocovviiiiiiii i eecciieeeens 131
GetRawlen....c.ooooiiiiiiiic i 106 L
GetRAWPOS. ..o 106 1= 1= N 48, 126
GetRef .o 39, 40, 66, 98 = T= [Y 37
GetReSUt. ..o 151 LastPageError.....coovveviiiiiiiii e 33
GetResUltStr. oo 151 LastPageWarning.........cccoovvvviiiviiiinnennnnn.. 33
GetRevChar......ocoviiiiiiiiiicccc e 126 Load.. .o 141
GetRNAStOore. .o e 17 o Yo 110, 114
GetRoundedSize.......cvovviiiiiiiiiiiii e 34 LOsSChen.....ccoviiiiiii i 129
GetSecond.......ccoviiiiiiiii e 150 Léschen gefundener Objekte..................... 70
GetSiZe. ittt 19, 117, 147 Loschen gefundener Paare................... 83, 86
GetStdStore.....coviiiiii 16 Léschen gefundener Paare und referenzierter
GetStOre. ot 41 ObjJeKEE. .ttt 87
GetStr e 125 Loschen gefundener Zeiger..............c.c...... 75
GetTime. . 149 Léschen gefundener Zeiger und referenzierter
GetUUID....oiiii e 152 Objekte...ceveiii i 76, 80
GetValPtr. .o 856 Léschen von Objekten..........ccvvveviinnnn, 49, 54
GetValuB....o i 82 Loschen von Paaren............ooovvvivvnnnnn. 83, 86
GetYear...oooii i 150 Léschen von Paaren und referenzierten
GLOBAL STORE DCLS.......coeiviiiiiiiiiienenns 14 ObjekteN. ..o 87
GLOBAL _STORE DEFS........coiiiiiiiiinn, 14 Léschen von Zeigern............c.oovviiininnnnn. 73
Léschen von Zeigern gefundener Objekte....80
HasDOt. ..o 136 Léschen von Zeigern und referenzierten
HasDrive. ..o 136 Objekten. ... 74
HasDriveOrUNC........cccoiiiiiii i 136 M
HasSEXt...oiiiiiii e 136 MaXAIOC. . e 12
HasFree. ..o et 37 MaxDataAlloC.......covvieiiiiiiiie e 44
HASHTABLE DCLS......oiiiiiiiieeeeene 63 MbConVert.....c.coviiiiiiic i 132
HasName.......ocoooeiiiiiiii i 136 MOVE. ..t 142, 144
HasPath......ccoooiiiiii e 136 MS Visual C+ + oo 9
HasUNC......cooii e 136 N
Spirick Tuning Referenzhandbuch Seite 182

Nth. .o 48
(01071 P 114, 116, 117, 141
operator I =.......ccceiiiiiiinenn. 130, 150, 152
operator ()..cvvevvii i 125, 126
operator [l 126
OPErator 4 e 131
OPEratOr 4 = . iiiiiiiiiiiii i eieeaaas 131
operator <.......ccceevineiinnnn. 95, 130, 133, 150
operator < =....ccciiiiiiiiiiiiieiiea 130, 150

operator = 21, 48, 131, 136, 141, 143, 145,
152

operator = =.................. 130, 150, 151, 162
(o] 01=] - 1 o] S 130, 150
operator > =.....ccciiiiiiiiiiiie 130, 150
operator delete.......ocoviiiiiiiiiiiiii 20
operator delete [l.....cccoevviiiiiiiiii i, 20
OPEraAtOr NMEW....ueueieiieineineeneene e eaneeaneenes 20
operator NEW [l.....coviiiiiiiiiiiiiiiic i 20
Parameterarten fir Verzeichnisse............. 147
POSOT. e 13
PrEeV. 48
PTR_ARRAY DCLS.....ciiiiiiiiiiiiiiiieas 87
PTR DLIST DCLS.....ccciiiiiiiiiiiiiee e 88
PTR_ HASHTABLE DCLS.......c.ccoovviiiiieennns 89
PTR_SORTEDARRAY DCLS.........coovveniannnns 89
QueryAllocEntries......ccoovviiiiiiiiiiiiiiinns 19
QueryAllocSize....oovvviiiiii i 19
QueryCurrentDirectory.......coovveviiiiiinnnnnen. 143
QueryCurrentDrive......cccooeeviiiiiiiiiienns 143
QueryCurrentDriveDirectory...........cc.oue... 143
QueryFreeEntries......ccccvveviiiiiiiiiii e 19
QueryFreeSize....cooviviiiii i 19
QueryLocalTime.....cccoeviiiiiiiiiiieene 149
QUEIYPOS...ei i 142
QUEIYSIZE. it 142
QueryUTCTime. ..ooviiieii i 149
Read......cooviiiii 142
Ready.. oo 106
RealloC.....coviiiiiii i 12
RealloCPtr......coviiiii e 34, 44
REF DLIST DCLS....ccieiiiiiiieeeeee e 66
REF_STORE DCLS.......coviiiiiiiiiieeenns 41
REFCOLLMAP DCL......cviviiiiiiiiiieeenns 929
REFCOLLMAP DEF......coioiiiiiiiiiiinenns 929
REFPTR _DLIST DCLS.....ccoviiiiiiiiiiiennns 91
Release.....covvviiiiiiiiiiiiiiiiiiiaees 112, 116
Replace....ccouviiiiiiii 129
ReplaceAll......ccooeiiiiiii e 129
ReplaceChars.......c.cocvviiiiiiiiiiiiccea 29
ReplaceF......cociiiiiiiic e 130
RevSubStr.....coovii 126
RoundedSizeOf.......coovviviiiiiiiiie e, 13

Rickgabewert von Léschmethoden....49, 54,
69, 73, 79, 83, 86
RUckwarts iterieren........ccvvvvvevennn. 51,77, 97

SV it 142
SearchFirstKey.......ccoovoiiiiiiiiiiinin, 82, 85
SearchFirstObj.......ccooviiiii e 69
SearchFirstPtr.......c.oooiiiii 75
SearchFirstRef......cccviiiiiiii i 79
SearchLastKey.......ccoovviiiiiiiiiiininnns 82, 85
SearchLastObj......c.ccvviiiiiiiiiiiiee 69
SearchLastPtr.......cccooviiiiiiiiiiiii i 75
SearchLastRef.......c.ccoviiiiiiiiiiii 79
SearchNextKey......cooovvviiiiiiiiinn., 82, 85
SearchNextODbj......ocoviiiiiiiiiieeas 69
SearchNextPtr. ..o 75
SearchNextRef........ccooiiiiiiiii 79
SearchPrevKey.......ccoooiiiiiiiiiiini, 82, 85
SearchPrevODbj......cccoveiiiiiii 69
SearchPrevPtr.......cooiiiii i 75
SearchPrevRef......ccoiiiiiii 79
SeekADbS....ciiii 142
SeekRel.... i 142
Selbstzuweisung........coiiiiiiiiii 124
SEtAIlOC...c.e i 39
SetByteSize. ..o vuiiiii 21
SetCharSize.....coovviiii i 28
SetDaAY .t 150
SetDayOfWeek.....cocooeiniiiiiiiiiies 150
SetDrIVE. .. 137
SetDrivePath.......ccooiiiiiiii 137
SEtEXt .ttt 137
SetFixPagePtrs.....ccoovvvviiiiiiii 34
SetFree. i 39
SetHashSize......cocooiiii 63
SetHOUN .. 150
SethtemSize...c.cvviiiii 30
SetKBY . it 113
SetMaxChainEXp......ccoooviiiiiiiiiiiie, 19
SetMicroSecond........ccoviiiiiiiiii 150
SetMinByteSize.......covvviiiiiiiiiieees 26
SetMinute......ccoviiiii 150
SetMonth...cooiiii 150
SetName......coooiiii 137
SetNameEXt......cccooviiiii i 137
SetPageSize.......cooviiiiiiiiiiiiiie 37, 56, 61
SetPath.....ccciiiiii 137
SetSecond......coiiiiiiii 150
SetSortedFree......ccooviiiiiiiiiiii 37
SetTiME. i 149
SetYaAm it 150
SiZEOT . i 13
S Yo 139, 140
SORTEDARRAY DCLS.....coiviiiiiiiiiiiieenns 61
Speicherlberlauf.............coooi 7
st BatteryInfo.......cocooviiiiiii 121
st_CompilerInfo.........coooviii 120
st_FileSystemInfo..........cocoviiiiiiiiiiinnnnn, 120
st Hardwarelnfo............o.oooi, 120
st HeapInfo.......cooovviiiiiii 9
st_ProcessMemoryInfo............coooeiviennnn. 120
st_SystemInfo......ccooiiiiiiiiii 121
st_UserKernelTime...........cocoviiiiiiiiiinnnnn. 108

Spirick Tuning Referenzhandbuch Seite 183

StorelNfoSize. . oo 12

STRING DCL....iviiiiiiie, 132
SUDSr e 126
Suche nach Objekten.........c.ccooiiiiiiiinnn. 68
Suche nach Paaren.............c.coeeiennnnn. 82, 85
Suche nach referenzierten Objekten........... 79
Suche nach Zeichen und Teilzeichenketten

.. 126
Suche nach Zeigern.........ccoovvviiiiiiiiiiinnnn, 75
LS 1TLY - T o 12, 21, 48
t FileAttributes.........coooviiiiiiii 144
t Fileld....ooooiii 118
t FileSize.......oooooiiiiii, 118
TNt 7
TINtT6. i 7
TINt32. 7
TNt 7
T KeY. o 81, 85
t Length..ooooiiiii 47
t MD5ResuUlt........ccviiiii, 150
t MicroTime.....c.ooviiiiiiii 107
t Object. ..o 48
t Position........coviiiii 12, 47
t RefCount......cooovviiiiiiiiii 38, 39
t RefObject......cocviiiiii, 72
TSIz i 12, 20, 125
T UING 7
T UINET6. .o 7
T UINE32.. 7
T UINI8...oi 7
T UUID. o 151
V2= | 16 1= 81, 85
Teilvergleich...c.cooviiiiiiii 127
Temporédres Anflgen........ccooovviiiiiiiinnnns 131
T ANOC. e 9
tl_AllocReserve.........ccooviiiiiiiiiiiiiiii 8
tl BeginThread..........ccoovviiiiiiiiiiiiiieenn, 109
tl CloseFile........c.ooooviii 118
tl CompareChar........cooviiiiiiiiinieeens 10
tl_ CompareMemory...........ccvvviviiiniiinnennnn. 10
tl_ CopyFile.....ccoviiiiiii 118
tl CopyMemory.......ccoovviiiiiiiiiiii 10
tl CreateDirectory.........c.cooiiiiiiiinnn, 119
tl_ CreateFile.............oooooii 118
tl_CriticalPrSectionInitSuccess................. 114
tl_CriticalSectionInitSuccess.................... 111
tl Delay.....oovviiiiiii 109
tl_DeleteCriticalPrSection...............coceuene. 114
tl_DeleteCriticalSection.................c.oeunee. 111
tl_DeleteDirectory............coooiviiiiiinnn, 119
tl_DeleteFile.........cooviiiiiiiiiii, 118
tl_ ENdProcess........coovviviiiiiiiiiiiie e, 109
tl_EndThread...........oooiiiiii, 109
tl_EnterCriticalPrSection..............c.cocevve. 115
tl_EnterCriticalSection.................co.ooeenee. 111
Tl EXEC i 110
tl_ExistsFile.....cocovviii 118
tl_ FillMemory....c.oooviiii 10
tl FirstChar......coovviiiiii e 10

tl_FirstMemory..........ocooi 10
tFree ..o 9
tl_ FreeReserve...............oooi 8
tl_FreeUnused...........c.cooviiiiiiiin, 10
t GetENV.. e 109
tl_GetReserveSize...........c.cocevviiiiiinnnn, 8
tl_ GetTempPath..........coooiiiiiiiiin, 109
tl HasReserve...........ocooiiiiiiiiiiiinnn, 8
tl_InterlockedAdd..........cccoiiiiiiiiiiinne, 108
tl_InterlockedDecrement.............c.cceueneene. 108
tl_InterlockedIincrement................ocoeeeiiis 108
tl_InterlockedRead...........cocovivniiiniiininnn, 108
tl_InterlockedWrite.........coovviiiiiiiiiinnns 108
tl_IsProcessRunning..........c.cccovviiiinnnnnnn. 110
tl LastChar........ooviiiiiii 11
tl LastMemory........oooiviiiiiiiiii 11
tl_LeaveCriticalPrSection................coeuens 115
tl_LeaveCriticalSection.............cocvvviiininns 111
tl_LocalToUTCTime.........c.ooviiiiiininnnnnne, 107
tl MaxAlloC......ocovii 9
tl_MbConvert..........ocooiiiiiiii 103
tl_ MbConvertCount............oooevviiiiiinnnnnnn. 103
tl_MoveDirectory...........cocoviiiiiiniiininnn, 119
tl_ MoveFile.......cooooiiiiii 118
tl_MoveMemory............oooiii 10
tl_ OpenFile.........ooooiiiiiii 118
tl_Processld..........ocooviiiiiii 109
tl_QueryBatteryInfo...........ooooiiiiiin 122
tl_QueryCompilerInfo..........oooeviiiiiinnnn. 121
tl_QueryCurrentDirectory..........cccouvevnnnnn. 119
tl_QueryFileSystemInfo............ccovvivinnnnn. 121
tl_QueryHardwarelnfo...............coooeeinnin, 121
tl_QueryHeapInfo.......ocovvviiiiiiiiii 9
tl_QueryLocalTime.......cccoovviiiiiiiiniiinnnn. 107
tl QUErYPOS. ..o 118
tl_QueryPrecisionTime..........c.ooeviiieinnnnnn. 107
tl_QueryProcessMemorylInfo.................... 121
tl_QueryProcessTimes.........cccvevvuinienennnnn. 108
tl_QuerySize......ocoooiiiiii 118
tl_QuerySystemInfo.........cccooviiiiinn. 122
tl_ QueryThreadTimes..........ocoovviiininnnnn, 108
tl_ QueryUTCTime.....coooviiiiiiiiiiiiiees 107
th Read......oooiiii 119
tl Realloc......cocovviiiiiiii 9
tl_RelinquishTimeSlice.....................ooouee. 109
tl_ SeekAbs......ccooiiiiiii 118
tl_SeekRel........cooovviiiii 118
tl_SetOverflowHandler.......................... 8, 33
tl_SetReserveHandler......................ooon 8
tl_SetReserveSize...............coooiiii 8
tl_StorelnfoSize..........ooooviiiiiiii 9
tl_StringHash................ 103
tl_Stringlength..........oooiiiii 103
tl_SwapMemory........oocvviiiiii 11
tl SWapODbj. oo 11
tl Threadld.........cooooiiii, 109
Tl TOLOWET ..ot 103
tl ToLower2......coovviiiiiiiiiiiee 103
tl_ ToUpper....c.covvviiiiii 103
tl ToUpper2......cocvvviiiiiiiiceee 103

Spirick Tuning Referenzhandbuch Seite 184

tl_Truncate.......cocoeeiiiiiiiii 118

tl_TryEnterCriticalPrSection..................... 115
tl_TryEnterCriticalSection........................ 111
tl UTCTolLocalTime...........ccovviiiiiiniinnnnn, 107
tl_UtfConvert......oovviiiiii 105
tl_UtfConvertCount.............ccooviiiniinnnn, 105
tl Utflength....ooooiiiii 105
tl UtfToLower......covviiiiiiii, 105
tl UtfToUpper....c.coviiiiiiieeee 105
T VSprintfo..oooi 138
T WEte. 119
TOADS. . 138
TOLOWET ... 130
TOLOWEI2..cneiiieiiiei e 130
TOREL e 138
TSt e 152
TOUPPE i 130
010 1 o =1 2 130
tpf_AllocHandler................ooo 8
Truncate....ooeieii 142
TruncateObj.....cooeveiei i 49
Try ACQUITE...ove i 112, 116
TryLocK. .o 110, 114
TryOPeN. e 141
UnIocK. ..o 110, 114
Update.. oo 151
Vergleich im Zeigercontainer..................... 74
Vergleichsoperatoren.............c.covvievinnn 130
Verzeichnis durchlaufen, nur Dateien........ 148

Verzeichnis durchlaufen, nur

Unterverzeichnisse.........c.ccoiiiiiiiiiennenne. 148
Verzeichnis vollstédndig durchlaufen.......... 148
Vollstandiger Vergleich...........c.cooiiiint. 127
Vorwarts iterieren......................... 51, 77, 97
W e e 142
WSTRING DCL...cvviviiiiiiiiiciieeeee 132
Zugriff auf gefundene Objekte..69, 79, 82, 85
Zugriff auf Lange und Zeichenkette.......... 125
Zugriff auf neue Objekte.........ccovvvviiiinnnn, 54
Zugriff auf Objekte........c.coeeviiiiiiinen. 49, 53
Zugriff auf referenzierte Objekte................ 72
Zugriff auf Schlissel und Wert............. 82, 85
ZUWEISEN ... 127
ZUuweisungsoperatoren......ocvvevvevievieniinnnns 131
~ct_AnyBlock........oooiii 21
~ct DirScan.......coooiviiiiii 145
~cCt File...ccooiii 141
~cCt_Object....cccviiiiiiiiii 94
~ct_PackStore.........ooviiiii 44
~ct PageBlock..........ocooiiiiin 34
~Ct PrMutex..........oooiiiiiiiii 114
~ct_PrSemaphore...............oo 115
~ct_SharedMemory..........coooeviiiiiinnnnnnnn. 117
~ct_SharedResource.............coocevieinnnnn. 113
~gct AnyContainer.........cooovviiiiiiniininnns 48
~gct_PtrContainer.........ccooeviiiiiiiiininnnnns 72

Spirick Tuning Referenzhandbuch Seite 185

	1 SPEICHERVERWALTUNG
	1.1 Systemschnittstelle
	1.1.1 Globale Definitionen (tuning/defs.hpp)
	1.1.2 Reservespeicher (tuning/sys/calloc.hpp)
	1.1.3 Dynamischer Speicher (tuning/sys/calloc.hpp)
	1.1.4 Heapoperationen (tuning/sys/calloc.hpp)
	1.1.5 Speicheroperationen (tuning/sys/cmemory.hpp)

	1.2 Store
	1.2.1 Storeschnittstelle
	1.2.2 Globale Stores (tuning/defs.hpp)
	1.2.3 Beispiel für eine Wrapperklasse

	1.3 Dynamische Stores
	1.3.1 Standardstore (tuning/std/store.hpp)
	1.3.2 Roundstore (tuning/rnd/store.hpp)
	1.3.3 Chainstore (tuning/chn/store.hpp)
	1.3.4 Operatoren new und delete (tuning/newdel.cpp)

	1.4 Block
	1.4.1 Blockschnittstelle
	1.4.2 Allgemeiner Block (tuning/block.h)
	1.4.3 Miniblock (tuning/miniblock.h)
	1.4.4 Reserveblock (tuning/resblock.h)
	1.4.5 Fixblock (tuning/fixblock.h)
	1.4.6 Nulldatablock (tuning/nulldatablock.h)
	1.4.7 Zeichenblock (tuning/charblock.h)
	1.4.8 Elementblock (tuning/itemblock.h)
	1.4.9 Pageblock (tuning/pageblock.hpp)
	1.4.10 Block-Instanzen (tuning/xxx/block.h)

	1.5 Spezielle Stores
	1.5.1 Blockstore (tuning/blockstore.h)
	1.5.2 Blockstore-Instanzen (tuning/xxx/blockstore.h)
	1.5.3 Referenzzähler (tuning/refcount.hpp)
	1.5.4 Refstore (tuning/refstore.h)
	1.5.5 Refstore-Instanzen (tuning/xxx/refstore.h)
	1.5.6 Blockrefstore-Instanzen (tuning/xxx/blockrefstore.h)
	1.5.7 Packstore (tuning/packstore.hpp)
	1.5.8 Packstore 2 (tuning/packstore.h)

	2 OBJEKTVERWALTUNG
	2.1 Container
	2.1.1 Containerschnittstelle
	2.1.2 Operationen mit Containern
	2.1.3 Erweiterter Container (tuning/extcont.h)

	2.2 Arrays und Listen
	2.2.1 Array (tuning/array.h)
	2.2.2 Array-Instanzen (tuning/xxx/array.h)
	2.2.3 Liste (tuning/dlist.h)
	2.2.4 Listen-Instanzen (tuning/xxx/dlist.h)

	2.3 Sortierte Container
	2.3.1 Sortiertes Array (tuning/sortarr.h)
	2.3.2 Sortierte Array-Instanzen (tuning/xxx/sortedarray.h)
	2.3.3 Hashtabelle (tuning/hashtable.h)
	2.3.4 Hashtabellen-Instanzen (tuning/xxx/hashtable.h)

	2.4 Block- und Reflisten
	2.4.1 Blockliste
	2.4.2 Blocklisten-Instanzen (tuning/xxx/blockdlist.h)
	2.4.3 Refliste (tuning/refdlist.h)
	2.4.4 Reflisten-Instanzen (tuning/xxx/refdlist.h)
	2.4.5 Blockreflisten-Instanzen (tuning/xxx/blockrefdlist.h)

	2.5 Vergleichs-, Zeiger- und Mapcontainer
	2.5.1 Vergleichscontainer (tuning/compcontainer.h)
	2.5.2 Zeigercontainer (tuning/ptrcontainer.h)
	2.5.3 Operationen mit Zeigercontainern
	2.5.4 Zeigervergleichscontainer (tuning/ptrcompcontainer.h)
	2.5.5 Mapcontainer (tuning/map.h)
	2.5.6 Zeigermapcontainer (tuning/ptrmap.h)

	2.6 Zeigercontainer-Instanzen
	2.6.1 Zeigerarray-Instanzen (tuning/xxx/ptrarray.h)
	2.6.2 Zeigerlisten-Instanzen (tuning/xxx/ptrdlist.h)
	2.6.3 Sortierte Zeigerarray-Instanzen (tuning/xxx/ptrsortedarray.h)
	2.6.4 Zeigerhashtabellen-Instanzen (tuning/xxx/ptrhashtable.h)
	2.6.5 Blockzeigerlisten-Instanzen (tuning/xxx/blockptrdlist.h)
	2.6.6 Refzeigerlisten-Instanzen (tuning/xxx/refptrdlist.h)
	2.6.7 Blockrefzeigerlisten-Instanzen (tuning/xxx/blockrefptrdlist.h)

	2.7 Übersicht Container-Instanzen
	2.7.1 Vordefinierte Templateinstanzen
	2.7.2 Selbstdefinierte Templateinstanzen

	2.8 Collections
	2.8.1 Abstraktes Objekt (tuning/object.hpp)
	2.8.2 Abstrakte Collection (tuning/collection.hpp)
	2.8.3 Operationen mit Collections
	2.8.4 Abstrakte Refcollection (tuning/refcollection.hpp)
	2.8.5 Konkrete Collections

	3 ZEICHENKETTEN UND SYSTEMDIENSTE
	3.1 Systemschnittstelle
	3.1.1 Ressourcenfehler (tuning/sys/creserror.hpp)
	3.1.2 Zeichen und Zeichenketten (tuning/sys/cstring.hpp)
	3.1.3 Unicode (UTF) (tuning/sys/cutf.hpp)
	3.1.4 Unicode-Const-Iterator (tuning/utfcit.h)
	3.1.5 Präzisionszeit (tuning/sys/ctimedate.hpp)
	3.1.6 Uhrzeit und Datum (tuning/sys/ctimedate.hpp)
	3.1.7 Prozessorzeit (tuning/sys/ctimedate.hpp)
	3.1.8 Taskumgebung (tuning/sys/cprocess.hpp)
	3.1.9 Threads (tuning/sys/cthread.hpp)
	3.1.10 Prozesse (tuning/sys/cprocess.hpp)
	3.1.11 Thread-Mutex (tuning/sys/cthmutex.hpp)
	3.1.12 Thread-Semaphor (tuning/sys/cthsemaphore.hpp)
	3.1.13 Gemeinsame Ressource (tuning/sys/csharedres.hpp)
	3.1.14 Prozeß-Mutex (tuning/sys/cprmutex.hpp)
	3.1.15 Prozeß-Semaphor (tuning/sys/cprsemaphore.hpp)
	3.1.16 Gemeinsamer Speicher (tuning/sys/csharedmem.hpp)
	3.1.17 Datei (tuning/sys/cfile.hpp)
	3.1.18 Verzeichnis (tuning/sys/cdir.hpp)
	3.1.19 Systemnahe Informationen (tuning/sys/cinfo.hpp)

	3.2 Zeichenketten und Dateinamen
	3.2.1 Stringtemplate (tuning/string.h)
	3.2.2 String-Instanzen (tuning/xxx/[w]string.h)
	3.2.3 Polymorphe Stringklassen (tuning/[w]string.hpp)
	3.2.4 Dateiname (tuning/filename.hpp)
	3.2.5 Zeichenketten formatieren (tuning/printf.hpp)
	3.2.6 Zeichenketten sortieren (tuning/stringsort.hpp)
	3.2.7 Zahlen sortieren (tuning/stringsort.hpp)

	3.3 Dateien und Verzeichnisse
	3.3.1 Datei (tuning/file.hpp)
	3.3.2 Verzeichnis (tuning/dir.hpp)
	3.3.3 Verzeichnis durchlaufen (tuning/dirscan.hpp)

	3.4 Weitere Werkzeuge
	3.4.1 Uhrzeit und Datum (tuning/timedate.hpp)
	3.4.2 MD5 Summe (tuning/md5.hpp)
	3.4.3 Universally Unique Identifier (tuning/uuid.hpp)

	4 DESIGNDIAGRAMME
	4.1 Zur Notation
	4.2 Polymorphe Klassenhierarchie
	4.3 Ein Array
	4.4 Ein Zeigerarray
	4.5 Eine Liste
	4.6 Eine Blockliste

	5 INSTALLATION UND BEISPIELE
	5.1 Hinweise zur Installation
	5.1.1 Verfügbare Plattformen
	5.1.2 Abhängigkeiten
	5.1.3 Installation
	5.1.4 Performance-Tests
	5.1.5 Inline-Methoden
	5.1.6 DLL's
	5.1.7 Globale Objekte
	5.1.8 Multithreading
	5.1.9 Exception Handling

	5.2 Beispielprogramme
	5.2.1 Protokollklasse (samples/int.cpp)
	5.2.2 Speicherüberlauf (samples/talloc.cpp)
	5.2.3 Alignment (samples/talign.cpp)
	5.2.4 Globale Stores (samples/tstore.cpp)
	5.2.5 Block (samples/tblock.cpp)
	5.2.6 Block- und Packstore (samples/tblockstore.cpp)
	5.2.7 Container (samples/tcontainer.cpp)
	5.2.8 Collections (samples/tcollection.cpp)
	5.2.9 [Zeiger]Mapcontainer (samples/t[ptr]map.cpp)
	5.2.10 Zugriffsbeschleunigung (samples/taccess.cpp)
	5.2.11 Exceptions in Containern (samples/texception.cpp)
	5.2.12 Interlocked (samples/tinterlocked.cpp)
	5.2.13 Threads (samples/tthread.cpp)
	5.2.14 Semaphoren (samples/tsemaphore.cpp)
	5.2.15 Prozesse (samples/texec.cpp)
	5.2.16 Starthilfe (samples/texechelper.cpp)
	5.2.17 Gemeinsame Ressourcen (samples/tshared.cpp)
	5.2.18 Zeichenketten (samples/tstring.cpp)
	5.2.19 Zeichenketten sortieren (samples/tsort.cpp)
	5.2.20 Dateiname (samples/tfilename.cpp)
	5.2.21 Datei (samples/tfile.cpp)
	5.2.22 Verzeichnis (samples/tdir.cpp)
	5.2.23 Verzeichnis durchlaufen (samples/tdirscan.cpp)
	5.2.24 Verzeichnisbaum (samples/ttree.cpp)
	5.2.25 Uhrzeit und Datum (samples/ttimedate.cpp)
	5.2.26 Systemnahe Informationen (samples/tinfo.cpp)
	5.2.27 MD5 und UUID (samples/tmd5.cpp und tuuid.cpp)

